
Received June 4, 2020, accepted June 29, 2020, date of publication July 2, 2020, date of current version September 4, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3006732

Improving Characteristics of
LUT-Based Moore FSMs
ALEXANDER BARKALOV1, LARYSA TITARENKO1, AND SŁAWOMIR CHMIELEWSKI 2
1Faculty of Computer, Electrical, and Control Engineering, Institute of Metrology, Electronics, and Computer Science, University of Zielona Góra,
65-516 Zielona Góra, Poland
2Institute of Science and Technology, State University of Applied Sciences in Głogów, 67-200 Głogów, Poland

Corresponding author: Alexander Barkalov (a.barkalov@imei.uz.zgora.pl)

ABSTRACT Almost any digital system includes sequential blocks which can be represented using a model
of finite state machine (FSM). It is very important to improve such characteristics of FSM circuits as the
number of logic elements, operating frequency and consumed energy. The paper proposes a novel design
method targeting a decrease in the number of look-up table (LUT) elements in logic circuits of FPGA-based
Moore FSMs. The method is based on using two sets of variables for encoding the collections of outputs.
It results in a partition of the set of outputs by two blocks. The outputs from the first block depend on state
variables, the outputs from the second block on additional variables. A method is proposed for splitting the
set of outputs. The conditions for using the proposed method are given. An example of synthesis is shown.
The results of experiments with standard benchmarks are discussed. The experiments outcomes show that
the proposed approach allows diminishing the number of LUTs and consumed energy. Also, it leads to an
increase in the operating frequency. The method targets rather complex FSMs when the number of state
variables exceeds the number of LUT’s inputs.

INDEX TERMS FPGA, Moore FSM, LUT, internal states, FSM outputs.

I. INTRODUCTION
The model of finite state machine (FSM) is used very often
for specification and design of sequential blocks of digital
systems [1], [2]. It is used, for example, for implementing:
1) the hardware-software interfaces of embedded systems
[3]; 2) the complex functions such as hyper-tangent and
exponential functions [4], [5]; 3) the activation functions in
deep neural networks [6], [7]; 4) some blocks for integral
stochastic computing [8]; 5) different stages of cascaded dig-
ital processing systems [9]–[11]; 6) the control units of com-
puters and other digital systems [12]–[14]. As follows from
[15]–[19], the model of Moore FSM is very often applied in
logic design. Due to it, we chose this model in our current
research.

Since the mid-twentieth century, many methods have been
developed for FSM design [20], [21]. To compare outcomes
of these methods, three basic metrics are used. They are:
1) the hardware amount, 2) the performance and 3) the con-
sumed energy [12], [21]. Nowadays, the hardware amount
is determined as a chip area occupied by an FSM circuit
[22]. The performance is determined by either the propaga-
tion time or operating frequency. The operating frequency

The associate editor coordinating the review of this manuscript and

approving it for publication was Abdallah Kassem .

is inversely proportional to the number of logic levels in
an FSM circuit. The consumed energy depends strongly on
the hardware amount [15], [19]. It is known [19] that the
reducing hardware amount leads to improved performance
and energy consumption. Our article targets at reducing the
number of look-up table (LUT) elements and their levels in
Moore FSM circuits implemented with field programmable
gate arrays (FPGA).

The FPGAs are widely used for implementing FSMs [23],
[24]. The majority of FPGAs are based on LUTs [25], [26].
A LUT together with a flip-flop forms a logic element (LE).
A slice includes up to four LEs. A configurable logic block
includes up to four slices [25], [26]. The LE’s output could
be either combinational or registered (connected with the
flip-flop). As a rule, the number of inputs, SL , of a LUT does
not exceed 6 [25], [26]. Very often, it leads to the necessity of
functional decomposition for Boolean functions representing
FSM circuits [27]–[30]. In turn, it results in an increase in
the number of logic levels in a circuit. Also, it makes inter-
connections more complex. All this has a negative impact on
both the operating frequency and power consumption [15],
[31].

To improve the basic metrics of LUT-based FSMs, it is
necessary to reduce the numbers of arguments in systems
of Boolean functions (SBF) representing FSM circuits [32].

155306 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-9671-2800
https://orcid.org/0000-0003-4724-7628

A. Barkalov et al.: Improving Characteristics of LUT-Based Moore FSMs

This can be achieved through the application of methods of
structural decomposition [21], [33]. In this case, an FSM
circuit is represented as a composition of several large logic
blocks. Each block is represented by an SBF with unique
systems of arguments and output functions [13], [14], [33],
[34]. It leads to an increase in the number of different func-
tions compared to FSM circuits based on the functional
decomposition. But these functions are much simpler and
their implementation requires less hardware than in the case
when the functional decomposition is used [21].

The main contribution of this article is a novel approach
for reducing the number of LUTs (and their levels) in the
part of the Moore FSM circuit generating outputs. It allows
improving all metrics of Moore FSMs.

II. BACKGROUND OF MOORE FSMs
A Moore FSM is defined as a 6-tuple [35], [36] including
the following components: X = {x1, . . . , xL} is a finite
set of inputs, Y = {y1, . . . yN } is a finite set of outputs,
A = {a1, . . . , aM } is a finite set of internal states, the func-
tions of transitions and outputs, and the initial state a1 ∈ A.
There are many methods used for representing FSMs. In this
article, we use a state transition table (STT) to represent a
Moore FSM [36].

An STT has the following columns: am is an initial state;
as is a state of transition; Xh is an input signal determining
the transition < am, as > and equal to a conjunction of some
elements of the set X (or their compliments); h is a number of
transition (h ∈ {1, . . . ,H}). There is a collection of outputs
Y (am) ⊆ Y written in the column am of an STT. It includes
outputs yn ∈ Y generated in the state am ∈ A.
There is an example of STT of Moore FSM S1 represented

by Table 1. The following sets could be derived from Table 1:
X = {x1, . . . , x7}, Y = {y1, . . . , y9}, A = {a1, . . . , a18}. So,
there are L = 7, N = 9 andM = 18. There are H = 27 rows
in this STT.

When the set A is constructed, it is necessary to represent
each state am ∈ A by a binary codeK (am) having R bits. It is a
step of state assignment. The state variables Tr ∈ T are used
for creating codes K (am), where |T | = R.

If R = M , it is a one-hot state assignment. This method
is very popular in FPGA-based design [37], [38]. But, for
example, such systems as SIS [39] and ABC [22] by Berkeley
use a binary state assignment. In this case, there is

R = dlog2Me. (1)

We also use this approach in our article.
State codes are kept into a state register (RG). It includes

R flip-flops with mutual pulses of synchronization (Clock)
and clearing (Start). As a rule, D flip-flops create the RG for
LUT-based FSMs [12], [35]. To change the content of RG,
input memory functions Dr ∈ 8 are used, where |8| = R.
A Moore FSM logic circuit is represented by the following

SBFs:

8 = 8(T ,X); (2)

Y = Y (T). (3)

TABLE 1. STT of Moore FSM S1.

FIGURE 1. Structural diagram of LUT-based Moore FSM U1.

To find systems (2) – (3), an STT should be transformed into
a structure table (ST) [14]. An ST is an expansion of the STT
by the following columns:K (am) is a code of the current state
am ∈ A; K (as) is a code of the next state (state of transition)
as ∈ A; 8h is a collection of input memory functions equal
to 1 to load K (as) into RG.

The systems (2) - (3) determine a logic circuit of Moore
FSM U1 (Fig. 1). In Fig. 1, the symbol LUTer determines a
block whose circuit is implemented with LUTs [21].

In FSM U1, the LUTer8 implements the system (2),
the LUTerY the system (3). If a function Dr is generated as
the output of some LUT, then this output is connected with a
flip-flop. These flip-flops form a state register RG distributed
among the logic elements. It explains the presence of pulses
Clock and Start as inputs of LUTer8.

To improve the characteristics of Moore FSM’s circuit,
it is very important to reduce the chip area occupied by the
circuit [2], [35]. The methods of solving this problem depend
strongly on logic elements used for implementing FSM cir-
cuits [12], [32]. Let us analyze design methods targeting
FPGA-based FSMs.

III. STATE-OF-THE-ART
The process of FSM design always has been associated
with necessity of the solution of some optimization prob-
lems [2]. As a rule, when designing FPGA-based FSMs,

VOLUME 8, 2020 155307

A. Barkalov et al.: Improving Characteristics of LUT-Based Moore FSMs

four basic optimization problems arise [13], [32]. They are:
1) the decrease in the chip area occupied by an FSM cir-
cuit (the hardware reduction); 2) the reduction in the signal
propagation time (the increase in the clock frequency); 3) the
reduction in power consumption and 4) the improvement of
testability. In this article, we consider first of these problems.
The analysis of library [40] shows that for some benchmark
FSMs there is L+R ≥ 20. At the same time, formodern LUTs
there is SL ≤ 6 [25], [26]. Thus, the following condition very
often takes place:

L + R� SL . (4)

If condition (4) is satisfied for some FSM, then the problem
of hardware reduction arises for the block LUTer8. If the
following condition takes place

R > SL , (5)

then the LUTerY could be represented by amulti-level circuit.
So, it is necessary to reduce the number of levels in theMoore
FSM circuit if conditions (4) – (5) take places.

There are four main approaches for solving this problem,
namely:

1) The optimal state assignment [1], [2], [28].
2) The functional decomposition of Boolean functions

representing an FSM circuit [22], [27], [29], [30], [41].
3) The replacement of LUTs by embedded memory

blocks (EMB) [1], [13], [15]–[17], [19], [32], [42].
4) The structural decomposition of an FSM circuit [13],

[20], [21], [43].
We shall call the optimal state assignment a process of

obtaining state codes allowing to reduce the number of argu-
ments in functions (2) – (3). These functions are represented
as sum-of-products (SOP). But there is a different nature of
functions (2) and (3) in Moore FSMs.

The functions Dr ∈ 8 depend on terms Fh(h ∈

{1, . . . ,H}), where

Fh = AmXh(h ∈ {1, . . . ,H}). (6)

In (6), the symbol Am stands for a conjunction of state
variables corresponding to the state code K (am) from the h-th
row of ST.

The functions yn ∈ Y depend on terms Am(m ∈

{1, . . . ,M}) determined above.
The number of bits in K (am) can be ranged from dlog2Me

to M . If R = M , it is a one-hot state assignment [15].
When the one-hot is used, only a single state variable forms a
conjunction Am(m ∈ {1, . . . ,M}). It allows decreasing for
the number of arguments in terms (6). It leads to circuits
with less amount of LUTs and layers of logic than in the
case of binary encoding. The results of investigations [15]
show that one-hot is ’́attractive for large FSMs, but a better
implementation of small machines can be obtained using
binary state assignment’́. The results of investigations [17]
show that binary encoding gives better results if L > 10.

One of the most popular state assignment algorithms is
JEDI, which is distributed with the system SIS [39]. It targets

a multi-level logic implementation. It maximizes either the
size of common cubes in logic functions (the input dominant
algorithm) or the number of common cubes in a logic function
(the output dominant algorithm).

Modern industrial packages use different state assignment
strategies. For example, there are the following methods used
in the design tool XST of Xilinx [44]: the automatic state
assignment; one-hot; compact; Gray codes; Johnson codes;
speed encoding. The same methods are implemented in the
design tool Vivado [45].

It is possible to encode the states am ∈ A in such a manner
that it minimizes the number of arguments in functions
yn ∈ Y [32]. For example, the methods [46] could be used
to solve this problem. It is important if the condition (5) takes
place.

So, there is a lot of state assignment methods. It is really
difficult to say which is the best for a particular FSM.

The functional decomposition is very popular in FSM
design [27], [30], [41], [42]. If number of arguments for
some function exceeds SL , then the original function is broken
down into smaller and smaller components. There are three
approaches in this area: serial, parallel and balanced decom-
position. These approaches are used, for example, in systems
DEMAIN [47] or PKMIN [48]. Obviously, there are program
tools for functional decomposition in any CAD system target-
ing FPGA-based design. One of the best CAD tools using this
approach is the ABC package by Berkeley [22], [49].

Modern FPGA have a lot of embedded memory blocks
[25], [26]. Using EMBs allows improvement for main
characteristics of FSM circuits [17]. Because of it, there
are many design methods targeting EMB-based FSMs
[13], [14], [16]–[19], [41], [43]. The EMBs have a property of
configurability. It means that such parameters as the number
of cells and their outputs could be changed by a designer [24].
Typical configurations of EMBs are the following: 16K ∗ 1,
8K ∗2, 4K ∗4, 2K ∗8, 1K ∗16, 512∗32, 256∗64 (bits) [25],
[26]. So, modern EMBs are very flexible and can be tuned to
meet a particular FSM.

In the best case, an FSM circuit is implemented as a
single EMB. It is possible if the following condition takes
place [43]:

2L+R(R+ N) 6 V0. (7)

In (7), the symbol V0 stands for the number of cells for
EMB configuration with a single output. Our investigations
[43] of library [37] shows that condition (7) is true for 68%
of benchmarks.

If (7) is violated, then an FSM circuit could be imple-
mented as: 1) a network of EMBs or 2) a network of LUTs and
EMBs. The survey of different approaches for EMB-based
design can be found in [30]. Let us point out that these
methods could be used only if there are ’́free’́ EMBs, which
are not used for design other parts of a digital system.

In the case of structural decomposition, an FSM circuit
is represented by several blocks [21], [32]. Each block
implements functions different from (2) – (3).

155308 VOLUME 8, 2020

A. Barkalov et al.: Improving Characteristics of LUT-Based Moore FSMs

FIGURE 2. Structural diagram of Moore FSM U2.

FIGURE 3. Structural diagram of PY Mealy FSM.

For example, in the case of replacement of inputs xe ∈ X
[14], the set X is replaced by a set P = {p1, . . . , pG} such that
G� L. Now functions (2) are represented as

8 = 8(T ,P). (8)

It leads to Moore FSM U2 (Fig. 2), where the block LUTerP
generates functions

P = P(T ,X). (9)

For Mealy FSMs, the encoding of collections of
outputs (CO) could be used [20], [33]. In this case each
collection Yq ⊆ Y is encoded by the binary code K (Yq). Let
it be Q different collections in an FSM. In this case, RQ bits
are necessary for their encoding, where:

RQ = dlog2Qe. (10)

Let us use variables zr ∈ Z for the encoding, where
|Z | = RQ. It leads to so called PY Mealy FSM (Fig. 3).

In PY Mealy FSM, the LUTer8Z implements systems (2)
and

Z = Z (T ,X). (11)

The LUTerY implements the functions

Y = Y (Z). (12)

This method leads to a single-level circuit of LUTerY, if the
following condition takes place:

RQ ≤ SL . (13)

If (13) is violated, then it is possible to use the mixed
encoding of outputs [50]. In this case, some functions yn ∈ Y
are represented as SOPs depending on the terms (6). Let us
point out that this approach never has been used for Moore
FSMs.

In this article, we discuss a case when the condition (5)
takes place for some Moore FSM S. In this case, there is
a multi-level circuit of the block LUTerY generating the
system of outputs Y = Y (T). To diminish the number of
LUTs required for generating outputs yn ∈ Y , we propose
to divide the set Y by two disjoint sets (Y = YL ∪ Y0).
We propose to use the method of encoding of collections of

TABLE 2. Collections of outputs for FSM S1.

outputs including outputs yn ∈ YL . These outputs depend
now on some additional variables from the set Z . The outputs
yn ∈ Y0 are still implemented as functions (3) depending on
state variables Tr ∈ T . The proposed method is an evolution
of ideas from our work [50]. In [50], we proposed a method
of mixed encoding of outputs for Mealy FSMs. In this article,
we have adapted the approach of mixed encoding for Moore
FSMs where outputs depend only on states.

IV. MAIN IDEA OF PROPOSED METHOD
Let us create a set V of COs Yq ⊆ Y for some Moore FSM.
For example, there is Q = 17 in the case of Moore FSM S1.
These collections are listed in Table 2.

Let us use LUTs with SL = 3 to implement an FSM circuit.
Because R = dlog218e = 5, the condition (5) takes place
for FSM S1. So, there is a multi-level circuit of LUTerY for
U1-based circuit of S1.
Using (10) gives R = RQ > SL = 3. Let us try to diminish

the number of COs to reach the equality
RQ = SL . (14)

To do it, we should eliminate some functions yn ∈ Y from
initial COs Yq ⊆ Y .
Let the set V include COs Yi, Yj such that Yi = Yj

⋃
{yn}.

So, the elimination of yn from Yi leads to the equality
Yi = Yj. It results in decrementing the number of COs Yq ∈
V : |V | = Q − 1. Let I (yn) be a number of pairs < Yi,Yj >
such that the elimination of yn from Yi leads to Yi = Yj.
Therefore, the elimination of yn from Yi leads to decrease in
the number of COs by I (yn).
The elimination of yn results in a transformation of the

set V into a set V1 having Q1 = Q − I (yn) elements. Now,
it is enough R1 bits to encode the COs Yq ∈ V1:

R1 = dlog2Q1e. (15)

Let the following condition take place:
R1 ≤ SL . (16)

In this case, the output yn is implemented as (3), whereas the
outputs ym ∈ Y \ {yn} are represented as (12).
If the condition (16) is violated, then it is necessary to find

an output ym such that its elimination from COs Yq ∈ V1
leads to the set V2 having Q2 elements. Now, it is enough R2
variables to encode the remaining COs:

R2 = dlog2Q2e. (17)

Let the following condition take place:

R2 < R1. (18)

VOLUME 8, 2020 155309

A. Barkalov et al.: Improving Characteristics of LUT-Based Moore FSMs

FIGURE 4. Structural diagram of Moore FSM U3.

It means that the elimination of ym results in further
decreasing for the number of bits in codes of COs.

The process of elimination should be continued till the
following condition will be true:

Ri = SL . (19)

The subscript ’́i’́ shows that Ri = dlog2|Vi|e. There are N − i
outputs yn ∈ Yq where Yq ∈ Vi.
Let Y0 be a set of eliminated outputs. If yn ∈ Y0, then yn is

represented as (3). Let YL be a set of outputs creating the COs
Yq ∈ Vi. If yn ∈ YL , then it is represented as (12). It leads to
Moore FSM U3 shown in Fig. 4.
In FSM U3, the LUTerL implements outputs yn ∈ YL ,

the LUTerR implements outputs yn ∈ Y0. The LUTer8Z
implements SBFs (2) and (11). So, the proposed approach
results in the mixed encoding of outputs [50].

Let the outputs yn ∈ YL create QL collections. To encode
them, it is necessary RL variables:

RL = dlog2QLe. (20)

Obviously, the following condition should take place:

RL = SL . (21)

In this case, it is enough a single LUT to implement the circuit
for each function yn ∈ YL .
Because the condition (5) takes place, there is a multi-level

circuit of LUTerR. To diminish the number of arguments in
SOPs of functions yn ∈ Y0, it is possible to use the following
approach for state assignment. Let us encode the states
am ∈ A in such a way that functions yn ∈ Y0 are rep-
resented by the minimum possible number of intervals of
R-dimensional Boolean space. Let us name such approach
the special state assignment (SSA). To execute the SSA,
the methods from [46] could be used.

In this article, we propose the method of synthesis of
Moore FSM U3. The method includes the following steps:

1) Deriving the set V from the initial STT.
2) Dividing the set Y by sets Y0 and YL .
3) Executing the special state assignment.
4) Encoding the COs Yq ⊆ YL .
5) Creating the ST of FSM U3.
6) Creating the systems 8 = 8(T ,X) and Z = Z (T ,X).
7) Creating the systems YL = YL(Z) and Y0 = Y0(T).
8) Implementing the FSM logic circuit.

V. DIVIDING THE SET OF OUTPUTS
Table 3 depicts a pseudo-code of the proposed algorithm
for dividing the set of collections of outputs. The algorithm
is technology-dependent because it takes into account the

TABLE 3. Pseudo-code of the algorithm of deviding the set of outputs.

number of LUT’s inputs SL . It uses as inputs the set V and the
value of SL . The algorithm requires not more than N cycles.
The algorithm generates sets Y0 and YL as its output. In the
beginning, the set YL = Y and the set VL includes all COs
Yq ⊆ Y (line 2).

The main idea of the method is reduced to finding the
outputs yn ∈ YL such that their excluding from YL leads
to the maximum possible reduction in the number of COs
Yq ⊆ YL \ {yn}. The search is organized as a cycle with a
cycle variable k . It starts from the operator 3. Each cycle starts
from the organizing the queue γ (line 4). The queue includes
outputs yn ∈ YL .

For each output yn of the queue γ , the value of Q(yn) is
calculated. It is equal to the number of COs Yq ∈ VL . Next,
the elements of γ are ranked in the descending order of the
value of Q(yn). Each cycle k(k ∈ {1, . . . ,N }) can have up to
I steps where I = |VL |.

During each step (starting from line 5), a single element of
γ is analyzed (line 6). The value of 1Qi is calculated for a
chosen output yn ∈ YL . The 1Qi is equal to the number of
COs excluded from VL due to transferring yn from YL into
Y0. Next, the value of Rk is calculated (line 7) as

Rk = dlog2(QL −1Qi)e. (22)

If the excluding the i-th element of γ leads to reduced value
of RQ (line 8), then it is necessary to check the condition (14).
It is executed as the operator 9. If condition (14) is true, then
the solution is found. The algorithm is finished (go to 17).
Otherwise, the modification is executed for sets YL and Y0
(line 10). During this step, the output yi is excluded from YL
and included into Y0 (YL := YL \ {yi} and Y0 := Y0 ∪ {yi}).
The value of k is incremented (line 11). If k > N , then all
outputs are analyzed and the algorithm is finished (line 12).
Otherwise, the correction of VL is executed (line 13). After
obtaining new COs, the next queue γ is creating (line 14).

If condition (14) is violated (line 15), then the next element
of γ should be analyzed (i := i + 1). If the queue is not
exhausted, then its next element should be analyzed (go to
6 in line 16). Otherwise, the algorithm is terminated.

155310 VOLUME 8, 2020

A. Barkalov et al.: Improving Characteristics of LUT-Based Moore FSMs

TABLE 4. The process of partition of the set Y.

TABLE 5. The COs after step 1.

Let us apply this algorithm to Moore FSM S1. As follows
from Table 2, there is Q = 17. Using (10) gives RQ = 5. Let
us use LUTs having SL = 3 inputs. So, the condition (13) is
violated and it is necessary to divide the set Y . The process
of dividing is shown in Table 4.
There are outputs yn, values ofQ(yn) and1Qi shown in the

corresponding columns of Table 4. If some output yn ∈ Y is
taken for analysis during the cycle i, then it is shown in the
brackets in the column Q(yn). The sign ’́+’́ shows that the
corresponding output is included into Y0. The sign ’́-’́ means
that the output yn is excluded from the analysis. The row Y0
shows the outcome of dividing.

Analysis of Q(yn) allows creating the queue γ =< y3,
y1, y2, y4, y6, y5, y7, y8, y9 >. Including y3 into Y0 (cycle
1) gives 1Q1 = 1 and R1 = 5. Because R1 = RQ,
the analysis should be continued for the next element of the γ .
The analysis of Yq (cycle 2) shows that R1 = 4. Because
there is R1 < RQ, the output y1 is included into the set Y0.
Because the condition (13) is violated, the next step should be
executed. To do it, the new table of COs should be constructed
(Table 5).
Using Table 5, the following queue is formed: γ =< y3,

y6, y4, y2, y5, y7, y9, y8 >. Analysis of y3 gives R2 = R1 = 4
(cycle 1). Analysis of y6 gives R2 = 3 < R1. So, the output y6
is included into Y0. Because R2 = SL , the process of dividing
is terminated.

We have found the sets Y0 = {y1, y6}, YL =

{y2, y3, y4, y5, y7, y8, y9}. Also, there is RL = 3 and Z =
{z1, z2, z3}. Table 6 presents the new COs Yq ⊆ YL .

VI. EXAMPLE OF SYNTHESIS
Let us discuss an example of synthesis for Moore FSM S1.
The steps 1 and 2 are already executed for this example. There
is M = 18. Using (1) gives R = 5 and T = {T1, . . . ,T5}.

TABLE 6. The COs after dividing the set Y .

FIGURE 5. The outcome of special state assignment.

FIGURE 6. The outcome of encoding of COs.

FIGURE 7. Design path based on K2F tool.

Let us execute the special state assignment for FSM S1.
Using the method from [46] gives the state codes shown in
Fig. 5.

Let us encode the COs Yq ⊆ YL using the method
[46]. It targets diminishing the number of arguments in the
functions (12). The outcome is shown in Fig. 7.

The system (11) is generated by the LUTer8Z. So, the ST
ofMoore FSMU3 should include the column Zh. This column
contains variables zr ∈ Z equal to 1 in the code of CO Yq for
a state as from the row h (h ∈ {1, . . . ,H}). Table 7 is an
ST for Moore FSM S1. It includes state codes from Fig. 5,
the function Dr ∈ 8 = {D1, . . . ,D5} and variables zr ∈ Z .
Now, the column am includes only outputs yn ∈ Y0. The
column q includes the subscripts of COs Yq from Table 6.

VOLUME 8, 2020 155311

A. Barkalov et al.: Improving Characteristics of LUT-Based Moore FSMs

TABLE 7. Structure table of U3-based FSM S1.

Let us explain, for example, the row 2 of Table 7. There
is am = a2. As follows from Table 1, Y (a2) = {y1, y2, y3}.
So, there is y1 in the column am. There is as = a3 with
Y3 = {y3, y4, y6} (Table 1). After elimination y6 ∈ Y0, the CO
Y3 = {y3, y4} (Table 6) should be generated in the state a3.
As follows from Fig. 7, there is K (Y3) = 010. So, there is the
symbol z2 in the column Zh. The state codes are taken from
Fig. 5.

The functions (2) and (11) are derived from Table 7. They
depend on the terms (6). It is done in the trivial way [14].

As follows from Table 7, the outputs yn ∈ Y0 are
represented as

y1 = A2 ∨ A7 ∨ A10 ∨ A11 ∨ A14 ∨ A15 ∨ A17
y6 = A3 ∨ A7 ∨ A8 ∨ A9 ∨ A12 ∨ A16. (23)

Using state codes (Fig. 5) transforms the system (23) into
the following system

y1 = T̄1T3; y6 = T5. (24)

Using Table 6 and codes from Fig. 7, we can get the
following system yn ∈ YL :

y2 = Y2 ∨ Y4 = z1z̄3; y3 = Y2 ∨ Y3 ∨ Y6 ∨ Y7 = z2;

y4 = Y3 ∨ Y5 ∨ Y8 = z̄1z2z̄3 ∨ z̄2z3;

y5 = Y6 ∨ Y7 = z2z3; y7 = Y4 = z1z̄2z3;

y8 = Y5 = z1z̄2z3; y9 = Y6 = z̄1z2z3. (25)

As follows from (25), there is only a single LUT in the
circuit of LUTerR. As follows from (25) there are 6 LUTs in
the circuit of LUTerL.
We do not discuss the last step of synthesis for this

example. This step is connected with using some standard
tools [25], [26] and a VHDL model of U3.

VII. EXPERIMENTAL RESULTS
To investigate the efficiency of proposed method, we use
standard benchmarks from the LGSynth93 library [40]. The
library includes 48 Mealy FSMs taken from the practice
of FSM design. They are presented in the KISS2 format.
We transform these Mealy FSMs into equivalent Moore
FSMs using three rules taken from [14]. Rule 1: if K dif-
ferent collections of outputs are generated during transitions
in a state am ∈ A of Mealy FSM, then this state is replaced
by K states (a1m, . . . , a

K
m) of equivalent Moore FSM. Rule 2:

each of states akm(k ∈ {1, . . . ,K }) has a unique collection of
outputs. Rule 3: all states akm ∈ A have the same function of
transition. The characteristics of obtained Moore FSMs are
shown in Table 8.
To use these benchmarks, we use the CAD tool named

K2F [43]. It translates the KISS2 file into a VHDL model
of an FSM. To synthesize and simulate the FSM, we use the
Active-HDL environment. To get the FSM circuit, we use
Xilinx Vivado 2019.1 tool [45]. The investigation path used

155312 VOLUME 8, 2020

A. Barkalov et al.: Improving Characteristics of LUT-Based Moore FSMs

TABLE 8. Characteristics of benchmarks.

in our system is shown in Fig. 8. The Xilinx Vivado
2019.1 package was used for synthesis and implementation
of FSM for a given benchmark.

FIGURE 8. Structural diagram of PYM Mealy FSMs.

The target platform was the FPGA device Xilinx Virtex-7
(XC7VX690tffg1761-2). It includes LUTs with SL = 6 [44].

The columnU3 of Table 8 shows the feasibility of using the
proposed method for a particular benchmarks. If condition
(5) is true, then our method can be used. We marked these
benchmarks with a plus in the corresponding row of Table 8.
There 16 signs ’́+’́ in Table 8. So, only corresponding

16 benchmarks are used in our research.
We compared our approach with four other methods. They

are: 1) Auto of Vivado; 2) one-hot of Vivado; 3) JEDI-based
U1 and 4) DEMAIN-basedU1. The results of experiments are
shown in Table 9 (for the number of LUTs), Table 10 (for the
operating frequency, MHz), and Table 11 (for the consumed
energy, Watts).

These tables are organized in the same manner. Their rows
are marked with the names of benchmarks, the columns by
design methods. The rows ’́Total’́ include results of summa-
tions for numbers from each column.We took as 100% results
of addition for the method U3. The rows ’́Percentage’́ show
the percentage of summarized characteristics respectively to
the results obtained for U3.
As follows from Table 9, the proposed method allows

diminishing the number of LUTs compared to other
researched methods. There is the following gain: 1) 35%
regarding to Auto; 2) 58% regarding to one-hot; 3) 13%
regarding to JEDI-based FSMs and 4) 24% regarding to
DEMAIN.

In all cases studied, our approach produces FSM circuits
having exactly a single level of LUTs for blocks generating
output functions yn ∈ Y . Due to it, U3-based FSMs have bet-
ter results for operating frequency than it is for other methods
used in the research. As follows from Table 10, our approach
gives the following gain in the operating frequency: 1) 32,5%
compared to Auto; 2) 32,5% compared to one-hot; 3) 10,2%
compared to JEDI and 4) 28% compared to DEMAIN.

Reducing the numbers of LUTs and their levels allowed
obtaining FSM circuits with lower energy consumption than
for other methods. As follows from Table 11, U3-based
FSMs have the following gain in consumed energy: 1) 30,4%
in comparison with Auto; 2) 40,8% in comparison with
one-hot; 3) 12,1% in comparison with JEDI and 4) 22,9%
in comparison with DEMAIN.

So, if R > 6, then our approach gives better
results than they are for Auto, one-hot, JEDI and DEMAIN.
Of course, it is true only for benchmarks [40] and the
device XC7VX690tffg1761-2. Let us point out that we
conducted similar research using device Xilinx Virtex-5
(XC5VLX30FF324) having LUTs with SL = 6. To do it,

VOLUME 8, 2020 155313

A. Barkalov et al.: Improving Characteristics of LUT-Based Moore FSMs

TABLE 9. Experimental results (the number of LUTs).

TABLE 10. Experimental results (the operating frequency, MHz).

we used the Xilinx ISE 14.1 package [44] The results
of these investigations confirmed our hypothesis about the
feasibility of using the model U3 when the condition (5)
is met.

Each of quantities from Table 9 – Table 11 evaluates
only one of the characteristics of FSM circuits. In this arti-
cle, we propose a comprehensive assessment that takes into
account all three characteristics (the number of LUTs, operat-
ing frequency and consumed energy). We propose to evaluate
an FSM circuit by the following value:

β =
f

NL ∗ P
∗ 1010. (26)

The value of β is the inverse of the amount of energy (mJ)
consumed per LUT of an FSM circuit.

We show these values for generalized characteristics of
FSMs (Table 9 – Table 11) in Table 12. We use total char-
acteristics to get the average value of β (row β of Table 12).
We took as 100% the values of β for U3. As follows from
the row ’́Percentage’́, our approach allows to improve this
general characteristic in comparison with other researched
methods.

VIII. SOME IMPORTANT ADDITIONAL ISSUES
A sequential block can be represented as either Mealy or
Moore FSM. For both Mealy and Moore FSMs, the input

155314 VOLUME 8, 2020

A. Barkalov et al.: Improving Characteristics of LUT-Based Moore FSMs

TABLE 11. Experimental results (the consumed energy, Watts).

TABLE 12. General characteristics of LUT-based Moore FSMs.

memory functions are represented as the system (2). As a
rule, a Moore FSM has more states than an equivalent Mealy
FSM [14]. It makes the system (2) of a Moore FSM more
complex than its counterpart of an equivalent Mealy FSM.
But the outputs of Mealy FSMs depend on inputs and state
variables [14], [37]:

Y = Y (T ,X). (27)

Obviously, the functions (27) have more arguments than
functions (3) of an equivalent Moore FSM. So, each FSM
model has its own advantages and disadvantages. It is impos-
sible to say unequivocally that onemodel is always better than
another. Let us analyze the influence of specifics of Mealy
and Moore FSMs on optimization methods for LUT-based
design. We hope this will help to show more clearly the
novelty of our approach to optimization of LUT-basedMoore
FSMs.

As follows from (27), the one-hot codes of outputs are
generated by the block LUTerY. These codes have N bits.
In Moore FSMs, outputs depend only on state variables.
Here, state codes play role of maximum codes of collections
of outputs. In Moore FSMs, the LUTerY transforms these
maximum codes into one-hot codes of outputs. Due to
this difference, different approaches are used to optimize
characteristics of the part of FSM circuit generating outputs
yn ∈ Y .

As follows from (2), for Mealy FSMs, functions fi ∈ 8∪Y
depend on terms (6). If the condition

NA(fi) > SL (28)

takes place, then the corresponding function fi(i ∈

1, . . . ,N + R) is represented by a multi-level circuit. It is
known, that multi-level circuits have less operating frequency
and consume more power than their single-level counterparts
[2], [33].

If condition (6) takes place, then a corresponding circuit
can be optimized by elimination of the direct dependence of
outputs yn ∈ Y on inputs xl ∈ X . This could be done using
the encoding of collections of outputs. This approach allows
improving the characteristics of Mealy FSMs. It leads to PY
Mealy FSMs shown in Fig. 3. But if condition (13) takes
place, then the circuit of LUTerY is multi-level. To diminish
the number of levels in circuits implementing FSM outputs,
we propose the approach of mixed encoding of collections of
outputs [50].

In the case of mixed encoding, some outputs yn ∈ Y0
depend on terms (6). They are represented by one-hot codes
generated by LUTer8Z. The outputs yn ∈ YR form new
collections of outputs which are encoded bymaximum binary
codes. These codes are transformed into one-hot codes of
yn ∈ YR by LUTerY. This approach leads to PYM Mealy
FSMs shown in Fig. 8

VOLUME 8, 2020 155315

A. Barkalov et al.: Improving Characteristics of LUT-Based Moore FSMs

Our research [50] shows that this approach significantly
reduces the number of LUTs in circuits of Mealy FSMs. The
negative effect of this approach is a decrease in the operating
frequency due to elimination of direct dependence between
outputs and inputs.

This method cannot be used to optimize the circuit of
Moore FSM because its outputs do not directly depend on
inputs xl ∈ X . Given this feature, we have adapted the
approach of mixed encoding of collections of outputs pro-
posed in [50]. If condition (5) takes place, then we construct
two sets of collections of outputs. The outputs yn ∈ YL form
collections encoded by maximum binary codes. To encode
them, additional variables zr ∈ Z are used, where set Z
includes RL = SL variables. These codes are transformed by
LUTerL into one-hot codes (Fig. 4). Because RL = SL , it is
enough a single LUT to implement any function yn ∈ YL .
The collections of outputs yn ∈ YR are encoded using state
variables. So, these outputs are still implemented as functions
(3). They are generated by LUTerR. We execute the partition
of the set Y by sets YL and YR in a wayminimizing the number
of outputs in the set YR. Such an approach allows encoding of
states in a way minimizing the number of literals in functions
yn ∈ Y0. The minimization can decrease the number of LUTs
and their levels in the circuit of Moore FSM U4 compared
with equivalent FSM U1.
So, the proposed approach is a new one. It is not a

mixed encoding of collections of outputs proposed in [50].
We propose a quite different way for reducing the numbers
of LUTs in circuits of Moore FSMs. In this new approach,
only maximum codes of collections of outputs are used. This
is a main scientific contribution of this article. Until now,
we have considered FSMs as separate blocks. However, they
are parts of digital systems. So, FSMs interact with other
parts of digital systems. Theoretically, the Mealy FSMs have
benefits such as lower resource usage and faster response to
their inputs. But in the case of FPGA-based digital systems,
these benefits can be significantly reduced.

For Mealy FSMs, outputs (27) are generated in parallel
with input memory functions. But in practice, outputs (3)
can depend on up to L + R ≈ 30 arguments [14]. Due to
the rather small amount of LUT’s inputs (SL ≤ 6), it is
necessary to use the methods of functional decomposition.
After decomposition, the clock cycle time increases. For
Moore FSMs, outputs (3) depend on R arguments. Moreover,
there are methods of state encoding [36], [47] which allow
minimizing the numbers of arguments in system (3). In the
best case, there are exactly N LUTs in the circuit of LUTerY.
This leads to a reduction of the difference in the operating
frequency for equivalent Mealy and Moore FSMs.

Next, it is known [2], [24] that outputs of Mealy FSM
are not stable. To make them stable, it is necessary to use
an additional output register having N latches. To operate,
the register consumes power. Also, it is necessary to use an
additional circuit to deliver the master clock to the output
register. This circuit consumes some resources of an FPGA
chip (LUTs, interconnections, power). The output register

adds an additional increase to the cycle time. For Moore
FSMs, only the state register is required which includes only
R flip-flops. If R � N , then the state register of a Moore
FSM consumes significantly less power than a pair <state
register, output register> of equivalent Mealy FSM. In the
case of Moore FSM U3, it is necessary to use flip-flops to
keep additional variables zr ∈ Z . But even in this case, it is
necessary only (R+ RL) ≤ 2R flip-flops.
In the case of Moore FSMs, there are effective methods

[24], [33] for optimizing the LUT-based circuits of blocks
LUTer8 generating input memory functions (1). These meth-
ods allow getting a circuit of LUTer8 having practically the
same amount of LUTs as for an equivalent Mealy FSM. The
methods [24], [33] use classes of pseudoequivalent states
of Moore FSMs. A single class of pseudoequivalent states
corresponds to a state of an equivalent Mealy FSM. We do
not discuss this approach in our article. But the corresponding
methods can be found in [24], [33].

It follows from the above that it is difficult to say which
FSMmodel (Mealy orMoore) will be better to implement the
LUT-based circuit of a particular sequential block. It depends
on characteristics of both an FSM (the numbers of inputs,
outputs and states, relations of the number of functions for
which the condition (28) is met to the total number of func-
tions) and FPGA (number of LUT’s inputs, architecture of
a configurable logic block). The criteria of optimality of a
digital system as a whole are also significant. For example,
for embedded systems [3], it is very important to reduce
the power consumption. It is quite possible that a Moore
FSM-based sequential block will consume less power than
a Mealy FSM-based block. Therefore, the final decision on
which FSMmodel to use is made by a designer of a particular
digital system.

IX. CONCLUSION
The paper presents an original approach targeting
FPGA-based Moore FSMs. The proposed design method
leads to FSM circuits having a single level of LUTs in the
blocks generating outputs yn ∈ Y . The method is based
on dividing the set of outputs Y by the sets Y0 and YL .
The outputs yn ∈ Y0 depend on state variables, the outputs
yn ∈ YL on some additional variables. The splitting outputs
is performed so that the condition (21) takes place.

The experiments show that this approach leads to reducing
such FSM characteristics as the number of LUTs, consumed
energy and delay. We compared our approach with four
other methods. The experiments were conducted with Xil-
inx Vivado 2019.1 package. Also, we propose a generalized
characteristic for comparing different design methods. It is
directly proportional to the FSM operating frequency and
diversely proportional to the product of consumed power and
the number of LUTs in an FSM circuit.

There is a single limitation to the application of the
proposed method. Namely, it does not make sense to use our
approach if the number of state variables does not exceed the
number of LUT’s inputs.

155316 VOLUME 8, 2020

A. Barkalov et al.: Improving Characteristics of LUT-Based Moore FSMs

The proposed method belongs to the group of methods of
structural decomposition [21]. Our future research is con-
nected with attempts to apply this method for CPLD-and
ASIC-based FSMs.

REFERENCES
[1] P. Minns and I. Elliot, FSM-Based Digital Design Using Verilog HDL.

Hoboken, NJ, USA: Wiley, 2008.
[2] V. Sklyarov, I. Skliarova, A. Barkalov, and L. Titarenko, Synthesis Opti-

mation FPGA-based Systerm (Lecture Notes in Electrical Engineering),
vol. 294. Berlin, Germany: Springer-Verlag, 2014.

[3] O. Barkalov, L. Titarenko, and M. Mazurkiewicz, Foundations of Embed-
ded Systems (Studies in Systems, Decision and Control), vol. 195. Cham,
Switzerland: Springer, 2019.

[4] B. D. Brown and H. C. Card, ‘‘Stochastic neural computation. I. Com-
putational elements,’’ IEEE Trans. Comput., vol. 50, no. 9, pp. 891–905,
Sep. 2001.

[5] P. Li, D. J. Lilja, W. Qian, M. D. Riedel, and K. Bazargan, ‘‘Logical
computation on stochastic bit streams with linear finite-state machines,’’
IEEE Trans. Comput., vol. 63, no. 6, pp. 1474–1486, Jun. 2014.

[6] J. Li, A. Ren, Z. Li, C. Ding, B. Yuan, Q. Qiu, and Y. Wang, ‘‘Towards
acceleration of deep convolutional neural networks using stochastic com-
puting,’’ inProc. 22nd Asia South PacificDesign Autom. Conf. (ASP-DAC),
Jan. 2017, pp. 115–120.

[7] Y. Xie, S. Liao, B. Yuan, Y. Wang, and Z. Wang, ‘‘Fully-parallel area-
efficient deep neural network design using stochastic computing,’’ IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 12, pp. 1382–1386,
Dec. 2017.

[8] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross,
‘‘VLSI implementation of deep neural network using integral stochastic
computing,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25,
no. 10, pp. 2688–2699, Oct. 2017.

[9] N. I. Rafla and I. Gauba, ‘‘A reconfigurable pattern matching hardware
implementation using on-chip RAM-based FSM,’’ in Proc. 53rd IEEE Int.
Midwest Symp. Circuits Syst., Aug. 2010, pp. 49–52.

[10] J. Glaser, M. Damm, J. Haase, and C. Grimm, ‘‘TR-FSM: Transition-based
reconfigurable finite state machine,’’ ACM Trans. Reconfigurable Technol.
Syst., vol. 4, no. 3, pp. 1–14, Aug. 2011, doi: 10.1145/2000832.2000835.

[11] N. Das and P. A. Priya, ‘‘FPGA implementation of reconfigurable
finite state machine with input multiplexing architecture using hungar-
ian method,’’ Int. J. Reconfigurable Comput., vol. 2018, pp. 1–15, 2018,
Art. no. 6831901, doi: 10.1155/2018/6831901.

[12] M. Kubica and D. Kania, ‘‘Area–oriented technology mapping for LUT–
based logic blocks,’’ Int. J. Appl. Math. Comput. Sci., vol. 27, no. 1,
pp. 207–222, Mar. 2017.

[13] I. Skliarova, V. Sklyarov, and A. Sudnitson, Design FPGA-Based Circuits
Using Hierarchical Finite State Machine. Tallinn, Estonia: TUT Press,
2012.

[14] S. Baranov, Logic Synthesis of Control Automata. Norwell, MA, USA:
Kluwer, 1994.

[15] G. Sutter, E. Todorovich, S. López-Buedo, and E. Boemo, ‘‘Low-
power FSMs in FPGA: Encoding alternatives,’’ in Integrated Circuit
Design. Power and TimingModeling, Optimization and Simulation. Cham,
Switzerland: Springer-Verlag, 2002, pp. 363–370.

[16] J. Cong and K. Yan, ‘‘Synthesis for FPGAs with embedded memory
blocks,’’ in Proc. ACM/SIGDA 8th Int. Symp. Field Program. Gate Arrays,
New York, NY, USA, 2000, pp. 75–82, doi: 10.1145/329166.329183.

[17] V. Sklyarov, ‘‘Synthesis and implementation of RAM-based finite
state machines in FPGAs,’’ in Proc. Field-Program. Log. Appl.,
Roadmap Reconfigurable Comput. Villach, Austria: Springer-Verlag,
2000, pp. 718–728.

[18] R. Senhadji-Navarro and I. Garcia-Vargas, ‘‘High-performance architec-
ture for Binary-Tree-Based finite state machines,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 37, no. 4, pp. 796–805, Apr. 2018.

[19] A. Tiwari and K. A. Tomko, ‘‘Saving power by mapping finite-state
machines into embedded memory blocks in FPGAs,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib., 2000, pp. 916–921.

[20] A. Barkalov, L. Titarenko, and K. Mielcarek, ‘‘Hardware reduction for
Lut–Based mealy FSMs,’’ Int. J. Appl. Math. Comput. Sci., vol. 28, no. 3,
pp. 595–607, Sep. 2018.

[21] A. Barkalov, L. Titarenko, K. Mielcarek, and S. Chmielewski, Logic
Synthesis for FPGA-Based Control Units (Lecture Notes in Electrical
Engineering), vol. 636. Berlin, Germany: Springer-Verlag, 2020.

[22] R. Brayton and A. Mishchenko, ‘‘ABC: An academic industrial-strength
verification tool,’’ in Computer Aided Verification. Berlin, Germany:
Springer, 2010, pp. 24–40.

[23] A. Mishchenko, S. Chatterjee, and R. K. Brayton, ‘‘Improvements to
technology mapping for LUT-based FPGAs,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 26, no. 2, pp. 240–253,
Feb. 2007.

[24] I. Grout, Digital Systems Design With FPGAs and CPLDs. Amsterdam,
The Netherlands: Elsevier, 2011.

[25] Altera. (Jan. 2020). Cyclone IV Device Handbook. [Online]. Available:
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf

[26] Virtex-5 Family Overview, Xilinx, San Jose, CA, USA, 2020.
[27] C. Scholl, Functional Decomposition with Application to FPGA Synthesis.

Boston, MA, USA: Kluwer, 2001.
[28] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli, A Synthesis

of Finie State Machines: Functional Optimization. Boston, MA, USA:
Springer-Verlag, 2010.

[29] M. Nowicka, T. Łuba, and M. Rawski, ‘‘FPGA-based decomposition of
Boolean functions: Algorithms and implementation,’’ Adv. Comput. Syst.,
vol. 10, pp. 502–509, Oct. 1999.

[30] I. Garcia-Vargas and R. Senhadji-Navarro, ‘‘Finite state machines with
input multiplexing: A performance study,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 34, no. 5, pp. 867–871,
May 2015.

[31] X. Wu, M. Pedram, and L. Wang, ‘‘Multi-code state assignment for
low power design,’’ IEE Proc. Circuits, Devices Syst., vol. 147, no. 5,
pp. 271–275, Oct. 2000.

[32] A. Barkalov, L. Titarenko, M. Kołopieńczyk, K. Mielcarek, and
G. Bazydło, Logic Synthesis for FPGA-Based Finite State Machines (Stud-
ies in Systems, Decision and Control). Cham, Switzerland: Springer, 2015,
vol. 38. [Online]. Available: http://link.springer.com/book/10.1007/978-3-
319-24202-6

[33] A. A. Barkalov, L. A. Titarenko, and A. A. Barkalov, ‘‘Structural decompo-
sition as a tool for the optimization of an FPGA-based implementation of a
mealy FSM,’’ Cybern. Syst. Anal., vol. 48, no. 2, pp. 313–322, Mar. 2012.

[34] A. Barkalov and A. Barkalov, Jr., ‘‘Design of mealy finite-state machines
with the transformation of object codes,’’ Int. J. Appl. Math. Comput. Sci.,
vol. 15, no. 1, pp. 151–158, 2005.

[35] S. Baranov, Logic and System Design of Digital Systems. Tallinn, Estonia:
TUT Press, 2008.

[36] G. D. Micheli, Synthesis and Optimization of Digital Circuits. New York,
NY, USA: McGraw-Hill, 1994.

[37] H. Kubatova and M. Becvar, ‘‘FEL–code: FSM internal state encod-
ing method,’’ in Proc. 5th Int. Workshop Boolean Problems, Jan. 2002,
pp. 109–114.

[38] H. Kubatova, Design Embedded Control Systerm. New York, NY, USA:
Springer-Verlag, 2005, pp. 177–187.

[39] E. Sentowich, K. Singh, L. Lavango, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. S. P. , R. Bryton, and A. Sangiovanni-Vincentelli, ‘‘SIS:
A system for sequential circuit synthesis,’’ Dept. EECS, Univ. California,
Berkeley, Berkeley, CA, USA, Tech. Rep. UCB/ERL M92/41, 1992.

[40] LGSynth93. (Feb. 2020). International Workshop on Logic Synthe-
sis Benchmark Suite (Lgsynth93). [Online]. Available: https://people.
engr.ncsu.edu/brglez/CBL/benchmarks/LGSynth93/LGSynth93

[41] M. Rawski, H. Selvaraj, and T. Łuba, ‘‘An application of functional decom-
position in ROM-based FSM implementation in FPGA devices,’’ J. Syst.
Archit., vol. 51, nos. 6–7, pp. 423–434, 2005.

[42] M. Rawski, P. Tomaszewicz, G. Borowski, and T. Łuba, ‘‘Logic Synthesis
Method of Digital Circuits Designed for Implementation with Embedded
Memory Blocks on FPGAs,’’ in Design of Digital Systems and Devices,
M. Adamski, A. Barkalov, and M. Węgrzyn, Eds. Berlin, Germany:
Springer-Verlag, 2011, pp. 121–144.

[43] M. Kołopieńczyk, L. Titarenko, and A. Barkalov, ‘‘Design of emb-based
Moore fsms,’’ J. Circuits, Syst., Comput., vol. 26, no. 7, pp. 1–23, 2017,
doi: 10.1142/S0218126617501250.

[44] (Jan. 2020). Xilinx. [Online]. Available: http://www.xilinx.com
[45] (Jan. 2020). VIVADO. [Online]. Available: http://xilinx.com/products/

design-tools/vivado.html
[46] S. Achasova, Synthesis Algorithms for AutomataWith PLAs. Voice, Russia:

Soviet Radio, 1987.
[47] (Jan. 2020). DEMAIN. [Online]. Available: http://zpt2.tele.

pw.edu.pl/Files/demain/demain.htm

VOLUME 8, 2020 155317

http://dx.doi.org/10.1145/2000832.2000835
http://dx.doi.org/10.1155/2018/6831901
http://dx.doi.org/10.1145/329166.329183
http://dx.doi.org/10.1142/S0218126617501250

A. Barkalov et al.: Improving Characteristics of LUT-Based Moore FSMs

[48] T. Michalski and Z. Kokosiński, ‘‘Functional decomposition of combi-
national logic circuits with pkmin,’’ Tech. Trans. Electr. Eng., vol. 2,
pp. 191–202, Oct. 2016.

[49] (Jan. 2020). ABC System. [Online]. Available: https://people.eecs.
berkeley.edu/~alanmi/abc/

[50] O. Barkalov, L. Titarenko, and S. Chmielewski, ‘‘Mixed encoding of
collections of output variables for lut-based mealy fsms,’’ J. Circuits, Syst.,
Comput., vol. Vol., 28, no. no. 8, pp. 1–21, 2018.

ALEXANDER BARKALOV received the M.Sc.
degree in computer engineering from the Donetsk
Politechnical Institute (currently Donetsk National
Technical University), Ukraine, in 1976, the Ph.D.
degree in computer science from the Leningrad
Institute of Fine Mechanics and Optics, Russia,
in 1983, and the Doctor of Technical Sciences
degree in computer science from the Institute of
Cybernetics, Kiev, in 1995. Since 2003, he has
been a Professor of computer engineering with

the Institute of Informatics and Electronics, University of Zielona Góra,
Poland. His current research interests include the theory of digital automata,
especially the methods of synthesis and optimization of control units
implemented with field-programmable logic devices.

LARYSA TITARENKO received the M.Sc., Ph.D.,
and Doctor of Technical Sciences degrees in
telecommunications from the Kharkov National
University of Radioelectronics, Ukraine, in 1993,
1996, and 2005, respectively. Since 2007, she has
been a Professor of telecommunications with the
Institute of Informatics and Electronics, Univer-
sity of Zielona Góra, Poland. Her current research
interests include the theory of telecommunication
systems, theory of antennas, and theory of digital

automata and its applications. She has taken part in a number of research
projects sponsored by the Ministry of Science and Higher Education of
Ukraine, from 1993 to 2005.

SŁAWOMIR CHMIELEWSKI received the M.Sc.
degree in computer engineering from the Techni-
cal University of Zielona Góra, Poland, in 2001,
and the Ph.D. degree in computer science from
the University of Zielona Góra, Poland, in 2016.
Since 2017, he has been a Lecturer with the
State University of Applied Sciences, Głogów.
His current research interests include methods
of synthesis and optimization of control units
in field-programmable logic devices, hardware

description languages, perfect graphs and Petrie nets, algorithmic theory and
safety of UNIX, and network systems.

155318 VOLUME 8, 2020

