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ABSTRACT Long short-term memory (LSTM) is widely applied in both academic and industrial fields.
However, there is no reliable criterion on selecting hyperparameters of LSTM. Currently, although some
widely used classic methods such as random search and grid search have obtained success to some extent,
the problems in local optimum and convergence still exist. In this research, we propose to use grey wolf
optimizer (GWO) to search for the hyperparameters of LSTM. Through the method, the superiority of
metaheuristic in global optimization and the strength of LSTM in predicting are combined. In this model,
number of hidden layer nodes and learning rate of LSTM are set as preys, and grey wolf pack has a
simple but efficient mechanism to search for the optimal hyperparameters. The benchmark tests on several
basic functions were utilized, and the results were verified by a comparative study with random search,
support vector regression and several other regression methods. Specifically, we applied this algorithm in
predicting the degradation trend of the airborne fuel pump. As a result, the ergodicity and convergence of
the algorithm are proved mathematically based on Markov processes theory. The benchmark tests show
that the GWO-LSTM model holds for predicting data with low overall slope and high partial fluctuation.
The application in airborne fuel pump shows that, trained by dataset with 5700 points, the proposed model
could predict sequence of 300 points with root mean square error 0.617 after 30 iterations of optimizing,
which is 2.512 previously. The result further demonstrates that the proposed algorithm is applicable to make
prediction with high accuracy. Overall, the effectiveness of GWO-LSTM model is verified from theoretical
proof to benchmark tests and then to actual product application.

INDEX TERMS Evolutionary computation, LSTM, Markov processes, prediction algorithms, airborne fuel
pump.

I. INTRODUCTION
Deep learning allows computational models that are
composed of multiple processing layers to learn representa-
tions of data with multiple levels of abstraction [1]. These
methods have dramatically improved the state-of-the-art in
speech recognition, visual object recognition, object detec-
tion and many other domains such as drug discovery and
genomics [1]–[4]. Long short-term memory (LSTM) consti-
tute a very powerful class of computational models, capable
of instantiating almost arbitrary dynamics [5]. In recent years,
LSTM has become a widely used model for a variety of
problems [6].

Performance of many deep learning algorithms depend
critically on hyperparameters [7], [8]. However, due to
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the lack of precise mathematical relationship between
hyperparameters and results, there is no definite criterion
for hyperparameters selection. In practice, the most popu-
lar methods used to search hyperparameters are Bayesian
optimization [9], grid search [10] and random search [11].
Nevertheless, suchmethods have some limitations. For exam-
ple, the computational expense of grid search grows dramat-
ically with the number of hyperparameters in the model, and
the random search method has a risk of falling into local
optimum [8], [12]–[14]. The problem of determining hyper-
parameters has become a bottleneck restricting the accuracy
of deep learning.

Metaheuristic optimization techniques have become very
popular over the last two decades. Surprisingly, some of
them such as Artificial Bee Colony (ABC) [15], Ant Colony
Optimization (ACO) [16], and Particle Swarm Optimiza-
tion (PSO) [17] are fairly well-known among not only
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computer scientists but also scientists from different fields.
Regardless of the differences between the metaheuristics,
most of metaheuristics are nature-inspired (inspired from
some principles in physics, biology, etc.), and metaheuristic
optimization techniques are proved to have abilities to avoid
local optima and outstanding superiority in ergodicity and
convergence [18]–[21]. Metaheuristics has attracted more
and more attention in hyperparameter setting.

Aiming at the global optimization capacity of metaheuris-
tics, in this paper, we propose to adopts the grey wolf opti-
mizer (GWO) to search for the hyperparameters of the LSTM.
To verify the effectiveness of the algorithm mathematically,
we prove the ergodicity and convergence of the algorithm
based on Markov processes theory, the result shows that
the sequence of grey wolf pack converges to the optimal
hyperparameters of LSTM with probability 1. The algorithm
is then benchmarked on several basic functions, the results
show that the GWO-LSTM algorithm is able to provide very
competitive results for predicting data with low overall slope
and high partial fluctuation. Finally, we consider predicting
the pressure degradation trend of the airborne fuel pump
based on GWO-LSTM algorithm. The results show that the
root mean square error is only 0.617 after 30 iterations of
optimizing, which is 2.512 before optimizing.

The major contributions can be concluded as following.
Firstly, we presented the combination of GWO and LSTM.
The results of benchmark tests and application in airborne
fuel pump show that, the proposed model could provide
very competitive accuracy compared to other algorithms.
Secondly, the route to test the proposed model is worth
mentioning. We completed the test of GWO-LSTM from
theory prove to benchmark tests and then to application in
real products, which increasing the credibility of the model.
Thirdly, the predicting of degradation data from airborne
fuel pump is helpful to assess the status of the products.
Through prediction, the lifespan of the pump could be esti-
mated, so that we can change the pump before it breaks.
Such idea is also in line with PHM (prognostics and health
management).

II. GWO-LSTM ALGORITHM ANALYSIS
A. GREY WOLF OPTIMIZER
Wolf is a kind of fierce and wise animal. In the natural world,
the grey wolf pack has created a set of efficient hunting skills
in response to the harsh natural environment. Humans have
imitated the wolf pack activity to solve practical problems.
There are precedents in history. Genghis Khan formatted the
army with the wolf warfare method, the German submarines
used the wolf pack attack tactics during theWorldWar II, and
the US electronic warfare ‘‘wolf pack attack system’’ has all
embodied the wisdom of the wolf canine [21].

There is a strict hierarchy in the grey wolf pack. The grey
wolf pack can be divided into four levels as shown in the
Figure 1. Among them, the α wolf is the head wolf, which is
mainly responsible for the decision of the entire wolf pack’s
habitat, hunting, andmoving behaviors. Theαwolf is the core

FIGURE 1. The hierarchy of grey wolf pack. Dominance decreases from
top down.

of grey wolf pack. The β wolf is the second in command of
the grey wolf pack, who subordinate to the α wolf and assists
to make decisions. And β wolf is the first candidate for the
head wolf after the α wolf dies. The δ wolf consists of sentry
wolves, young wolves, care wolves, etc., that obeys the α
and β wolves, and assists in managing the grey wolf pack.
The ω wolf is composed of other members of the grey wolf
pack, it is the lowest layer of the grey wolf pack, that obeys
the management of the upper layer, and faces some risks in
survival.

The grey wolf optimizer was proposed by Australian
scholar Mirjalili in 2014, and the core of the algorithm is to
simulate the division and cooperation in the hunting process
of the grey wolf pack. The algorithm considers the optimal
solution as a prey, and adopt the grey wolf pack to continu-
ously approach the prey. It can be described as follows:

1. Structure division of the grey wolf pack. Set the hunting
space of the grey wolf pack to an N × M Euclidean space,
whereN is the number of greywolves, andM is the dimension
of the prey. The position of each wolf could be expressed as
Xi = (x1, x2, . . . , xM) (i = 1,2, . . . , N). Then, evaluate the
distance between each grey wolf and the prey according to
the hyperparameters of the position. The three wolves in the
best positions are selected as α wolf, β wolf, and δ wolf, and
the remaining wolves are ω wolf.
2. Search for the prey. The search activities of the grey wolf

packwere completed under the guidance ofα, β, and δ. Under
the call of the three head wolves, they continuously search
for prey. The mathematical model of searching is referred to
equations (1)-(9).

EDα =
∣∣∣ EC1 · EXα − EX (t)

∣∣∣ (1)

EDβ =
∣∣∣ EC2 · EXβ − EX (t)

∣∣∣ (2)

EDδ =
∣∣∣ EC3 · EXδ − EX (t)

∣∣∣ (3)

EX1 = EXα − EA1 · EDα (4)
EX2 = EXβ − EA2 · EDβ (5)
EX3 = EXδ − EA3 · EDδ (6)
EA = 2Ea · Er1 − Ea (7)
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EC = 2Er2 (8)

EX (t + 1) =
EX1 + EX2 + EX3

3
(9)

where vector X(t) denotes the current position of the moving
wolf, vector X(t+1) denotes the position after searching.
Vector Xα,Xβ and Xδ is the position of α wolf, β wolf, and δ
wolf. Vector r1, r2 take random values between (0, 1) during
each searching iteration. Components of vector a decrease
linearly from 2 to 0 over the course of iterations. ‘·’ denotes
the Hadamard product [21].

After each search process, the structure of the grey wolf
pack is redecided. The three wolves closest to the prey are
automatically converted into α wolf, β wolf, and δ wolf, and
the next round of search is organized.

When the times of search iterations is still small, the value
of a is relatively large. Due to the precise position of the
prey is not known yet, the grey wolf pack tends to expand
the search range. A part of grey wolf pack is shrinking in the
direction of α wolf, β wolf, and δ wolf, and other part of grey
wolf pack move in the opposite direction. For optimization,
this search mechanism could decrease the risk of falling into
local optimal values.

As the times of search iterations continues to increase,
the magnitude of vector A continues to decrease. At that time,
the grey wolf pack has basically grasped the position of the
prey, the grey wolf pack gradually tends to shrink, and starts
to surround and storm.

The random change of vector r1 and r2 bring uncertain fac-
tors to the search of the grey wolf pack, which also conforms
to the distortion in the information transmission of the grey
wolf pack in the natural environment and the randomness
of the grey wolf moving. As for the algorithm, it can also
decrease the risk of falling into the local optimal value.

B. LSTM
In principle, recurrent networks can use their feedback con-
nections to store representations of recent input events in
the form of activations (short-term) memory. However, error
signals flowing backward in time tend to blow up or vanish.
Based on this, Jürgen Schmid Huber proposed LSTM. The
key to LSTMs is the cell state, which works as a conveyor
belt. The cell state runs straight down the entire chain, with
only some minor linear interactions. Regulated by structures
called gates, LSTM does have the ability to remove or add
information to the cell state. Thus, LSTM was explicitly
designed to avoid the long-term dependency problem. [22].

As shown in Figure 2 and 3, each cell of the LSTM
contains three gates, that are the forget gate, the input gate,
and the output gate. The x(t) and h(t-1) are the inputs, and
the computation of each cell can be defined by a series of
equations as (10)-(15):

ft = σ (Wf · [ht−1, xt ]+ bf ) (10)

it = σ (Wi · [ht−1, xt ]+ bi) (11)

gt = tan h(Wg · [ht−1, xt ]+ bg) (12)

FIGURE 2. Schematic diagram of LSTM network.

FIGURE 3. Schematic diagram of the internal structure of a cell.

ot = σ (Wo · [ht−1, xt ]+ bo) (13)

ct = ft · Ct−1 + gt · it (14)

yt = tan h(ft · Ct−1 + gt · it ) · ot (15)

where the variable t is the timestamp. The cell state is Ct,
and the output is yt, which also serves as the input for the
next timestamp. ‘·’ denotes the Hadamard product, it, ft, gt
and ot are the output of the gates. Wi, Wf, Wo, Wg, bi, bf,
bo and bg are coefficient matrixes. Via the function of the
different gates, LSTMmemory units can capture the complex
correlation features within time series in both short and long
term, which is a remarkable improvement compared with
RNN [23], [24].

As the input and output of different cells interact with each
other, the error also spreads with the data. Therefore, the loss
function L(t) of the LSTM can be divided into two blocks,
one is the loss at the time t , and the other is the loss spread
back from timestamp after the time t:

L(t) =

{
l(t)+ L(t + 1) t < τ

l(t) t = τ
(16)

where τ is the index of the last timestamp of LSTM. As calcu-
lating the back-propagation gradient error, the error of output
at time t and the error flowing backward through Ct and ht
both need to be considered. Due to space reasons, the formula
for backpropagation will not be described in detail.

C. GWO-LSTM MODEL ANALYSIS
Set m numbers of hyperparameters in LSTM as prey of the
grey wolf pack, and take the actual effect of data prediction
by LSTM as a criterion for evaluating the position of each
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FIGURE 4. The flowchart of GWO-LSTM.

grey wolf. Then simulate to search the prey iteratively. The
flowchart is shown in Figure 4.

Step1: Determine the number of grey wolf and the hyper-
parameters of LSTM to be optimized. Determine the upper
and lower limits of the optimization space. Then randomly
generate the grey wolf pack in the space, and determine the
number of search iterations.

Step2: Substitute the hyperparameters of LSTM corre-
sponding to the position of each grey wolf. Divide data
into two parts as train-set and test-set, then predict the next
sequence of train-set by studying the trend of the data. Com-
pare the predicted sequence with the true data in test-set, and
calculate the error between predicted sequence and true data.
The three wolves with the smallest error are set to be α wolf,
β wolf, and δ wolf.
Step3: Under the call of α, β, and δ, the grey wolf pack

searches for prey, and the position of each wolf changes
according to formulas (1)-(4).

Step4: Repeat Step2-3 for specified times. The hyperpa-
rameters corresponding to the position of α wolf are the
optimal hyperparameters of LSTM.

III. ERGODICITY AND CONVERGENCE ANALYSIS
OF GWO-LSTM
In searching for the optimal hyperparameters of LSTM,
the direction and distance of the grey wolf pack’s move-
ment are mainly determined by the random vectors r1 and
r2 in [0,1], the positions of the grey wolf pack in the next
timestamp is only related to the current time and position.
Therefore, the motion process of the grey wolf pack has
no aftereffect, and the sequence of hyperparameters in opti-
mization is Markov process. The following is to prove the
ergodicity and convergence of the GWO-LSTM through the
relevant properties of Markov chain.
Theorem 1: Set a homogeneous finite Markov chain X

with {1, . . . , N} as the state space, and P = [pij] as the

one-step transition probability matrix. Then the necessary
and sufficient condition of X being ergodic is that there is
a positive integer m such that at least one column of Pm has
all elements greater than 0.
Lemma 1: The sequence of the track grey wolf pack go

through constitutes a homogeneous finite Markov chain.
Proof: Set the hunting space of the grey wolf pack as

a European space of N × M, in which Xi = (x1, x2, . . . ,
xM) is the position of the i-th wolf. It can be known from
formulas (1) to (9) that the state transition of Xi from step
k to step (k + 1) is determined only by the position of step
k and the random coefficients r1 and r2. Due to the number
of grey wolf pack N and the parameter dimension M are
positive integers, and there are upper and lower bounds on
the search range, and there is a limit on the accuracy of the
hyperparameter values, the sequence of the track grey wolf
pack optimized is homogeneous finite Markov chain.
Lemma 2: The sequence of the track grey wolf pack go

through is ergodic.
Proof: In the European space of hunting, ξ is a hyper-

parameter to be optimized, the upper and lower bounds are
assumed to be a and b. Set bound a is corresponding to state 1,
and bound b is corresponding to state N. Assume that in
formulas (1) to (9), ξ has a maximum Euclidean distance for
transition from state 1 to state N is d, and the probability is p.
Then there must exists k< [(a− b)/d]+ 1, that if the steps of
transition probabilitymatrix is equal to k, the probability from
state 1 to N will be greater than 0. Due to that the Euclidean
distance from any other state to N is less than d, the transition
probability from any other state to N in step k is greater than 0.
Therefore, there exit a positive integerm= k, that all elements
of the N-th column in Pm are greater than 0. According to
Theorem 1, the Markov chain is ergodic.
Theorem 2: Literature [25] has proved that if an evo-

lutionary algorithm meets a criterion that any state in the
space is reachable and the track sequence is monotonic,
the algorithm converges to the global optimal solution with
probability 1.
Lemma 3: The sequence of the track α wolf go through

converges to the global optimal solution of LSTM with
probability 1.

Proof:According to Lemma 2, the sequence of the track
grey wolf pack go through is ergodic. Therefore, any state in
GWO-LSTM is reachable. In the process that grey wolf pack
search for the LSTM hyperparameters, the most dominant
figures are α wolf, β wolf, and δ wolf. As the value of
the A continuously decrease, the search range of the grey
wolf pack is shrinking toward the α wolf, β wolf, and δ
wolf. If and only if the position of any other grey wolf is
better than α wolf, β wolf, or δ wolf, the status of α wolf,
β wolf, or δ wolf will be replaced. Therefore, the values of
hyperparameters corresponding to the track of the α wolf are
constantly optimized, and the sequence of the track α wolf go
through is monotonic. According to Theorem 3, the sequence
of the track α wolf go through converges to the globally
optimal hyperparameters of LSTM with probability 1.
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TABLE 1. Comparison of the prediction effect on different data.
WN means white noise, which is added to simulate the noise in data
collecting.

IV. ALGORITHM BENCHMARK
To discover the effectiveness of GWO-LSTM for the predic-
tion on different types of time series, we selected primary
functions such as sinx, x1/2, x−1/2, ex to generate data, each
kind of data has two states, added white noise or non-added
white noise. Then we divided data into two set as train-set
and test-set. We structured GWO-LSTM to predict the time
series of train-set through studying the trend, and analyzed the
error compared with the true data in test-set. Some other pre-
dicting algorithms as GWO-SVR, RS-LSTM, Bayesian ridge
regression, elastic network regression, and gradient boosting
regression are also applied as comparison. Hyperparameters
of regression methods are all optimized fairly. The steps are
as follows:

Step1: Use a function to generate data with 10300 num-
bers, then set the first 10,000 numbers as the train-set and the
last 300 numbers as the test-set.

Step2: Structure GWO-LSTM network, set number of
hidden layer nodes and the learning rate as hyperparameters
to be optimized, with variable range of 1 to 100 and 0.0001 to
0.1. Timestep is also a hyperparameter. To simplify themodel,
we consider not to optimize timestep. So, we set the timestep
of LSTM as 20 according to experience [26], [27]. Then we
can predict the time series of train-set by GWO-LSTM, and
we can get 300 numbers as prediction.

Step3: Compare the prediction data with the true sequence
in test-set, and calculate the root mean square of the
difference between the predicted value and the actual value,

FIGURE 5. The structure of airborne fuel pump.

FIGURE 6. The installation of the airborne fuel pump test bench.

FIGURE 7. Schematic diagram of the airborne fuel pump test bench.

which will be taken as the criterion for judging the prediction
performance.

The prediction processes of Bayesian ridge regression,
RS-LSTM, elastic network regression, GWO-SVR, and gra-
dient boosting regression are consistent with GWO-LSTM.
We adopt the root mean square of the difference between
the predicted value and the actual value as the criterion. The
results are shown in Table 1.

According to the analysis of the results, for data with
trend of high slope, such as data generated by the x2, ex

functions, the error of GWO-LSTM is larger than the elastic
network regression and Bayesian ridge regression. Neverthe-
less, for data with trend of low slope, especially the data with
white noise added, such as sinx, x−1/2, GWO-LSTM model
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FIGURE 8. Effect of GWO-LSTM model under different iteration times. The history data is given in the Fig.9. The blue lines denote the actual data after the
history data, the red lines denote predicted data trained with history data. To highlight the effect of predicting, the ordinate is shrunk to 64-76 kPa.

provide very competitive results. It can be concluded that
GWO-LSTM model is suitable for predicting data with low
overall slope and high partial fluctuation. The conclusion
accords with the analytical capabilities for complex input-
output relationship of deep learning.

The No Free Lunch (NFL) [28] theorem proved that there
is no metaheuristic best suited for solving all optimization
problems. Overview the GWO-LSTM model, the core is to
increase time cost to get higher accuracy. Every iteration
GWO search for hyperparameters, LSTM will be trained
with the whole data, and the time cost will plus one times.
So, the time complexity is linearly related with searching
iteration. Therefore, the proposed algorithm is suitable to deal
with cases that requires high precision and consider less about
time complexity.

V. APPLICATION IN AIRBORNE FUEL PUMP
The airborne fuel pump is a core component of the fuel
system, and the pump is responsible for the fuel supply and
fuel transfer for the aircraft. Searching the degradation law of
the airborne fuel pump is the basis for the life prediction of
the airborne fuel pump. The time sequence of the degradation
data of the airborne fuel pump is the key to predict the trend
of breaking down, then estimate the life span of the airborne
fuel pump [29].

A. STRUCTURE AND WORKING MODE OF AIRBORNE
FUEL PUMP
The structure of the fuel pump is shown in Figure 5. When
the fuel pump is energized, the flat key transmits the torque

of the motor shaft to the impeller and the axial flow impeller.
Fuel flows from the storage tank to the impeller, and the
centrifugal force generated by the rotation of the impeller
is thrown from the impeller blade to the impeller outer
diameter. After the fuel flows out of the impeller outlet,
it enters the fuel collection pipe of the fuel system and then
be pressed into the aircraft fuel main and delivered to the fuel
tank [30].

B. CONSTRUCTION OF AIRBORNE FUEL PUMP
TEST BENCH
This test bench consists of fuel supply system, program-
controlled power supply, and data acquisition system. The
fuel supply system is shown in Figure 6 and 7. The fuel
pump pumps the oil from the test pump box to the fuel
tank. For cycling, the oil in the fuel tank returns to the
test pump box by gravity through the solenoid valve. The
program-controlled power supply can stabilize the output
voltage, and the frequency and amplitude can be adjusted.
The data acquisition system mainly includes sensors, data
acquisition unit and its software. The sensors include vibra-
tion sensors, pressure sensors, and flow sensors. To detect
vibration caused by diffuser damage, blade damage, leakage
and bearing wear, the position of the vibration sensor was
set close to the bearing of the pump. Three vibration sensors
(Figure 6) are installed on this experimental bench, and the
pressure sensor and flow sensor are installed in the transfer
pipe at the pump outlet. The installation position is shown
in Figure 7 [29].
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FIGURE 9. Prediction Effect: (a) history data; (b) RS-LSTM; (c) gradient boosting regression; (d) elastic network regression; (e) GWO-SVR;
(f) Bayesian ridge regression. To highlight the effect of predicting, the ordinate is shrunk to 64-76 kPa.

C. PREDICTION OF AIRBORNE FUEL PUMP
DEGRADATION TREND
The outlet pressure value is an important indicator of the
fuel delivery capacity of the airborne fuel pump, which is a
good characteristic parameter to measure the performance of
the fuel pump. The test adopts pressure as the characteristic
for the degradation of the airborne fuel pump performance.
We set the rated voltage of the airborne fuel pump as sup-
ply power, 115V, 200Hz alternating current was used for a
100-hour degradation test. A sample is taken every minute to
obtain a total of 6,000 points of data. Set the last 300 points
as the test-set and the rest 5700 points as the train-set. The
data processing method is the same as above mentioned.

Through the preliminary analysis of the experimental data,
the degradation of the pressure of the airborne fuel pump is

very slow, and the pressure data has a certain degree of fluctu-
ation during the degradation process. Based on the study we
searched, we consider to use the GWO-LSTM to predict the
degradation data of pressure, which will help us to assess the
working state of the pump.

We set number of hidden layer nodes and the learning rate
of the LSTM algorithm as hyperparameters to be optimized in
GWO-LSTM. Then we used GWO-LSTM to predict the next
300 numbers of data by studying the trend of the train-set data
with 5700 numbers. We still adopted the root mean square
of the difference between the predicted value and the actual
value as the criterion for judging the prediction performance.
The comparison between the predicted data and the actual
data is shown in Figure 8. As the grey wolf pack continues
to optimize the hyperparameters of the LSTM, the accuracy
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TABLE 2. Mean square error of the prediction.

is also continuously improved. The blue line represents the
actual data and the red line represents the predicted data. After
30 iterations, the root mean square is only 0.617, which is
fairly lower than 2.512 before the optimization.

Other predicting algorithms as Bayesian ridge regression,
RS-LSTM, elastic network regression, GWO-SVR, and gra-
dient boosting regression are also applied as comparison.
The prediction processes are consistent with GWO-LSTM.
The results are given in Figure 9, and the mean square error
of the methods are given in Table 2. The results show that
the accuracy of GWO-LSTM in predicting degradation data
is much higher than any other algorithm, which further proves
that the proposed algorithm is applicable to predict degrada-
tion data with high accuracy.

VI. CONCLUSION
In this study, we propose to adopt the grey wolf opti-
mizer (GWO) to search for the best hyperparameters of
LSTM. The ergodicity and convergence of the algorithm are
proved based on Markov processes theory. The results of
prediction show that the GWO-LSTM algorithm is able to
provide very competitive results for predicting data with low
overall slope and high partial fluctuation. Finally, we apply
the algorithm on predicting the pressure degradation trend
of the airborne fuel pump, the results show that the root
mean square error is only 0.617, which is fairly lower than
2.512 before the optimization.

The limitations of the proposal are as follows: First,
the algorithm could provide good results only for predicting
certain types of data. As for the degradation data of airborne
fuel pump, the accuracy of prediction is higher than any
other algorithms we selected. But for data generated by ex,
the accuracy of prediction is not satisfactory. Second, for the
process grey wolf pack searching for preys, as the number
of iterations increase, the time spend on training the network
will relatively increases, which could bring additional cost on
prediction.

For future work, we are going to search for more cases that
suitable for prediction based on GWO-LSTM, and seek the

relation between task complexity and hyperparameters, so as
to make further optimization [8].
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