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ABSTRACT Reconfigurable robots have received broad research interest due to the high dexterity they
provide and the complex actions they could perform. Robots with reconfigurability are perfect candidates in
tasks like exploration or rescue missions in environments with complicated obstacle layout or with dynamic
obstacles. However, the automation of reconfigurable robots is more challenging than fix-shaped robots
due to the increased possible combinations of robot actions and the navigation difficulty in obstacle-rich
environments. This paper develops a systematic strategy to construct a model of hinged-Tetromino (hTetro)
reconfigurable robot in the workspace and proposes a genetic algorithm-based method (hTetro-GA) to
achieve path planning for hTetro robots. The proposed algorithm considers hTetro path planning as a multi-
objective optimization problem and evaluates the performance of the outcome based on four customized
fitness objective functions. In this work, the proposed hTetro-GA is tested in six virtual environments with
various obstacle layouts and characteristics and with different population sizes. The algorithm generates
Pareto-optimal solutions that achieve desire robot configurations in these settings, with O-shaped and
I-shaped morphologies being the more efficient configurations selected from the genetic algorithm. The
proposed algorithm is implemented and tested on real hTetro platform, and the framework of this work
could be adopted to other robot platforms with multiple configurations to perform multi-objective based
path planning.

INDEX TERMS Reconfigurable robot, tiling robotics, multi-objective path planning, genetic algorithm,
NSGA-II.

I. INTRODUCTION
Path Planning (PP) has been a fundamental field of study
for autonomous mobile robots. For instance, autonomous
underwater vehicles (AUVs) and autonomous surface vehi-
cles (ASVs) enter dangerous waters to perform environmen-
tal monitoring or mapping [1], [2], and some autonomous
surveillance robots are designed and deployed in military
operations to perform investigation and rescue tasks in con-
fined spaces or hard-to-reach areas. Due to the autonomous
nature of the robots and the hazardous working environments
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they are deployed in, precise and adaptive path planning
algorithms are crucial for them to operate appropriately.

The goal of mobile robot PP is to determine a collision-free
path between the starting and goal points while optimizing
the specific performance criterion. Some of the commonly
adopted criteria include time consumption, energy consump-
tion, and distance traveled [3].

In general, robot workspaces can be categorized into
static environments and dynamic environments. [4] The two
categories of methods can be further classified based on
whether the robot possesses complete information regarding
the surrounding environment [5]. A global path planning
method studies themap in a fully observable environment and
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generates a globally optimized path. The setup of a global PP
algorithm allows the navigation path to be determined before
the robot motion begins. On the other hand, a local PP is
implemented in an unknown or partially known environment,
where data feed from robot on-board sensors are required to
construct environment maps and to direct the operations [6].

Reconfigurable robots are kinematic machines with vari-
able morphologies, and the development of reconfigurabil-
ity in robotics has received increasing attention since the
1980s [7]. Reconfigurable robot platforms can be categorized
into two major classes [7] : intra-reconfigurable and inter-
reconfigurable robots. An intra-reconfigurable robot changes
its internal morphology without the requirement of external
assembly or disassembly [8]. Examples include amphibious
robots equipped with eccentric paddle mechanism (ePaddle)
that enables versatile locomotion in amphibious environ-
ments [9] and pavement sweeping robot Panthera with the
robot footprint can change the width to adapt with the
working conditions [10], [11], Hornbill with reconfigurable
manipulators [12]. An inter-reconfigurable robot consists of
a congregation of homogeneous or heterogeneous modules
and forms a variety of morphologies through assembly and
disassembly process. Examples include chain-type systems
like Tetriamond [13], CONRO [14], hTetro-Infi [15], hTri-
hex [16], Crystal [17], and M-Lattice [18]; as well as hybrid-
type robots like M-TRAN [19].

Though a massive rise of reconfigurable robots is seen,
autonomy systems developed for these platforms mostly
emphasize autonomous motion control, and few explore the
autonomous PP problem of reconfigurable robots. PP prob-
lem is modeled differently in reconfigurable robots and
in fixed morphology robots. For fixed-morphology robots,
exhaustive search such as Dijkstra and A* algorithms are
commonly utilized to solve global PP problems; on the other
hand, Ant Colony Optimization (ACO) [20], Particle Swarm
Optimization (PSO) [21], Neural Network [22], Motion Plan-
ning [23], Path Tracking [24], Graph theory [25] and Genetic
Algorithm (GA) [26] have been implemented to solve local
PP problems. Among the existing PPmethods, GA has shown
its strength in convenient modeling, easy implementation,
and practical problem solving [27] due to its flexibility to
perform optimization without prior information [28], and its
ability to explore the solution space [29], which hinges on the
advantages of both deterministic and probabilistic schemes to
improve solutions using operators like crossover and muta-
tion [30].Multiple modified genetic algorithms (MGAs) have
been developed specifically for path planning tasks [31] and
have been implemented on various autonomous robots that
operate in environments with complicated terrains or with
dynamic obstacles, like mobile manipulator robots [32] and
unmanned aerial vehicles (UAVs) [33].

However, due to the intrinsic complexity of reconfigurable
robots, autonomous motion planning between different con-
figurations has been a difficult topic. PP problems for recon-
figurable robots, which involve multiple configurations, are

more challenging. With the increased degrees of freedom
in these robots and the additional constraints due to differ-
ent robot configurations, PP approaches designed for fixed-
morphology robots mentioned above are no longer sufficient
to determine optimal solutions. New or revised architecture-
specific PP approaches have been designed to tackle PP
problems base on the possible topology and the available
motions. For instance, revised GAs with customized fitness
functions are implemented to solve the PP problem of the
lattice modules in M-Lattice robot [34]. To overcome stairs
and obstacles, Kairo 3 robot makes use of extended RRT*
algorithm [35] to autonomously calculate the actions required
for the tasks [36]. Research has also been conducted to pro-
vide heuristic-based algorithms [37] and distributed planning
algorithms [38] for lattice-type inter-reconfigurable robots
that are less architecture-specific.

The hTetro robot platform, developed by
Prabakaran et al. [39] is a chained-type inter-reconfigurable
cleaning robot with seven potential configurations [40] which
utilizes tileset theory to perform area coverage tasks with the
awareness of energy consumption [41]–[43]. To carry out PP
tasks on a hTetro platform, the algorithm should determine
a valid path while taking several additional criteria into con-
sideration including time consumption, path safety, and path
smoothness. Time efficiency and safety consideration are
generally required for real robot implementation [44], while
path smoothness aims to improve robot service qualities for
robots that could not easily perform jerk motion of state
switching [45]. Therefore, a multi-objective evolutionary
algorithm (MOEA) has been utilized in the proposed GA to
approximate the Pareto optimal solution of any given envi-
ronment settings for hTetro. Similar approaches that model
multi-objective optimization problems (MOOP) for robot
path planning tasks and attempt to solve them through evolu-
tionary algorithms are shown in the works of [46] and [47].

The contribution of this paper is threefold. First, a new sys-
tematic approach path planning for tetromino-based recon-
figurable robot using novel multi-objective genetic algorithm
is proposed. The Pareto solution for the proposed optimiza-
tion problem is found using modified Non-dominated sorting
genetic algorithm-II (NSGA-II) [48]. Second, the proposed
robot and workspace modeling techniques can be modified
and implemented in other chain-type inter-reconfigurable
robot platforms with multiple configurations. And third, with
proper definitions of the fitness functions, the multi-objective
optimization framework proposed in this work could be easily
adapted to other robot architectures which also aim to achieve
multiple goals during the path planning process.

The rest of the paper is organized as follows: Section II
describes the reconfigurable robot platform and the
workspace model. Section III provides a brief introduction
to genetic algorithms. In Section IV, the proposed hTetro-
GA is presented. Section V shows the simulations and results
of the proposed algorithm. Finally, Section VII presents the
conclusions along with a note of future developments.
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FIGURE 1. hTetro system model.

II. HINGED-TETRO RECONFIGURABLE ROBOT
In this section, the different morphologies and actions avail-
able for the hTetro robot are introduced. The system model
setup of the proposed path planning algorithm is also
presented.

A. hTetro HARDWARE ARCHITECTURE
hTetro is a chain-type inter-reconfigurable tiling robot as
shown in Fig.1. The robotmodules are referred to as ‘‘blocks’’
which share identical mechanical structures. The blocks
could be disassembled freely, and additional blocks could
be added to increase the degree of freedom of the entire
architecture. In our work, the robot consists of four blocks
connected by three hinges. The hinges allow the robot plat-
form to perform shape-shifting and reassemble into multi-
ple configurations. The top view graph of hTetro hardware
components is shown in Fig.2. The perception component
of hTetro is an RPLidar fixed on block 2 (B2). Each block
is mounted with four geared 7.4V DC motors for balance
locomotion. The servo motors mounted to the hinges could
rotate the blocks clockwise or counter-clockwise to perform
reconfiguration. The servo motors operate at 14.8V and with
high torque of 77 kg.cm, which is enough to carry the robot
block masses during transformation and to lock the position
of the blocks during locomotion. Two servomotors are placed
in block 2, and one sits in block 4. The Intel compute stick
with ROS [49] based system installed controls all hTetro
operations.

B. hTetro ROBOT MODEL AND CONFIGURATION
In Fig.1, workspace W ⊂ R2 is the 2-D Cartesian space
where the hTetro robot navigates. The geometries of the four

FIGURE 2. hTetro hardware components.

hTetro blocks are represented as Bn (n = {1, 2, 3, 4}), which
are modelled as four squares of the width dB. The angle
differences between the local frames of each block and the
workspace frame are denoted as θBn (n = {1, 2, 3, 4}). The
hinges are represented as Hn (n = {1, 2, 3}), and the hinge
angles between two blocks are denoted as θHn (n = {1, 2, 3}),
which follow the rotation constraints below:
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2
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π

2
+ θB1 − θB2 ≤

3π
2

π

2
≤ θH2 =

π

2
+ θB2 − θB3 ≤

3π
2
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2
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3π
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The different combinations of hinge angles θHn

(n = {1, 2, 3}) form shapes that simulate that of one-
sided tetrominoes as shown in Fig. 3, which are defined
as the 7 basic morphologies of an hTetro robot. The hinge
angle combinations that form these morphologies are listed
in Table 1.

FIGURE 3. 7 basic morphologies of hTetro.

A total of six parameters are required to determine an
hTetro configuration inW , which is presented as follow:
Definition 1 (Robot Configuration): The configuration q

of a hTetro robot is a six-element array

q = [xB2 , yB2 , θB1 , θB2 , θB3 , θB4 ]
T (1)
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TABLE 1. hTetro morphology table.

where xB2 , yB2 represents the x and y coordinates of the center
of hTetro Block 2 (B2) as illustrated in Fig.1

C. WORKSPACE MODEL
The workspace defined in this paper is modeled through the
grid-based method. By performing a simple cellular decom-
position technique with a fixed resolution, the workspace
is separated into a collection of square-shaped grid cells
of size dgrid. Based on the occupancy of obstacles in the
workspace, each grid cell contains a variable that states
whether any obstacle is in presence within the grid area [50].
In this paper, the grid width dgrid is set to be identical to the
hTetro block width dB and the occupancy of obstacles in the
workspace is defined asWobs.

D. hTetro ROBOT MOTION AND NAVIGATION
Based on the architecture design of hTetro robot by Veera-
jagadheswar et al. [39], each hTetro block uses four omni-
directional wheels as its moving mechanism and utilizes
hingemotors to shape-shift into different robotmorphologies.
This mechanical design enables an hTetro robot to perform
three types of motion: translation (T ), rotation (R), and
shape-shift (S).

The omnidirectional wheel mechanism allows the robot to
perform an instant change of its moving direction. In this
paper, a single translation motion command (T ) moves the
hTetro robot in one of the four directions for a distance
of dgrid. When the robot rotates, it rotates against the axis
that passes through the center of B2 (denoted as (xB2 , yB2 )
in Fig.1). In this paper, a single rotation motion command
(R) rotates the entire robot for 90◦ clockwise or counter-
clockwise. In the case of shape-shift (S) motions, we assume
that the desired shape to be M and the initial hTetro block
angles are θ iBn . The ideal hinge angles for shapeM according
to Table 1 (θMHn

) will be utilized to determine the required
heading angle change (4θBn ) of each block during shape-
shifting and is calculated as follow:

4θB1 = θ
i
B1
− θ iB2

− θMH1
+
π

2
4θB3 = θ

i
B3
− θ iB2

− θMH2
+
π

2
4θB4 = θ

i
B4
− θ iB3

− θMH3
+
π

2
Table 2 introduces the motion commands (mc) for hTetro

robots. The motion commands represent the encoding genes
in the proposed hTetro-GA. The next robot configuration

TABLE 2. hTetro configuration motion command table.

(qs+1) after a command is issued can be calculated simply
by adding the change of robot configuration (4q) to current
robot configuration (qs):

qs+1 = qs +4q (2)

For robot platforms with fixed morphologies, route opti-
mization usually focuses on minimizing the entire distance
traveled. The path planning algorithms developed for these
platforms attempt to search for the ideal trajectory with the
shortest distance to navigate the robot from source to desti-
nation. Nevertheless, this is not the case for hTetro due to the
three different motions it could potentially perform. Defining
minimum distance traveled as the optimal goal for hTetro
completely omits the cost of rotation motion and shape-
shifting; therefore, an alternative optimization goal has to be
defined, which is introduced later in section IV-B where the
multi-objective evaluation technique is implemented.

E. hTetro MOTION VALIDITY ANALYSIS
The simplicity to implement of approximate cellular
decomposition [6] for the defined workspace has made the
grid-based model to be one of the most popular path plan-
ning (PP) methods. A*, D*, and D* Lite based algorithms
[51], [52] are commonly implemented to produce low-cost
paths in minimum distance traversal problems; while wave-
front PP [53], BSA [54], [55], and spiral-STC [56] algo-
rithms aim to tackle coverage PP problems on grid-based
models. These algorithms assume fixed-morphology robots
with robot sizes smaller or equal to the grid size, so that the
validity of the generated paths simply depends on whether
these paths overlap with obstacle grids in the environment.

While designing grid-based PP for reconfigurable robots,
however, determining the path validity becomes more com-
plicated, which requires a full evaluation of the robotmotions.
In the case of hTetro, a crucial task is to ensure that the
geometries of the four hTetro blocks do not intersect with
any of the obstacle grids while the robot performs the
three main motions: translation (T ), rotation (R) and shape-
shifting (S). This validity check is the core constraint in
the proposed hTetro-GA, and robot individuals that perform
invalid motions during the navigation are likely to be rejected
in the algorithm.

An example of robot motions and motion validity check is
demonstrated in Fig.4. Fig.4a illustrates the starting position
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FIGURE 4. Three hTetro motions and motion validity analysis.

of an hTetro robot in the workspace with an L-shaped mor-
phology. The obstacle grids are painted in blue in the pre-
sented scenario. Linear translation (T ) motionwith command
‘TX+ ’ is performed in Fig. 4b, rotation (R) motion with
command ‘R−’ is performed in Fig.4c, and shape-shifting
(S) with command ‘SS ’ is performed in Fig.4d. Areas swept
by the four blocks are shaded. The motions described in these
scenarios are invalid due to the overlapping areas between
the swept areas and the obstacle grids. The validity check
in each block is conducted through a point in the polygon
(PIP) check [57], which allows an accurate estimation of the
intermediate configurations of hTetro in continuous space
when performing actions like shape-shifting.

III. INTRODUCTION TO GENETIC ALGORITHM
Genetic algorithm (GA) is a universal searching and opti-
mization algorithm introduced by John Holland based on the
mechanics of Darwin’s theory of evolution [58]. During the
initialization of GA, a population of randomly generated indi-
viduals (chromosomes) is determined. The evaluation process
in GA is then launched to calculate the corresponding fitness
values for each individual. The selection criteria filter out
individuals with weak performances. A new generation of
the population is determined based on the encoded genes in
the remaining individuals through biologic genetic operators
such as mutation and crossover [29]. GA process creates off-
spring generation of populations that are more adapted to the
environments and demonstrate better performance compared
to their parents [59], [60].

Various GA algorithms have been developed to tackle
PP problems considering GAs generally provide great
potential and flexibility to solve combinatorial optimiza-
tion problems [61]. Many of these algorithms modeled the
environment utilizing cellular decomposition and grid-based
methods. Y. Hu et al. implemented a knowledge-based GA
with domain knowledge and small-scale local search in [26],
which is capable of finding near-optimal robot path in both
static and dynamic environments.

IV. PROPOSED hTetro-GA
This paper expands on previous works of evolutionary
algorithm based path planning described in Section III by
modeling the environment as grid-based cells and pro-
poses hTetro-GA, a global multi-objective genetic algorithm
(MOGA) that solves the MOOP and provides the Pareto-
optimal solution that navigates the hTetro robot to any
desired destination. A list of terminologies frequently used
in hTetro-GA is shown in Table 3 for reference.
Fig.5 illustrates the flowchart of the proposed hTetro-GA.

hTetro-GA takes the workspace obstacle map (Wobs),
the roadmap (Q), and several GA-related parameters as input
and produces the ideal hTetro motion command sequence.
A roadmap (Q) is a series of predefined hTetro robot config-
urations (q), which specifies the series of positions and mor-
phologies that the robot should arrive at during the navigation
process.

As shown in the flowchart, the hTetro-GA consists of
three main loops: configuration loop, population loop, and
child loop. Within a configuration loop, the hTetro robot
navigates to the next configuration in the roadmap (Q), and
the loop terminates once the hTetro robot reaches the last
configuration specified in Q. In a configuration loop, GA is
used to plan the path between different configurations. Once
a new generation of the population is generated in the popula-
tion loop, hTetro-GA operators and selection procedures are
applied. The children (p) in the population perform simulated
navigation in the child loop, in which the robot fitness values
are evaluated to find the individual robot with the genes that
result in the Pareto-optimal fitness values.
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TABLE 3. Terminologies in proposed hTetro-GA.

A. INITIALIZATION OF hTetro-GA
In this paper, the configuration sequences in Q are denoted
as qs, where s represents the sequence number of the config-
uration. The next ideal configuration is represented as qs+1.
In hTetro-GA, genetic algorithm is performed to determine
the path between the two configurations – qs and qs+1,
and the parent population generates two types of offspring
populations: (1) conservative GA operation population Pkc ,
and (2) non-conservative GA operation populationPknc, where
k represents the k-th population in the algorithm. Details
regarding Pkc and P

k
nc will be introduced in Section IV-C.

During the population initialization process in the config-
uration loop, the first generation (P0) is generated, and the
pseudo-code is shown in Algorithm 1. P0 consists of a total
of npop robot individuals. A robot individual is represented
as p, which stores genetic information. The motion com-
mands (mc) introduced in Table 2 are implemented to encode
the chromosomes in the proposed hTetro-GA, and the total
number of motion commands in robot individual p is repre-
sented as lp. During the initialization process of hTetro-GA,
a predefined maximum length (lp,max) determines the start-
ing length of a gene in robot individuals. In Algorithm 1,
the encoded motion command of each child in P0 are ran-
domly determined based on the starting probability coef-
ficient of each motion command (λmc). The determination
process follows proportionate reproduction selection [62],
where commands with a larger starting probability coefficient
are more likely to be chosen.

As shown in Fig.5, once the starting population P0 is deter-
mined, the navigation process of P0 begins. In the child loop,
the fitness of the path is calculated after each robot motion is

Algorithm 1 Initialization Process of hTetro-GA
1: // Generation of random individuals in a population
2: Spawn P0 with a total of npop children.
3: for all child p ∈ P0 do
4: t ← 0
5: while t < tmax do
6: rnd ← random(0, 1)
7: for all mc ∈ mc do
8: if rnd < λmc then
9: p.Push(mc)
10: t ← t + tmc
11: break
12: end if
13: rnd ← rnd − λmc
14: end for
15: end while
16: end for

performed, and the process repeats until the encoded genes
in p satisfy the child termination criterion. A child robot
terminates when it fails path validity check mentioned in
Section II-E, when it reaches the next configuration qs+1 in
Q, or when all motion commands in p are fully executed.
Once all children in the population complete the navi-

gation, the hTetro-GA operators and the hTetro-GA selec-
tion process produce a new generation of populations until
the population satisfies any population termination crite-
rion. The termination criteria include population reaching
the predefined maximum allowed generations of populations
(npop,max) and the convergence of the solution.
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FIGURE 5. hTetro-GA flowchart.

B. MAIN OBJECTIVES IN hTetro-GA OPTIMIZATION
The hTetro navigation problem described in this work is a
multi-objective optimization problem (MOOP). In this paper,
the ultimate goal within the GA operation in each configura-
tion loop is to identify the best-performing motion command
sequence that navigates the hTetro robot from qs to qs+1.
The MOOP evaluates the performance of the robot motion
command using the four following criteria: (1) goal reach-
ability, (2) time consumption, (3) path smoothness, and
(4) path safety. Due to the command-based encoding genes
in robot individuals (p), it is not guaranteed that all individuals
in the population will arrive at the ideal configuration in the
end. This limitation has introduced an additional constraint
in our multi-objective optimization problem, and the solution
should ensure that the first fitness value criterion – goal
reachability – holds a higher priority compared to the three
remaining criteria.

The four criteria selected for hTetro-GA are introduced and
calculated as follow:

1) GOAL REACHABILITY FITNESS (fgr)
Goal reachability fitness is given the highest priority in the
hTetro-GA path fitness evaluation process. The calculation
of goal reachability fitness of robot individual p is calculated
using Equation 3.

fgr(p) =
1

1+WA∗ (Pos(plp−1))
(3)

where:

Pos(pi) = the position of block 2 (xB2 , xB2 ) after

executing pi (the i-th motion command

in individual p)

WA∗ (x, y) = the h-score in A* algorithm that estimates

the distance between position (x, y) and the

position of the goal configuration [63]

In Equation 3, the function calculates the heuristic score
of the position of block 2 after the final motion command is
executed. An individual with an ending position near the goal
position results in a higher fgr value. Once a robot individual
reaches the next configuration (qs+1), the goal reachability
fitness of the robot always yields a value of 1 since the
distance between the robot and the goal configuration is 0.
If the robot does not manage to reach the next configuration
during the navigation process, the goal reachability fitness
value will be less than 1.

2) TIME CONSUMPTION FITNESS (ft)
The time consumption fitness value of robot individual p is
calculated through Equation 4 as shown below.

ft(p) = 1−

lp∑
i=1

tpi

tmax
(4)
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where:

tpi = time consumption for hTetro motion command pi
(i-th motion command in p), where pi ∈ mc

mc= {‘‘Tx+ ’’, ‘‘Tx− ’’, ‘‘Ty+ ’’, ‘‘Ty− ’’, ‘‘R+’’, ‘‘R−’’, ‘‘SM ’’}

In Equation 4, the denominator’s value represents the total
time consumption of the entire navigation process. A longer
navigation process yields a smaller time consumption fitness
value. It is worth noting that the calculation of the time con-
sumption takes into the consideration of the fact that duration
of hTetro rotation (R) and shape-shifting (S) may not be iden-
tical to the translation (T ) motion: the appearing frequencies
of each motion command in the gene are multiplied by the
time consumption of the corresponding motion based on real-
world measurement values.

3) PATH SMOOTHNESS FITNESS (fsm)
The path smoothness fitness value of robot individual p is
calculated using Equation 5.

fsm(p) = 1−

lp−1∑
i=1

dif (pi, pi+1)

lp − 1
(5)

where:

dif (pi, pi+1) =
{
1, if pi 6= pi+1
0, if pi = pi+1

(pi, pi+1 ∈ mc)

In Equation 5, a smaller difference between neighbor
motion commands contributes to a higher path smooth fitness
value. This definition encourages path with high consistency
in the motion commands.

4) PATH SAFETY FITNESS (fsf)
The path safety fitness describes the security of the overall
robot path throughout the navigation, and its value of robot
individual p is calculated through Equation 6.

fsf(p) = 1−
dgrid
lp ·λsp

lp∑
i=1

4∑
n=1

∑
(x,y)sp∈sp

Wobs(P(p, i, n)+(x, y)sp)∣∣|(x, y)sp∣∣ |
(6)

where:

Wobs(x, y) =
{
1, if (x, y) is within an obstacle grid
0, otherwise

In Equation 6, the robot sums up the occupancy informa-
tion of the grids within a certain searching range throughout
the navigation. The searching pattern profile is represented
as sp with a searching pattern specific coefficient (λsp), and
(x, y)sp is a vector representation of a grid within the search
pattern with respect to the origin, which is the center of
block 2 in our case. In this paper, the searching patterns are
circles with predefined radii and center at each block in the
hTetro robot. With Equation 6, obstacles that are presented
within the searching pattern reduce the overall path safety

FIGURE 6. hTetro robot path safety fitness evaluation. The values in each
grid represents the number of searching pattern circles the grid is within.

fitness (fsf), and the robot individual is less desired during the
optimization process. In Fig.6, a searching radius of 2 · dgrid
is implemented, and an obstacle grid may result in a decrease
of the fsf value several times if it locates within the radii of
multiple circles. This implementation ensures that the robot
can navigate safely in any shape configuration by keeping a
certain distance with the environment obstacles.

C. hTetro-GA MULTI-OBJECTIVE TECHNIQUES
AND POPULATION SORTING
Techniques that attempt to solve MOOPs have been vastly
studied in the past two decades due to the presence of various
objectives in recent research optimization problems. MOOPs
are intractable optimization problems with the conflicting
nature among the optimization parameters [64]. With the
fitness values defined in Section IV-B, we canmathematically
formulate the MOOP for hTetro robot navigation as follow:

minimize F(p) = (−fgr(p),−ft(p),−fsm(p),−fsf(p))T

subject to p ∈ �

where:

� = the decision set which includes all feasible solutions p

Since an ideal path that optimizes all four fitness value func-
tions does not exist inmost case scenarios [65], the realization
of Pareto optimality in the solutions has become our main
focus. Details regarding the Pareto optimality is introduced
in Stadler’s work [66]. And the main goal of our MOOP is
to find a Pareto optimal set, which consists entirely of Pareto
optimal solutions p∗ ∈ �.
Multi-objective evolutionary algorithms (MOEAs) are

capable of approximating the Pareto optimal sets within
a single run [65] of the evolutionary algorithms. Non-
dominated sorting genetic algorithm-II (NSGA-II), a clas-
sical MOEA technique, has been proven to provide results
with better quality in solving MOOPs [67]. This paper imple-
ments the NSGA-II technique to approach our hTetro nav-
igation MOOP due to the following advantages NSGA-II
possess [48]:
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FIGURE 7. hTetro-GA with implementation of NSGA-II technique.

1) NSGA-II approach reduces the time complexity of the
presented MOOP from O(4n3pop) to O(4n2pop).

2) The elitism approach in NSGA-II preserves the entire
gene information in the process so that once a robot suc-
cessfully reaches the goal, it is guaranteed that at least
one of the individuals in the next generation population
will reach the destination as well.

3) The density estimation and crowding distance calcu-
lation introduced in NSGA-II efficiently preserves the
diversity among the population members, which is cru-
cial in our presented MOOP so that different routes to
the destination can be explored.

The implementation of NSGA-II techniques in our pro-
posed hTetro-GA is shown in Fig.7. Several modifications are
applied to the proposed algorithm to increase the converging
speed and to improve the quality of the results. The procedure
of the proposed hTetro-GA sorting and selection technique
are listed as follow:

1) The algorithm takes in three groups of population,
namely Pk , Pkc , and P

k
nc for analysis.

2) The algorithm eliminates extra copies of robot individ-
uals in the population that carry genetic information
identical to existing individuals. This is to prevent iden-
tical well-performing individuals from doubling every-
time hTetro-GA executes and swarming the fronts in
future generation populations.

3) Perform goal reachability sort, which sorts the entire
population into two sections. The section with robot
individuals that reaches the goal (fgr(p) = 1) is shaded
in red in to Fig.7.

4) Perform fast non-dominated sorting independently
in both sections in the previous step. The fast non-
dominated sorting algorithm implemented is identical
to the approach in the original NSGA-II paper [48].
Concatenate the results and generate a sequence of
fronts F. Since the goal reachability fitness has a
higher priority compared to the other three criteria,
robot individuals with smaller goal reachability fitness

values (fgr) are strictly Pareto-dominated by those with
higher values.

5) Push the fronts to the next population Pk+1. If the total
individuals of all the fronts are larger than npop, perform
crowding distance sort in the last front, which sorts
the individuals in ascending orders. The calculation of
crowding distance follows the formula introduced in
the NSGA-II paper [48]. The well-performing individ-
uals with small crowding distances in the last front
are then pushed to Pk+1 until all population slots are
filled in.

6) Perform conservative GA operation and non-
conservative GA operation on Pk+1, which generates
two extra population groups – Pk+1c and Pk+1nc , respec-
tively. Perform hTetro navigation and fitness analysis
on the generated individuals and repeat the entire
process.

D. hTetro-GA REPRODUCTION OPERATORS
Apart from the reproduction operators that are implemented
in classical GAs, such as genetic mutation and genetic
crossover, this paper introduces two extra operators for the
motion command-based hTetro robot genes, namely rear-
rangement, and removal.
Constantly improving the performance of hTetro robot

individuals (p) across the population is crucial in GAs,
and with the definition of the hTetro robot genetic model,
the introduction of the three extra operators speeds up the
algorithm and improves the performance of the results.
In this paper, the genetic operations are separated into two
categories: (1) conservative GA operations and (2) non-
conservative GA operations. Conservative GA operations
are operations that ensure that the (x, y) portion of the vector
sum of configuration changes (

∑
4q) remains the same,

which results in offspring robots with the same ending posi-
tion as their parent robots. Conservative GA operations excel
at exploring various possibilities to arrive at a certain desti-
nation, which is useful when qs+1 has already been explored
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and reached. Once a robot reaches qs+1, conservative GA
operations will improve the genes while keeping the goal
reachability of the individual intact. Non-conservative GA
operations, on the other hand, includes the operations that
do not preserve the same ending position or morphology of
the parent robots, which is crucial during the early phase of
hTetro-GA when all robots are still searching for a valid path
to the next configuration.

Non-conservative GA operations implemented in this
paper include mutation and crossover, while conservative GA
operations include removal and rearrangement. The opera-
tions are defined as follow:

1) MUTATION OPERATOR
The mutation operator in hTetro-GA is the classic GA muta-
tion operator, which modifies a single motion command (mc)
within the chromosome to a randommotion command within
the motion command set (mc). Since the motion commands
in mc includes all three types of motions, a single mutation
in a gene may alter a translation motion command into a
shape-shift or a rotation command. Therefore, the naviga-
tion result of the mutated gene may end up with a different
position or morphology compared to the parent gene. The
mutation rate of each motion command is denoted as rmu.
Fig.8a shows the mechanism of the mutation operator in

hTetro-GA. The mutation operator helps increase the gene
diversity and is the primary operator that contributes to
the gene evolution during the early exploration phase of the
algorithm when the goal remains undiscovered by any of
the robot individuals. Mutating a translation motion com-
mand (T ) to rotation (R) or shape-shifting (S) is crucial when
the robot tries to steer through narrow spaces or attempts to
avoid dynamic obstacles.

2) CROSSOVER OPERATOR
The hTetro-GA crossover method implemented is a
single-point crossover operator, and the offspring individual
possesses the genetic information from both parents com-
bined. The mechanism of the crossover operator is illustrated
in Fig.8b. In hTetro-GA, crossover operation occurs with a
rate of rcr on each robot individual.

To increase the likelihood of improvements in the offspring
hTetro robot individuals, deterministic tournament selection
with a tournament size of 4 is chosen to decide the two best
parents for crossover operations. The individuals in the tour-
naments are compared based on their rankings determined
previously in the NSGA-II procedure, and if the individuals
locate in the same front, the crowding distances are compared
instead.

3) REMOVAL OPERATOR
The hTetro-GA removal operator is introduced to eliminate
motion commands within the robot individuals. Since the
sorting procedure takes the time consumption fitness (ft)
into consideration, the individual that navigates to the goal
with minimum time spent is always preferred. The removal

FIGURE 8. hTetro-GA reproduction operators.

operator continuously simplifies the motion commands in
the individuals across each generation of populations, which
gradually speeds up the computational process in each popu-
lation loop as the chromosomes’ sizes shrink after each gen-
eration of populations. The removal operator is a conservative
GA operator, so the removed motion commands do not alter
the final position or morphology of the hTetro robot.

Removal operations on non-translational motions such as
rotation motions (R) and shape-shift motions (S) are applied
arbitrarily. Each single point of non-translational command
has a removal rate of rrm,nt in the gene. On the other hand,
instead of single-point removals, removal operations on trans-
lational motions are executed in pairs to preserve the fidelity
of path destination. The two translation pairs in this paper
are: (‘‘Tx+ ’’, ‘‘Tx− ’’) and (‘‘Ty+ ’’, ‘‘Ty− ’’). Each translation
motion command has a removal rate of rrm,t. While executing
removal operations on translational motions, the algorithm
randomly searches two translation motion commands within
the chromosome. If the two commands form a translation
pair, the operator removes both simultaneously. Fig.8c illus-
trates the possible outcomes of removal operations for both
translational motion commands and non-translational motion
commands, where the red ‘‘X’’ signs represent removed
genes.
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4) REARRANGEMENT OPERATOR
hTetro rearrangement operator performs swapping between
two random motion commands within a chromosome.
Rearrangement is a conservative GA operation since all
motion commands are preserved during the process. Fig.8d
demonstrates the process of rearrangement operator. This
operator works well during the later phase of the GA process
when the goal has been explored, as it excels at exploring the
different combinations of the motion commands that result in
maximum path smoothness fitness (fsm) value and maximum
path safety fitness (fsf) value. Each motion command has a
rearrangement rate of rra.

V. hTetro-GA SIMULATION
The evaluation of the proposed hTetro-GA is conducted
through simulations in virtual environments. This section
introduces the setup of the virtual environments and the
parameters being evaluated. The section then analyzes the
results and discusses the proper starting parameters for
the proposed algorithm.

A. VIRUTAL ENVIRONMENT SETUP
In this paper, virtual environments are defined by obstacle
maps (Wobs) and roadmaps (Q). To comprehensively evaluate
the proposed algorithm, virtual environments with different
obstacles in terms of size, position, and mobility (static and
dynamic) are built.

The environments presented in this study are all in
the size of 24 · dgrid × 24 · dgrid and are illustrated
in Fig.9, which include H-shaped obstacles (Fig.9b), random
obstacles (Fig.9a), spiral obstacles (Fig.9c), 3-slit obstacles
(Fig.9d), perpendicular dynamic obstacles (Fig.9e), and par-
allel dynamic obstacles (Fig.9f) environments.

In these environments, the cellular decomposition method
is implemented for all static and dynamic obstacles so
that they are considered as grid-shaped obstacles within
our model. During the robot termination evaluation pro-
cess, the path viability is evaluated continuously to check
whether any of the hTetro blocks collide with the obstacles.
The dynamic obstacles in Fig.9e and Fig.9f perform sim-
ple patrolling motions on a predefined route. The naviga-
tion speed of the dynamic obstacles is set to dgrid per time
instance.Multiple roadmaps that specify robot configurations
throughout the navigation are defined and are illustrated in
the figures. All roadmaps in this study begin and end with
configurations of O-shaped morphology. In the perpendic-
ular dynamic obstacles environment (Fig.9e), four config-
urations are specified in the roadmap instead of just the
starting and goal configuration, so the configuration loop in
the hTetro-GA process (Fig.5) is performed three times.

B. hTetro-GA SIMULATION PARAMETERS
Most evolutionary algorithms include multiple parameters
such as population size (npop), mutation, and crossover
rates. The best values for these parameters are usually

problem-specific. In the hTetro-GA performance simula-
tion, population size is an independent variable, while other
parameters are considered as control variables. The parame-
ters are introduced as follow:

1) POPULATION SIZE (npop)
Population size is a parameter that significantly affects the
performance of an evolutionary algorithm. An algorithmwith
a larger population size explores the solution space more
completely, which yields better solutions in most cases, but
it also requires more computational resources. In this simu-
lation, population size of npop = 25, 50, 100 are analyzed.
The algorithm’s efficiency is evaluated by tracking the pop-
ulation number and time consumption when the robot first
reaches the next configuration and when the population loop
terminates. The effectiveness of the algorithm is determined
through the fitness values of the final hTetro motion com-
mand sequence m̂c. In this simulation, hTetro-GA is executed
50 times for each population size in each virtual environment.

2) REPRODUCTION OPERATOR PARAMETERS
The parameters used in reproduction operators affect the
gene diversity between the parent and child populations.
The parameters introduced in section Section IV-D include
rmu, rcr, rrm,t, rrm,nt, and rra.

In the non-conservative operation process of hTetro-GA,
the mutation rate rmu is set to 1

lp,max
, while the crossover

rate rcr is set to 0.5 throughout the navigation process. The
selection of rmu results that approximately 1 mutation occurs
in each individual in the next population group (Pk+1nc ) during
the early phase of navigation when the goal configuration
has not been reached. This mutation rate produces fewer
mutations in the later phase of navigation so that other GA
operators are weighted more while refining the path informa-
tion in the genes. On the other hand, setting rcr to a constant
0.5 represents that around half of Pk+1nc is generated from
crossover operations, allowing fast solution exploration of the
algorithm.

In conservative operation process, the translational motion
command removal rate rrm,t, non-translational motion com-
mand removal rate rrm,nt, and the rearrangement rate rra are all
set to 1

lp
. This value will result in one single removal operation

to occur in each individual on average, which provides suffi-
cient gene variety in the next conservative population group
(Pk+1c ) to continue the GA process.

3) hTetro-GA SPECIFIC PARAMETERS
Several problem-specific parameters are introduced during
the initialization of the hTetro-GA process in this simulation.

The starting probability coefficient of each motion com-
mand (λmc) determines the appearance rate of each motion
command in the starting gene. The coefficients for the transla-
tional motions are set to 0.25, and the coefficients for rotation
and shape-shifting are set to 0. This setup speeds up the
searching process of the goal configuration as rotations and
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FIGURE 9. Virtual environment constructed for hTetro-GA analysis and ideal path results based on best time consumption
fitness (fc), best path smoothness fitness (fsm), best path safety fitness (fsf), and best overall fitness within the first front (F0)
of the final population in hTetro-GA.
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TABLE 4. hTetro-GA efficiency and final fitness performance table.

shape-shift are often unnecessary during the beginning of the
navigation with no obstacle encountered.

The predefined gene maximum length (lp,max) depends on
the size and the complexity of the environment. In the simula-
tion, lp,max = 200 is chosen for spiral obstacle environment,
and lp,max = 100 is selected for other environments. The
maximum population number npop,max is set to 1000 in this
simulation to ensure that the algorithm has enough time to
determine the best motion command sequence.

In Equation 6 where path safety fitness is calculated, a cus-
tom searching pattern parameter sp is defined. This paper
implemented a circle shaped searching pattern with 2 · dgrid
as mentioned previously. The searching pattern coefficient is
set to 6+ 2

√
2 in this setting.

VI. RESULTS AND DISCUSSION
The performance of the proposed hTetro-GA is recorded
in Table 4. In this table, the average number of popula-
tions required for the algorithm to find a motion command
sequence that first reaches the next configuration and to reach
convergence is shown. The average time consumption of the
two instances is recorded as well. The output solution is
selected by choosing the individual with the smallest crowd-
ing distance in the globally optimal Pareto-optimal set (F0).
The fitness values of the final output multi-objective based
motion command sequence are shown in the table, which
includes the goal reachability fitness (fgr), time consumption
fitness (ft), path smoothness fitness (fsm), and path safety
fitness (fsf). To better visualize the output of hTetro-GA,
the solutions are illustrated in all environments in Fig.9.

A. NAVIGATION STRATEGY OF hTetro-GA
The navigation results of proposed hTetro-GA illustrated
in Fig.9 demonstrate several essential features of our
algorithm. It is shown in the H-shaped and spiral obstacle
environments (Fig.9b, 9c) that the algorithm is capable of
determining feasible paths in maps with complicated obstacle

setup instead of merely performing a greedy search of the
shortest distance to the next configuration.

With the starting and goal configuration both having the
identical morphology – O-shaped morphology, it is shown
in all virtual environments that the algorithm prioritizes
generating motion command sequences without any shape-
shift or rotations. This is because shape-shift or rotations
result in lower time consumption fitness value, and the robot
individual is more likely to be rejected during the non-
dominated sort in hTetro-GA. However, due to the design
of 3-slit and parallel obstacle environments (Fig. 9d, 9f),
hTetro individuals with only translational motion commands
fail to navigate successfully to the destination with only
O-shaped morphology. It is demonstrated in both scenarios
that the algorithm determines the positionswhere valid shape-
shift and rotation actions can be conducted and use trans-
formed configuration to navigate through narrow obstacles.
It is also observed that in the multi-objective based solution
in both environments, the transformations occur when the
robot drives near the obstacle and attempts to transform back
to the O-shaped morphology before it arrives at the goal
configuration, implying that the preferred morphology of the
current hTetro-GA setup is O-shaped morphology.

Even though a total of 7 morphologies are available for
the hTetro robot navigation, the two most used morphologies
are O-shaped and I-shaped morphologies. According to the
experiments conducted, the best navigation strategy hTetro-
GA suggests is to utilize O-shaped morphology to travel
in open spaces, which maximizes the path safety fitness
value, while utilizing I-shaped morphology to travel through
obstacles when the algorithm fails to find a path to the
goal configuration with only translation motion commands.
The other 5 morphologies are not as competitive against
the O-shaped and I-shaped morphologies in terms of the
maximization of path safety and the capability to reach goal
configurations. Even though these morphologies may show
up during the early phase of the navigation, as the MOGA
gradually optimizes the solution set, these individuals fall
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FIGURE 10. Fitness values of the hTetro-GA multi-objective based best performing individual in each generation of population.
Fig. 10e illustrates the navigation outcome from three configuration loops in hTetro-GA.

into non-leading fronts during non-dominated sorting and are
eventually rejected. Note that the definition of fitness values
influences the choice of configurations in the solutions, so the
algorithm may yield solutions with more than 2 configu-
rations combined if fitness values are defined differently.
Since the proposed MOOP solution selects a Pareto-optimal
solution, it is not guaranteed that it will find the shortest path
as it may evaluate other criteria more (like path safety). Paths
only indicate the trajectory of Block 2 in Fig. 9b, Fig. 9c and
the hTetro robot moves in O-configuration, the paths seem to
be longer to prevent the other blocks from getting too close
to the left side of the H, and corner obstacle (which reduces
the path safety fitness).

B. MULTI-OBJECTIVE PATH PLANNING PERFORMANCE
Through the implementation of the NSGA-II technique,
the proposed hTetro-GA demonstrates a strong capability

to determine the globally Pareto-optimal set in the search
space. The implementation of elitism ensured that the genetic
information from robot individuals that successfully navigate
to the goal configurations would be carried to the future
generation of populations.

In Fig.9, the multi-objective based output solutions are
marked as a black-colored route in all environments. Three
additional solutions within F0 are shown, which represents
the motion command sequences with best ft, fsm, and fsf.
Note that the best sequence with fgr is not listed as all indi-
viduals in F0 successfully reached the target configurations
in Q and possess goal reachability fitness values of 1. It is
observed that the four routes all take similar approaches to
navigate to the goal configurations. As shown in Fig.9b, solu-
tions with the highest fsf might perform additional motions
in order to increase the safety; while solutions that pos-
sess the highest fsm may compromise on the safety fitness
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FIGURE 11. Implementation of path planning on the real robot platform. (a), (c) built map and generated path plans. (b),(d) the sequences of robot
navigation to go from source to destination with shape shifting between O to I.

fsm values (Fig.9e, Fig.9f). The multi-objective based solu-
tions, which consist of individuals with the maximum sum of
the four fitness values within F0 demonstrate consistent per-
formance throughout the entire hTetro-GA navigation com-
pared to solutions which focus only on a single fitness value.

In Fig.10, the four fitness values in each generation of
populations in the multi-objective based solutions are plotted.
The implementation of the NSGA-II technique allows the
proposed algorithm to find a balanced solution between the
four fitness values. As shown in the figures, the goal reacha-
bility fitness (fgr) value reaches 1 once the algorithm finds
a valid motion command sequence to navigate to the goal
configuration. After the goal configuration is found, the algo-
rithm will aim to improve path safety, path smoothness, and
time consumption fitness values until the solution converges.
It is worth noting that the path safety fitness (fsf) values are
considerably high at the beginning of the navigation. This
occurs when the first few generations of populations fail
to reach the goal configurations and only navigate in safe
grids that are distant to the obstacles in the environment.
Even though fsf has a trend towards declining during the
navigation process, the non-dominated sorting process will
attempt to maximize the path safety of the solutions once the
goal configurations are reached.

C. EFFECT OF POPULATION SIZE ON
hTetro-GA PERFORMANCE
In Table 4, it is demonstrated that differences in npop greatly
influences the number of the population when the first p
reaches the goal configuration and when the process is ter-
minated. The final output multi-objective based solutions
in the three npop scenarios all demonstrate consistent capa-
bility to navigate to the goal configuration without failing
(fgr = 1). As recorded in Table 4, when the popula-
tion size increases, the values of ft, fsm and fsf all increase
accordingly. This has shown that initializing the algorithm
with a larger population size results in a fast exploration of
the space, and the algorithm is capable of finding a valid
solution early, with the solution found being refined with
higher fitness values. Despite the early termination of the
population, the average time consumption for each operation
still increases significantly when npop rises due to the extra
computation load in the navigation and selection process.
In the presented virtual environment, a starting npop of 50 has
shown to be effective as it provides near-optimal outcome
within a short time period; however, as the environment size
increases, a larger npop may be required during the initializa-
tion process to speed up the early exploration process in the
algorithm.
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D. DEPLOYMENT OF PATH PLANNING ON hTetro
The generated path by proposed path planning method is
implemented to the real hTetro robot platform. The real
experiment aims to show that the robot platform can follow
the found optimal path, change to required shapes to over-
come the narrow space while avoiding obstacle safety.The
room is modeled as a grid-based environment in ROS, and
occupied grids such chairs, tables, and walls are consid-
ered as obstacle grids. Grid width (dgrid) and hTetro block
width (dB) are both set to 25cm in this implementation.
Hector SLAM [68] is used for map construction and robot
localization. Fig.11 shows the hardware implementation of
hTetro-GA. In Fig.11a,b, the path that connects start and
goal configuration which are defined near the obstacles is
generated with the proposed algorithm based on a provided
map, and in Fig.11b,d, the shape-shift and translation motion
are both demonstrated by the robot to successfully navigate
through the obstacles. During navigation, additional robot
pose check has been implemented into the workflow: the
robot location and orientation are monitored and adjusted in
real-time to ensure that the robot does not deviate from the
ideal trajectory, which may result in collisions with obstacles
in the environment. It is also observed that since robot shape-
shift motions do not always sweep out the same area modeled
in Fig.4 during motion validity analysis, providing a smaller
clearance for robot shape-shifting could result in collisions
in real-world scenarios. The validity analysis in hTetro-GA
workflow (Fig.5) has been adjusted to assume a larger sweep-
ing radius of 35cm from hTetro blocks to mitigate this issue.
We are also in the state of developing the hTetro so that
it works autonomously in wider testbed environments with
complex obstacle settings. Once the stable platform has been
constructed, GA algorithms with different parameter settings
will be evaluated.

VII. CONCLUSION
This paper presents a novel algorithm, hTetro-GA, which is a
global path planning algorithm for reconfigurable robots. The
proposed algorithm focuses on multi-objective optimization
and attempts to find the solution with Pareto-optimal goal
reachability, time consumption, path safety, and path smooth-
ness through genetic algorithms.

In this paper, the model of the hTetro robot and the
grid-based workspace are first constructed. The paper then
introduces the robot configuration and motion validity, which
are both crucial discussion topics in systems that involve
reconfigurable robots. The workflow of hTetro-GA is next
organized into three loops where genetic algorithms are
executed to navigate between different configurations. Four
fitness objective functions are then introduced to evaluate the
performance of the robot individuals from different perspec-
tives. In order to solve the MOOP in this study, the NSGA-II
technique is implemented to determine the Pareto-optimal
robot individual with the best performing motion com-
mand sequence in the generation. Novel genetic algorithm

operators are introduced in this paper due to the self-
reconfigurable nature of hTetro to generate a wide variety of
individuals in the genetic pool, which helps the algorithm to
find Pareto-optimal paths during navigation.

The proposed hTetro-GA has shown the strong capability
of determining feasible motion command sequences to the
goal configurations in various environments with different
settings. It manages to handle dynamic obstacles in given
environments, whichmakes the real-world implementation of
the algorithm in known environments feasible. The feature
of identifying navigation paths based on a roadmap with
multiple designated configurations is useful in multiple sce-
narios. During an exploration or a rescue task, especially in
hazardous environments, the proposed algorithm can be used
to generate paths for reconfigurable robots to safely navigate
to multiple destinations within the area to perform specific
actions.

Future research areas are as follow: (1) Fine-tuning of
hTetro-GA parameters: Multiple parameters are involved
in the presented hTetro-GA, and the algorithm performance
of different npop values is analyzed in this paper. We would
like to expand the work and analyze the performance when
parameters like searching pattern (sp), mutation rate (rmu),
the virtual environment size are modified. (2) Increased
complexity setup: The proposed algorithm would be revised
by allowing hTetro block disassembly during each navigation
to improve the algorithm efficiency by increasing the degree
of freedom. Architectures with 5 or more hTetro blocks
should be explored for further performance comparison.
(3) Optimization of hTetro-GA workflow: The proposed
algorithm is a global PP algorithm, and we would like it to
work better in local PP problems by making modifications
like storing unknown obstacles encountered in Wobs and
performing re-calculation of hTetro-GA when the obstacle
map is updated to reroute the path. (4) Implementation of
other multi-objective optimization techniques: Due to the
fact that the traditional PP algorithms such as A*, D*, and
artificial potential field could not be directly implemented on
reconfigurable robots, the comparative analysis betweenmul-
tiple algorithms could not be presented in this work. Imple-
menting other multi-objective algorithms like MOPSO [69]
and ε-constraint method [70] for hTetro in the future will
allow us to compare their performance with the proposed
NSGA-II based technique.
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