
Received June 15, 2020, accepted June 28, 2020, date of publication July 2, 2020, date of current version July 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3006703

SofTEE: Software-Based Trusted Execution
Environment for User Applications
UNSUNG LEE AND CHANIK PARK
Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea

Corresponding author: Chanik Park (cipark@ postech.ac.kr)

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the
Korea Government (MSIT) (2020-0-00936, Core Technologies for 5G-Aware Blockchain Networks).

ABSTRACT Commodity operating systems are considered vulnerable. Therefore, when an application
handles security-sensitive data, it is highly recommended to run the application in a trusted execution
environment. In response to this demand, hardware-based trusted execution environments such as Intel SGX
and ARM TrustZone have been developed in commodity computers. However, hardware-based approaches
cannot be quickly upgraded to address design vulnerabilities or to reflect customer feedback. In this paper,
we propose SofTEE, a software framework to support a trusted execution environment for user applications.
For a trusted execution environment, SofTEE should support memory isolation and attestation. For memory
isolation, SofTEE relies on kernel deprivileging which delegates the execution of privileged operations
such as memory management, from a kernel to a special module called a security monitor. To reduce
the overhead of switching between the deprivileged kernel and the security monitor, SofTEE proposes an
efficient management mechanism of the address space identifier. SofTEE supports attestation by assuming
minimal hardware functionalities of random entropy and root of trust. The main challenge of SofTEE is to
guarantee security properties like confidentiality and integrity of security-sensitive applications. For security
analysis, we have identified security invariants that SofTEE should meet for confidentiality and integrity
guarantees. Based on the security invariants, we have designed and prototyped each component of SofTEE
on a Raspberry Pi 3 board. SofTEE produces about 3% overhead in case of a security-sensitive application
with long execution time and 23% overhead in case of a security-sensitive application with short execution
time.

INDEX TERMS Address space identifier, kernel deprivileging, trusted execution environment.

I. INTRODUCTION
Trusted execution environment (TEE) is an isolated environ-
ment that protects user code and data from amalicious kernel.
It is highly recommended to execute a user application in TEE
when the application handles security-sensitive information
such as passwords [1], [3], [4], or when the application pre-
processes some privacy-sensitive data such as blood pressure
and glucose level collected by sensors [2].

There are two fundamental requirements for TEEs:
1) memory isolation; and 2) attestation.

For memory isolation, the address space of TEEs is iso-
lated and protected from a kernel. There are hardware-
based solutions, e.g., Intel SGX [6] and ARM TrustZone [5],
and software-only approaches, e.g., Virtual Ghost [18]

The associate editor coordinating the review of this manuscript and

approving it for publication was Wen Chen .

and SKEE [34]. Software-based approaches apply compiler
instrumentation or kernel deprivileging to isolate the TEE
memory from the kernel memory.

Attestation is a proof to verify that an application is running
in a trusted execution environment. To create a proof of
attestation, we need to establish a chain of trust in the system.
The chain of trust is typically built by using cryptographic
hash chains from the beginning of the system boot. Thus, it is
critical to create the root key of a hash chain (i.e., root-of-
trust (RoT)) in a secure way for correct attestation. The root
key of a hash chain is created either by an early bootloader
in Komodo [17] or hardware in SGX [6] and trusted platform
module (TPM).

Software-based TEEs have several advantages over
hardware-based TEEs. First, software-based TEEs are more
suitable to be applied in various machine environments
because software-based TEEs do not have any dependency

121874 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-1081-9899
https://orcid.org/0000-0002-3258-7278


U. Lee, C. Park: SofTEE for User Applications

on special hardware features, e.g. ARM TrustZone [5], Intel
SGX [6]. Second, in software-based TEEs, the update is
much easier (and cheaper). The fast upgrade is important to
fight against vulnerabilities found later. Third, it does not
expand the attack surface of the hardware-based TEE. Thus,
software-based TEEs can be used together with hardware-
based TEEs.

In this paper, we propose SofTEE, a software framework
to implement a TEE for user applications without relying
on special hardware features or complicated compiler tech-
niques. For address space isolation, SofTEE applies a tech-
nique called kernel deprivileging to delegate some privileged
operations, such as memory management, to a special soft-
ware module called a ‘security monitor’. With kernel depriv-
ileging, a CPU privilege mode in SofTEE is logically divided
into a normal mode and a secure mode. Based on these two
virtual CPUmodes, it is possible to support TEEs by software
in SofTEE. For attestation, SofTEE assumes Root-of-Trust
built by hardware, e.g. TPM.

In SofTEE, the main challenge is how to meet security
properties such as confidentiality and integrity of security-
sensitive applications. The careful analysis leads us to iden-
tify seven security invariants that SofTEE should meet. Then,
we have designed each component of SofTEE to satisfy the
seven security invariants.

In summary, the contributions of this paper are as follows:

• SofTEE provides a trusted execution environment for
secure-sensitive applications, denoted as TAs, without
special hardware features. 1) five APIs are defined for
TAs (see TABLE 1); 2) efficient ASID management
without violating security properties is proposed for
the performance of TAs; 3) TAs execute with hardware
interrupts enabled; 4) TAs are protected from each other,
that is, the non-interference property among TAs is
guaranteed.

• We defined seven security invariants (I - VII) which are
required to support the confidentiality and integrity of
security-sensitive applications.

• We prototyped SofTEE based on seven security invari-
ants on a multicore ARM-based Raspberry Pi 3 [8].

The rest of this paper is organized as follows: Section II
describes the background, and Section III discusses the threat
model and assumptions. Design and implementation are
described in Section IV. In Section V, we analyze the security
invariants and discuss the confidentiality and integrity of our
framework.We evaluate our system in Section VI.We discuss
future works and security problems in Section VII. Finally,
we conclude our idea in Section VIII.

II. BACKGROUND
A. HARDWARE-BASED TEE
CPU vendors have developed hardware techniques to support
TEEs (e.g., Intel SGX [6] and ARM TrustZone [5]). Intel
SGX protects applications in the enclave memory from the
kernel. To reach this goal, Intel SGX isolates and encrypts

enclave memory. However, it is not available on other archi-
tectures and legacy devices. In addition, SGX-equipped Intel
CPU chips cannot be quickly updated to address the vulner-
ability [37], [54], [55], and to extend features such as the
dynamic memory management provided by SGXv2 [6].

ARM TrustZone supports two different worlds: normal
and secure. Memory space in the secure world is not acces-
sible from the normal world software, such as the Linux
kernel. Thus, ARM TrustZone is generally used as the
underlying hardware technology for previous TEE solu-
tions [9], [17], [50], [56]. In these past studies, a trusted
software, commonly called a securitymonitor onARMTrust-
Zone, detects and blocks kernel accesses to trusted user code
and data. However, it also has some limitations. First, ARM
TrustZone-based TEEs rely on architecture. Therefore, they
are valid only on ARM machines. Moreover, the security
monitor in the secure world bloats the trusted computing
base (TCB) size of the entire system. Finally, programs run-
ning on ARM TrustZone can be targeted by attackers [47].
Therefore, system on chip (SoC) vendors, especially mobile
device manufacturers, are reluctant to open ARM TrustZone
freely to third-party developers [14], [15]. Instead, some
original equipment manufacturer (OEM) applications are
exceptionally allowed. This limitation is a significant obstacle
when developing a system that leverages ARM TrustZone.

Sanctuary [53] mitigates this limitation of ARMTrustZone
by performing a trusted part of an application called trusted
application (TA) in the normal world, not in the secure world.
In Sanctuary, the system exploits dedicated CPU cores and
the TrustZone address space controller (TZASC) to protect
the TAs. This approach reduces attack surfaces of the secure
world, but Sanctuary still depends on ARM TrustZone and
requires privileged software in the secure world at runtime.
Besides, the applications and kernel in the normal world can-
not use the dedicated CPU cores until the TAs are completed.

Some studies [10]–[14], [46] use hardware virtualization
instead of ARM TrustZone to protect trusted applications
from the kernel. In the research, hardware virtualization
supports memory isolation using a hypervisor. Like a secu-
rity monitor in ARM TrustZone, a special software called
a hypervisor detects and blocks kernel accesses to trusted
applications. Thus, hardware virtualization is widely used
for address space isolation. However, hardware virtualization
has some limitations. First, many devices cannot support
hardware virtualization. For example, many legacy internet
of things (IoT) devices do not include hardware virtualiza-
tion, and IoT-oriented Cortex-M series cannot take advantage
of hardware virtualization. Besides, hardware virtualization
severely degrades performance due to nested paging [14].

Some studies [7], [51] involve architecture modifica-
tion to replace an existing hardware TEE such as ARM
TrustZone. These approaches address the limitations of
existing hardware-based TEEs. However, architecture mod-
ification is hard in the real world, so the industry rarely
adopts such solutions. Moreover, legacy devices cannot take
advantage of these solutions.

VOLUME 8, 2020 121875



U. Lee, C. Park: SofTEE for User Applications

B. SOFTWARE-BASED TEE
Virtual Ghost [18] is considered the first study to enforce
application security using compiler instrumentation and run-
time checks. The structure of this system is similar to hard-
ware virtualization-based TEE in that it runs the operating
system (OS) and applications on a virtual machine (VM).
However, Virtual Ghost supports VMs without hardware vir-
tualization. Instead, the system uses sophisticated compiler
analysis and instrumentation to compile the OS and imple-
ment virtualization. Virtual Ghost offers better performance
than a hardware virtualization-based approach [10], but Vir-
tual Ghost is much slower than an ARM TrustZone based
approach, TrustShadow [9].

Some studies [16], [34] provide trusted kernel execution
environments without special hardware features. For exam-
ple, in SKEE [34], A. M. Azab et al. proposed a frame-
work to support the trusted kernel execution environment.
In SKEE, an address space separation was used to isolate the
trusted kernel execution environment from the compromised
kernel execution environment. However, SKEE does not con-
sider the trusted execution environment for user applications.
On the other hand, SofTEE provides TEE for user appli-
cations, including the trusted kernel execution environment.
Therefore, the security monitor of SofTEE tackles security
problems not considered by SKEE.

C. KERNEL DEPRIVILEGING
Currently, most commodity OSes are based on monolithic
kernels, which can be easily compromised, and attackers
gain complete control over all kernel functionalities, includ-
ing memory management. Therefore, there have been many
attempts to reduce kernel authorities. For example, microker-
nels [19]–[21] delegate some kernel functionalities, such as
device drivers and filesystem, to user processes. By doing so,
microkernels are generally lighter than monolithic kernels.
However, microkernels require redesign and extensive code
modifications from commodity OSes.

Another approach is to delegate certain kernel function-
alities, such as memory management and privileged instruc-
tions (e.g., memory management unit (MMU) configuration
updates) to a kernel module, and separate the module from
the kernel. In this solution, there are two main ways to isolate
the module from the kernel.

The first way is to put themodule and the kernel in the same
address space. Instead, the module is hidden from the kernel
via address space randomization (ASR) [32] or protected by
write protection (WP) in x86 [16]. The system with ASR is
less likely to be attacked, so the module is expected to be safe,
but in practice, it is not secure. Some studies [22]–[27] have
shown that rerandomization or runtime code randomization is
necessary to mitigate memory disclosure attacks [49]. Mean-
while, the system using WP isolates the module from the
kernel, but this hardware technique is not supported on some
architectures such as ARM. Besides, some security monitor
memory in SofTEE is not mapped to the kernel to ensure

confidentiality. Therefore, we cannot use these methods to
isolate the module.

The other way is to use the shadow page table to
separate the module address space from kernel address
spaces [28], [34]. In general, address space separation
using shadow page table is widely used, but significant
overhead is inevitable due to the memory management
unit (MMU) configurations and TLB maintenance [29].
In some research [34], [69], the overhead of context switching
between a normal kernel execution environment and a trusted
kernel execution environment is reduced by reserving an
ASID for the trusted kernel execution environment. Unlike
the previous research, however, we considered ASID man-
agement for trusted applications. In SofTEE, ASID manage-
ment is considered a privileged operation. Thus, the security
monitor handles ASIDmanagement directly. In Section IV.A,
we describe the detailed design of the security monitor.

III. THREAT MODEL AND ASSUMPTIONS
We consider that attackers may completely compromise the
kernel. Once the kernel is compromised, the attacker can
access andmodify any data and registers in the system. There-
fore, the attacker can arbitrarily control memory address
space by manipulating page tables as well as MMU configu-
rations. In addition, kernel control paths may also be changed
by manipulating kernel control flow data.

We assume that our binary scanner for kernel deprivileging
is functionally correct. The binary scanner scans the kernel
image and replaces all the targeted privileged instructions
with explicit calls to the security monitor. We also assume
that the security monitor, the main component of the trusted
computing base, is bug-free.

Direct memory access (DMA) attacks, other hardware
attacks such as bus monitoring [38], denial-of-service (DoS)
attacks, and side channel attacks using shared hardware
resources are out of scope. Note that previous works [44],
[56] can be easily applied to address these hardware attacks.

We assume that root-of-trust (RoT) and random entropy
are provided by hardware. In SofTEE, RoT is required for
attestation, and random entropy is critical for cryptographic
key creation.

IV. DESIGN AND IMPLEMENTATION
A. DESIGN
Fig. 1 shows the SofTEE architecture consisting of a (deprivi-
leged) kernel and a (privileged) security monitor. To build the
deprivileged kernel, the first step is to apply an offline binary
scanner to the kernel binary image. Given the list of privileged
instructions for kernel deprivileging, the scanner detects the
targeted instructions in the kernel binary image and replaces
them with an explicit call to the security monitor (i.e., the
entry gate in Fig. 1). Next, we manually add an explicit call to
the entry gate before some of the privileged operations, such
as page table updates, and an explicit call to the exit gate after
completing the privileged operations.

121876 VOLUME 8, 2020



U. Lee, C. Park: SofTEE for User Applications

FIGURE 1. SofTEE architecture. The system has two modes: normal mode
and secure mode. Normal mode memory includes applications and kernel
memory. Secure mode, on the other hand, consists of TAs and the security
monitor. Normal mode and secure mode are converted through the
dedicated Entry and Exit Gates. Note that shaded boxes show the TCB and
dotted boxes show deprivileged functionalities.

With the help of kernel deprivileging, SofTEE logically
separates a physical CPU mode into two modes: normal
and secure. The deprivileged kernel runs in the normal
mode whereas the security monitor runs in the secure mode.
In Fig. 1, dotted boxes in the kernel represent deprivileged
operations that are handled by the securitymonitor. Switching
between normal and secure modes is handled by the entry
gate and the exit gate.

Each application consists of two parts: a security-
insensitive normal part and a security-sensitive trusted part.
In Fig. 1, the normal part is denoted as APP and the trusted
part is denoted as TA. The interactions between the APP
and TA are specified by application programming inter-
faces (APIs) provided in SofTEE. We will discuss which
operations are provided for the APP and TA later.

1) PRIVILEGED INSTRUCTION HANDLER
In SofTEE, several privileged instructions are removed from
the kernel. These instructions include: 1) the instruction that
updates registers containing the page table base address and
the vector table base address; 2) the instruction that handles
ASID; and 3) the instruction that changes the control register
that manages the MMU. These instructions are handled by
the privileged instruction (Priv. Inst.) handler in the security
monitor. This approach is similar to the one in previous
research [16], [32], [34].

2) SHADOW PAGE TABLE
For address space isolation, the security monitor manages its
own page table, the shadow page table. The shadow page table
concept was originally developed in the hypervisor to support
efficient memory virtualization [12], [33].

Fig. 2 shows how the security monitor manages the address
spaces for a process. Because a user application consists of
two parts: a security-insensitive APP and a security-sensitive
TA, the address space of the process is defined by two address
spaces: a virtual address space for APP in the normal mode

FIGURE 2. Process address space in SofTEE. In SofTEE, each process
address space consists of virtual address spaces for both normal and
secure modes. In the normal mode, its virtual address consists of normal
user application and the kernel memory. In the secure mode, the virtual
address consists of secure user application called TA and the security
monitor memory. Note that a certain region (shaded box) of physical
memory called secure page is exclusively accessed by the security
monitor. In addition, some physical memory is reserved to store
page-table pages (PTPs) and TA.

and a virtual address space for TA in the secure mode. Note
that in the virtual address map of the normal mode, accesses
to both the kernel page-table pages (Kernel PTP) and the
user page-table pages (User PTP) are restricted to read-only.
On the other hand, both read and write permissions are
allowed in the virtual address map of the secure mode.

Some physical memory spaces are reserved for the security
monitor to store TA contexts and all page tables. Any infor-
mation stored in the reserved areas is safe from the malicious
kernel. This is because the reserved memory spaces are iso-
lated from the memory spaces managed by the kernel. In Sof-
TEE, there is no mapping with access permission of both
write and execute. Thus, attackers cannot inject new code
into the preloaded kernel code and data areas, known as code
injection attack [35]. However, malicious users can collude
with the kernel to inject privileged instructions. For example,
the malicious user attempts to load applications or kernel
modules that contain privileged instructions. Therefore, user
application memory should be mapped without privileged
executable permission, and the kernel modules should be
scanned as if the kernel image was scanned. Even worse,
some kernel modules, such as BSD packet filtering [48],
generate code dynamically at runtime. SofTEE should make
sure that the generated code does not contain any of the
privileged instructions. (We have not implemented it yet.)

Privileged instructions can easily be detected by the binary
scanner, but it is not easy to detect privileged operations such
as memory management by the binary scanner. Therefore,

VOLUME 8, 2020 121877



U. Lee, C. Park: SofTEE for User Applications

privileged operations such as memory management may be
included stealthily in the kernel modules. SofTEE does not
enforce that kernel modules cannot contain these operations.
Instead, the kernel modules are executed in the normal mode.
Basically, in the normal mode, the kernel has read-only per-
mission to all page table pages and cannot access the security
monitor code and data. This is because SofTEE ensures mem-
ory isolation through a security monitor page table called
the shadow page table. Therefore, like the kernel, the mod-
ules are not authorized to perform the privileged operations
(e.g., memory management).

SofTEE prevents code injection attacks, but malicious
users attempt code reuse attacks, such as return-oriented pro-
gramming (ROP) attacks. We consider two types of attacks
(return-to-user (ret2usr) [63] and return-to-direct-mapped
memory (ret2dir) [64]) to discuss about ROP attacks. In these
attacks, an attacker uses multi-stage shellcode by grouping
user and kernel shellcode. The attacker can inject kernel code
or connect several code fragments (gadgets) to construct the
kernel shellcode. In particular, the attacker can construct the
kernel shellcode via sophisticated rootkits such as return-
oriented rootkits [71].

In ret2usr, the attacker exploits memory corruption vul-
nerabilities to force the kernel to redirect to user code and
data. To prevent this attack, Intel introduced supervisor mode
execution prevention (SMEP) [65] and supervisor mode
access prevention (SMAP) [66]. Similarly, ARM introduced
privileged execute never (PXN) [67] and privileged access
never (PAN) [68]. In SofTEE, we assume SMEP (Intel) or
PXN (ARM) enabled to prevent the kernel from executing
privileged instructions in user code. On the other hand, the
ret2dir attack can bypass these hardware features because the
ret2dir attack exploits physical memory mapping of the ker-
nel to user code and data. The paper [64] proposed a method
of exclusive page frame ownership (XPFO) to handle the
ret2dir attack. XPFO explicitly controls the kernel memory
mapping to user processes. In SofTEE, it is assumed that
SofTEE applied the technique XPFO to handle the ret2dir
attack.

3) TA CONTEXT MANAGEMENT
The security monitor maintains TA context information con-
sisting of an identifier, an interrupt status flag, an assigned
ASID information, general-purpose registers, and some
secure pages. Additionally, SofTEE allows a shared memory
page set up for efficient communication between APP and
TA. SofTEE enforces any secure operations of user appli-
cation (e.g., operations accessing private information) to run
inside TAs. Only the results of secure operations are exposed
to APPs. By doing so, the security monitor of SofTEE can
enforce any private information accessed only inside TAs.
Therefore, the attack on sharedmemory betweenAPP and TA
cannot violate the security properties enforced by SofTEE.
However, such an attack scenario should be considered in
practical environments. SofTEE can handle this attack by
upgrading the security monitor to manage communication

channels between APP and TA. The detailed steps are shown
as follows: 1) reserving some physical address spaces (and
virtual address spaces) for use as shared memory between
APP and TA at kernel boot and 2) Preventing the kernel
from accessing the shared memory between APP and TA.
For example, privileged access never (PAN) of ARM or
supervisor mode access prevention (SMAP) of Intel does not
allow the kernel to access the user data field. It can also be
prevented by software techniques that intentionally remove
sharedmemory between the kernel and user, such as exclusive
page frame ownership (XPFO) [64]. When applying XPFO,
the security monitor may reject a kernel request asking a
mapping to the shared memory between APP and TA. Note
that all page table updates are handled by the security monitor
in SofTEE.

4) TA SERVICE HANDLER
Table 1 shows the APIs available for applications consisting
of an APP and a TA in SofTEE. Each API is served by the TA
service handler. Among the nine APIs, four APIs are for the
APP and five APIs are for the TA.

For noninterference between TAs, SofTEE does not allow
shared memory between TAs.

1) Create_TA: This API is provided to create a TA speci-
fied in the argument. The security monitor is responsible
for loading the code and data of the TA into the main
memory and then initializing the TA context.

2) Remove_TA: This API is provided to remove a TA
context. This operation deallocates the secure pages
assigned to the TA.

3) Enter_TAandReenter_TA: TheseAPIs are required to
run a TA. ‘Enter_TA’ is invoked by the APPwhen the TA
executes for the first time. Note that the security monitor
invokes the execution of the TA with interrupts enabled.
There may be interrupts generated during the execution
of the TA. These interrupts are handled by the interrupt
handler in the deprivileged kernel. When the interrupt
handling is completed, the control returns to the APP
in the normal mode, not to the TA, even though the
execution of the TA was interrupted. Later, the APP
needs to invoke ‘Reenter_TA’ to resume the execution
of the TA.

4) Attest and Verify: These APIs are fundamental for
attestation. Like the local attestation protocol provided
by Intel SGX, SofTEE provides local attestation (veri-
fier in the same machine). In this process, a TA requests
the ‘Attest’ operation and the handler deals with this
operation. For this operation, the security monitor has a
key pair. During the ‘Attest’ operation, the monitor signs
the current TA identity and TA-provided data (256 bits)
using a private key, then the handler returns the result
(a signature) to the requesting TA. After receiving the
result, the requesting TA invokes the ‘Verify’ operation
to verify that the trusted code is running on the SofTEE
platform. In this procedure, a public key is used.

121878 VOLUME 8, 2020



U. Lee, C. Park: SofTEE for User Applications

TABLE 1. SofTEE APIs provided to applications (APP and TA).

5) GetRandom and GetHash: These APIs are great help
for cryptographic operations. When the TA calls these
operations, the handler returns a hardware random seed
and a hash value, respectively, to the requesting TA.Note
that, SofTEE should support hardware randomness. This
is because the security level of the created key definitely
depends on the randomness of the seed. In addition,
by providing hash algorithms for TA developers, they
can build their software without relying on external
libraries.

6) Exit: This API is provided to return to the APP after
completing the execution of the TA.

5) SHADOW VECTOR TABLE
Note that TAs are executed with interrupts enabled by the
security monitor. Thus, interrupts or exceptions may be gen-
erated during the execution of TA in the secure mode. Since
current CPU context information, e.g. general-purpose regis-
ters, is exposed to interrupt or exception handlers, the security
monitor should maintain its own vector table, called shadow
vector table. The shadow vector table saves the context infor-
mation of the currently running TA.

Since a page fault exception of a TA can be directly handled
by the security monitor, secure page usage information is not
disclosed to the deprivileged kernel. Therefore, SofTEE pre-
vents page-fault based side channel attacks [58]. In SofTEE,
other faults like a hardware interrupt are handled by the inter-
rupt handlers available in the deprivileged kernel. For dis-
patching interrupt handling, we need to switch the privilege
mode from secure to normal. This is done by the exit gate.
For security assurance, SofTEE cleans up general-purpose
registers and cleans all the data cache entries accessed by the
TA before mode switching (see more details in Section VII).

6) ASID MANAGEMENT
Context switching overhead is typically high due to the
invalidation of TLB entries. Traditionally, the address space

FIGURE 3. ASID management. Each address space has each range of
ASID. In SofTEE, the last ASID is reserved for the security monitor. On the
other hand, the kernel uses the first ASID.

identifier tag (e.g., address space identifier (ASID) in ARM
and process context identifier (PCID) in Intel) is attached to
each TLB entry to reduce context switching overhead.

Since stale TLB entries may be abused by the attacker [36],
SofTEE has to flush all TLB entries before returning from
secure mode to normal mode. SofTEE mitigates the mode
switching overhead by efficient management of address space
identifiers.

ASID management is considered a privileged operation
and is handled by the security monitor. In SofTEE, the entire
ASID space is partitioned into two spaces (see Fig. 3). Note
that some ranges of ASIDs are exclusively handled by the
security monitor to safely assign the ASID to each TA con-
text. In addition, memory in the secure mode is mapped
as non-global, so cached TLB entries in the secure mode
address space are only available to ASIDs that are exclusively
assigned to the secure mode. With this ASID management,
SofTEE does not have to flush TLB entries at every mode
switch.

VOLUME 8, 2020 121879



U. Lee, C. Park: SofTEE for User Applications

FIGURE 4. Entry gate pseudo code.

In SofTEE, the key point of ASID management is non-
interference property while reducing switching overhead.
In particular, SofTEE decides how many ASID entries are
assigned to TAs. In addition, SofTEE selectively flushes only
TLB entries corresponding to the specified ASIDs in the
secure mode. It prevents redundant TLB flush operations.
These ASID entries are carefully managed by the security
monitor in order tomeet the non-interference property of TAs.

7) ENTRY AND EXIT GATES
If the deprivileged kernel in the normalmodewants to execute
privileged operations of the security monitor, it should be
done through the entry gate. The entry gate takes care of
mode switching from the normal mode to the secure mode
by updating address space, and then the security monitor is
invoked to execute the requested operation. After the opera-
tion is complete, the control is returned to the deprivileged
kernel through the exit gate. The exit gate is responsible for
switching the address space from secure mode to normal
mode.

Fig. 4 and Fig. 5 show the pseudo-codes for the entry and
exit gate. Note that it is possible for a compromised kernel to
jump into the middle of the entry or exit gate. Therefore, the
entry gate and exit gate include security validation codes.

The entry gate works as follows:
Line 1. Disable interrupt. Note that the security monitor
reenables interrupts just before the TA executes.
Line 2. Save kernel’s general-purpose registers except for
the stack pointer (SP). The saved registers will be used
to restore the kernel’s general-purpose registers while the
exit gate is executing. Therefore, the kernel cannot obtain
information about the secure mode through the general-
purpose registers. This step is vital to ensure confidentiality.

FIGURE 5. Exit gate pseudo code.

Line 3. Change the ASID from the kernel ASID to the
security monitor ASID (i.e., SEC_MON_ASID).
Line 4. Change the page table from the normal mode
page table to the secure mode page table. The entry gate
should be deterministic despite the compromised kernel
attempts to jump to the middle of the entry gate. For the
entry gate, in SKEE [34], the authors suggested two solu-
tions: 1) setting the kernel and secure kernel to use differ-
ent translation table base registers (TTBR0 and TTBR1)
respectively, and 2) using a zero register to update the
TTBR register. In addition, Hilps [69] adjusted the vir-
tual address range by updating a control register called
the translation control register (TCR) at the entry and exit
gates. In this case, the gates need to check whether the
control register value is valid immediately after updating
the register. In SofTEE, we can use these solutions to
switch address space from normal mode to secure mode.
The Change_PT_TO_SEC_MON_PT() switches page table
without input argument. In means that the page table is
switched regardless of the value of general-purpose regis-
ters.
Lines 5-7. Check_PT_Secure() instruction of the entry gate
verifies that the page table is switched from normal mode to
secure mode.
Lines 8-10. Check the validity of the ASID range. In the
normal case, ASID is changed from the kernel ASID to the
security monitor ASID in Line 3, but attackers can skip
Line 3 (e.g., jumping to Line 4). This attack is handled
by checking the validity of ASID in Line 8-10. This code
checks whether current ASID is the security monitor ASID.
If the ASID is not valid, the entry gate prevents the kernel
from proceeding further.
Lines 11-14. Calculate the stack address to be used while
the security monitor is running. SofTEE provides the secu-
rity monitor with as many special stacks (called secure
stacks) as the number of CPUs. Note that the secure stacks
(i.e., SEC_STACK) are not accessible in the normal mode.

121880 VOLUME 8, 2020



U. Lee, C. Park: SofTEE for User Applications

Lines 15-17. Save the current kernel SP (i.e., kern_SP) and
change the hardware stack to the secure stack of this CPU.
Line 18. Jump to the security monitor code.
Line 19. Call the exit gate to switch mode from secure to
normal.

The exit gate restores all the information saved by the entry
gate and returns back to the kernel. Under normal circum-
stances, the exit gate is only called by the security monitor.
However, attackers can invoke the exit gate directly. In order
to handle this attack, the exit gate (Lines 6-8) verifies that
an ASID matches the ASID of the normal mode kernel (i.e.,
KERN_ASID). In addition, Check_PT_Normal() instruction
(Lines 2-4) of the exit gate verifies that the page table is
switched from secure mode to normal mode. For the exit gate,
in SKEE, the authors suggested two solutions: 1) if the kernel
and secure kernel are set to use TTBR0 and TTBR1, respec-
tively, the exit gate checks whether a control register value
(i.e., translation table base control register (TTBCR)) is valid
immediately after switching the page table, and 2) Placing
the page table update instruction (e.g., Line 1 in Fig. 5) at
the end of the physical page that is isolated from the kernel.
In SofTEE, we can use these solutions to switch address space
from secure mode to normal mode.

The first step (Line 1) of the entry gate is to disable local
interrupts, but attackers can skip this step by jumping to
Line 2. In order to handle this attack, we add a security check
code in the kernel interrupt handler. The interrupt handler in
the normal mode checks the current address space such as
the page table and ASID range. If the current address space is
not the kernel address space, then the system stops. Even if an
attacker attempts to delete (or modify) or bypass the security
check code in the interrupt handler, the attacker will not be
able to skip the security check code for two reasons. First,
SofTEE does not allow code injection attacks by setting all
memory to w xor x (W^X). It enforces non-writable code and
non-executable data. Next, in SofTEE, updating the vector
base address register is considered a privileged instruction,
so SofTEE monitors the vector table base address register
updates.

B. IMPLEMENTATION
This section describes the detailed implementation of each
component of the security monitor. We prototyped our frame-
work on a Raspberry Pi 3 board [8]. This development
board is widely used because of its low cost and small
size. This machine includes a quad-core 1.2GHz 32-bit CPU
and 1 GB RAM. (The recent Raspberry Pi 3 model includes
64-bit CPU, but the initial version of this model contains
ARMv7 [42], which is based on 32-bit CPU.) In addition,
we installed a hardware TPM on the board. In terms of soft-
ware, we downloaded and installed Ubuntu 16.04.5 LTS with
the Linux kernel version 4.14.95 on the machine. We mainly
followed the kernel configuration set by the hardware manu-
facturer but modified some kernel configurations to support
hardware TPM and large physical address extension (LPAE).

1) SECURITY MONITOR
SofTEE removes the memory management and ASID man-
agement privileges from the kernel. Besides, SofTEE changes
the exception and interrupt vectors before a TA runs to safely
manage the TA context. Thus, the kernel is deprivileged.
Instead, the security monitor performs these privileged oper-
ations on behalf of the kernel.

SofTEE follows two main steps for the kernel deprivi-
leging: 1) the binary scanner replaces all target privileged
instructions with explicit calls to the entry gate; 2) the shadow
page table separates the security monitor address space from
the kernel address space. First, for binary scanning, we con-
figure the scanner to read and replace fixed-size instruc-
tions. The scanner looks for instructions which update certain
coprocessor registers such as TTBR0, TTBR1, translation
table base control register (TTBCR), and system control reg-
ister (SCTLR).

Next, for address space isolation, we configure read-only
page tables in the normal mode. Thus, the deprivileged kernel
can only update the page table through the security monitor.
When the security monitor receives a request from the depriv-
ileged kernel, the monitor verifies that the request is valid.
For example, the malicious kernel may try to run user code.
In this case, the security monitor would check the privileged
execute never (PXN) bit in the page table entry. This hardware
technique prevents the malicious kernel from executing code
in user memory. The security monitor always sets the PXN
bit when creating mappings for user memory.

2) MINIMUM HARDWARE SUPPORT
In the prototype, SofTEE uses a hardware TPM that
supports 2.0 specification. This hardware module includes a
permanently embedded encryption key called an endorsement
key. Besides, this hardware module provides the hardware
random number generator. Note that the TPM 2.0 specifica-
tion is known to prevent side channel attacks such as timing
attacks [30].

The following is performed to include the TPM device in
SofTEE. First, we need to modify the software running in
the secure kernel-mode: 1) remove some mappings from the
normal mode page table to prevent the kernel from accessing
the TPM data area; 2) assign dynamically allocated vari-
ables in the TPM device driver to memory area protected by
the security monitor; 3) change interrupt-driven input/output
(I/O) to polling-based I/O; and 4) add memory mappings of
the device registers in the shadow page table.

Second, we need to port some TPM software stack (TSS)
source code [43] to the secure user mode. With the help of
the TSS, SofTEE is able to send TPM commands to the TPM
device driver. The TSS in the secure user mode handles all
the requests from the TA. The operation sequence of the TSS
in SofTEE is as follows: 1) the TA service handler forwards
a TA request to the TSS; 2) The TSS handles the request
by sending TPM commands to the hardware TPM; 3) the
TPM returns a result to the TSS; 4) the TSS forwards the

VOLUME 8, 2020 121881



U. Lee, C. Park: SofTEE for User Applications

result to the handler; and 5) the handler sends the result to
the requesting TA.

In the prototype, the TSS handles only one TA request at
a time for simplicity, so the security monitor returns an error
(Device is busy) if another TA is waiting for the result of the
service. To accomplish this, the security monitor provides a
global flag to check that the TSS is free.

V. SECURITY ANALYSIS
A. SECURITY INVARIANTS
SofTEE meets seven security invariants as follows.
Invariants I - IV are for the relationship between the normal
mode and secure mode whereas Invariants V - VII are for the
relationship between software in the secure mode.

Invariant I. Memory management and ASID management
are handled only by the security monitor in the secure mode.
Invariant II. The address space of the normal mode and the
secure mode is separated.
Invariant III. The kernel cannot modify the security moni-
tor code and data.
Invariant IV. Mode switching between the normal mode
and the secure mode is done only via the dedicated entry
and exit gates.
Invariant V. The address space of each TA is separated.
Invariant VI. Each TA context information including
general-purpose registers is correctly saved and restored by
the security monitor.
Invariant VII. The TA cannot access the security monitor
code and data.

B. SUPPORTING INVARIANTS
Supporting invariant I. The privileged operations such as
memory management and ASID management are removed
from the kernel by the binary scanner and shadow page
table. Thus, the privileged operations are only handled by
the security monitor.
Supporting invariant II. The security monitor supports an
independent address space in the secure mode, isolated from
the normal mode. To build the independent address space,
SofTEE provides shadow page table and reserved ASIDs
in the secure mode. Thus, the address space of the normal
mode and the secure mode is separated.
Supporting invariant III. The address space of both modes
is separated by Invariant II. Besides, the kernel cannot access
the security monitor code and data, because the security
monitor checks the address and access permissions each
time the page tables in the normal mode are updated. There-
fore, the integrity of the security monitor code and data is
protected.
Supporting invariant IV. The monitor code and data
are protected by address space separation (Invariant II).
In addition, the kernel is deprivileged, so the kernel should
call the entry gate to execute privileged operations. Like-
wise, the monitor returns to the kernel using the exit gate.
As described in Section IV-A, our framework detects and

blocks malicious behaviors such as jumping in the middle
of the entry or exit gate. Therefore, the mode switching is
done only via the dedicated entry and exit gates.
Supporting invariant V. The security monitor handles the
secure pages and reserved ASIDs to manage each TA con-
text. To maintain isolation between the TAs, the security
monitor follows some rules: 1) the securitymonitor allocates
secure pages that have not been previously assigned to other
TA contexts; 2) the security monitor does not allow shared
pages between the TAs; 3) the security monitor directly
manages the ASID and assigns different hardware ASIDs
for each TA context; and 4) the ASID in the deleted TA
context is not immediately reused. Instead, the security
monitor initializes all ASIDs in the secure mode at once
when no ASID is available in the secure mode. Thus, the
address space of each TA is separated.
Supporting invariant VI. The shadow vector table directly
traps interrupts or exceptions generated during the execution
of a TA. If a trap is from a valid cause, the shadow vec-
tor table saves the general-purpose registers in the current
TA context (except for the ‘Exit’ operation). Similarly, the
shadow vector table restores all general-purpose registers
from the current TA context before running the TA. There-
fore, each TA context is correctly saved and restored by the
security monitor.
Supporting invariant VII. The security monitor creates
page table mappings of each TA, and the security monitor
does not allow the TA to access the monitor’s code and data.

C. CONFIDENTIALITY AND INTEGRITY
According to our threat model, attackers can compromise
the kernel and install malicious TAs in the secure mode.
Therefore, we should meet the confidentiality and integrity
conditions of the security monitor and TAs during their life-
time.
Malicious attackers may try to access memory or general-

purpose registers that contain security-sensitive information.

1) SECURITY MONITOR CONFIDENTIALITY
The confidentiality of the security monitor is proven as fol-
lows:

1) We need to show that the kernel cannot get any unper-
mitted information from the security monitor. First, the
kernel cannot execute privileged operations or access
secure pages that are protected by the security monitor
(Invariant II). Second, the only way for the malicious
kernel to execute privileged operations or access secure
pages is mode switching from normal to secure through
the entry and the exit gate (Invariant IV). When the
exit gate switches the mode from secure to normal, the
gate flushes the general-purpose registers of the security
monitor. Thus, the kernel cannot get any unpermitted
information of the security monitor.

2) When the malicious attacker is a TA, the malicious TA
cannot access the securitymonitor code and data directly

121882 VOLUME 8, 2020



U. Lee, C. Park: SofTEE for User Applications

by the Invariant VII. Moreover, malicious TA cannot
get the securitymonitor information via general-purpose
registers by the Invariant VI.

2) SECURITY MONITOR INTEGRITY
SofTEE protects the integrity of the securitymonitor: 1) when
the malicious attacker is a kernel, the kernel cannot modify
the security monitor code and data by the Invariant III; and
2) when the malicious attacker is a TA, the malicious TA
cannot modify the security monitor code and data by the
Invariant VII.

3) TA confidentiality
The Confidentiality of the TA is proved as follows:

1) When the malicious attacker is a kernel, it cannot access
secure pages directly by the Invariant II. In addition, the
kernel cannot get TA context information via general-
purpose registers by the Invariant IV. Therefore, the
malicious kernel cannot get any unpermitted informa-
tion from the TA.

2) When the malicious attacker is a TA, the malicious
TA cannot access secure pages of other TA contexts
by the Invariant V. Moreover, the malicious TA cannot
obtain other TA context information via general-purpose
registers by the Invariant VI.

4) TA INTEGRITY
SofTEE protects the integrity of the TA: 1) when the
malicious attacker is a kernel, the kernel cannot directly
modify secure pages by Invariant II; and 2) when the mali-
cious attacker is a TA, it is not possible for the malicious
TA to change secure pages assigned to other TA contexts
(Invariant V).

VI. PERFORMANCE EVALUATION
In SofTEE, an application consists of two parts, an APP
and a TA. The address space of the TA is isolated from the
malicious kernel. Thus, the TA can handle security-sensitive
data securely regardless of kernel hacking. This is possible
due to the software technique called kernel deprivileging.
However, kernel deprivileging incurs high overhead due to
the delegation of privileged operations to the security moni-
tor. To mitigate the performance overhead required by ker-
nel deprivileging, several numbers of ASIDs are reserved
for TA execution in SofTEE. Since the number of TLB
flushes increases as the number of available ASIDs decreases,
we need to determine how many ASIDs are reserved for TA
execution. For this purpose, we have conducted experiments
using the fork+exit benchmark of the LMBench suite [45],
and the repetition option (-N) was modified to 2,500 for the
stress test. The default repetition in the LMBench version
3.0-a9 is 11. The experiment was repeated 100 times and
the average was calculated to get accurate results. Besides,
we conducted the same experiment on SofTEE and Linux
to get relative performance. We tested the benchmark by

TABLE 2. Fork+Exit (With 2,500 Repetitions) results. Note that ARMv7-A
supports 256 ASIDs.

FIGURE 6. LMBench results.

changing the number of ASIDs in the normal mode. The
security monitor reserves one ASID for itself, so when testing
the benchmark on SofTEE, at least one ASID should be
assigned to the secure mode.

Table 2 shows SofTEE’s APP latency according to the
number of ASIDs in the normal mode. As expected, the over-
head of APP increased as the number of ASIDs in the normal
mode decreases. However, when the number of ASIDs in
the normal mode was 239, 223, and 191, there was little
performance difference. Thus, 65 ASIDs are proper for the
secure mode, so we reserved and assigned 65 ASIDs to the
secure mode.

A. MICRO BENCHMARKS
In order to evaluate the overhead of SofTEE, we executed
LMBench benchmarks in the normal mode and measured
the execution time relative to the Linux kernel. In addition,
we also measured the execution time of SofTEE without
ASID management to show how effective the ASID man-
agement works. Fig. 6 shows the results obtained from the
average over 100 experiments.

The main overhead of SofTEE comes from memory isola-
tion by kernel deprivileging. We have measured that SofTEE

VOLUME 8, 2020 121883



U. Lee, C. Park: SofTEE for User Applications

consumes 388 CPU cycles for memory isolation.WhenASID
management is not applied, it increases to 1,784 CPU cycles.

In Fig. 6, SofTEE is up to 1.5 times slower than the Linux
kernel in most cases except pagefault, signal handler install,
and fork+exit. The worst case is the fork+exit benchmark.
SofTEE is 1.89 times slower than the Linux kernel. This is
because fork+exit benchmark requires much more frequent
mode switching operations caused by kernel deprivileging.
In the case of the null benchmark, significant performance
degradation is observed. This is because the execution time
of the null benchmark is very short.

It is also shown in Fig. 6 that ASID management is quite
effective to reduce the mode switching overhead by avoid-
ing TLB flush operations. Specifically, in cases of mmap,
pagefault, fork+exit, and fork+exec benchmarks, the per-
formances degrade approximately 2.2 to 3.2 times com-
pared to the Linux kernel when ASID management is turned
off in SofTEE. On the other hand, SofTEE is only about
1.3 to 1.89 times slower than the Linux kernel when ASID
management is turned on. This is because we can avoid
frequent TLB cache flushing by ASID management.

B. REAL WORKLOAD
For real world applications, we consider PassHash andNotary
applications described in Ironclad [31]. These applications
consist of client and server parts where the server part handles
security-sensitive data. For experiments, we reimplemented
the server parts of Passhash and Notary as standalone C
programs (281 LOC and 384 LOC, respectively).

The Passhash client and server work as follows: 1) when
the server receives a buffer from the client, the server parses
this buffer to gain the client’s password and salt; 2) the server
then combines random numbers with the client’s password
and salt to compute a hash value; and 3) finally, the server
sends this hash value to the client.

The Notary client and server work as follows: 1) server
application creates an RSA key pair and initializes a mono-
tonic counter; 2) when the server receives a buffer from
the client, the server parses this buffer to gain the client’s
document; 3) the server increments the counter; 4) the server
hashes this document with the current counter value and signs
it using the server RSA key; and 5) the server returns the
result to the client. RSA key creation and signing can be
implemented in software using the provided APIs in Table
1. However, for simplicity, we tested the Notary application
by adding some APIs (i.e., RSA key creation and hash & sign
operations).

In order to evaluate the overhead of SofTEE, we mea-
sured the execution time of Passhash and Notary applications
on Linux and SofTEE. Fig. 7 shows how the performance
changes when the number of security-sensitive applications,
that is, the number of TAs, increases. We measured the
application execution time both on Linux and SofTEE. For
a fair comparison, we installed TPM in Linux so that all
cryptographic operations are supported by hardware TPM.

FIGURE 7. PassHash and Notary results in Linux and SofTEE.

It is shown in Fig. 7 that SofTEE incurs about 1-3%
overhead in case of Notary whereas it incurs 6-23% overhead
in case of Passhash. Because the execution time of Notary
is much longer than the execution time of Passhash, the
overhead of Notary is much lower.

Note that the overhead of SofTEE comes mainly from
cache flush and invalidation caused by mode switching
between application and TA. This overhead cannot be
avoided simply by ASID management because SofTEE
should guarantee the confidentiality and integrity of TAs.

The overhead shown in Fig. 7 also includes the overhead
of the TA service handler which initializes TPM software
stack (TSS) and handles system calls issued by TAs. Because
TSS should coordinate the concurrent accesses to TPM from
multiple TAs, the execution time of a TA increases as the
number of TAs increases. That is why the overhead is reduced
when multiple TAs are executed simultaneously.

In order to compare SofTEE with hardware-based TEE,
we referenced the paper, called Komodo [17]. Komodo is
considered as a hardware-based TEE because it is based on
ARM TrustZone. Based on the performance of the Notary
application given in Komodo [17], we are able to compare
SofTEE and Komodo indirectly. In the case of Notary, the
overhead of SofTEE is about 3% whereas the overhead of
Komodo is almost 0% overhead. We think SofTEE incurs
higher overhead than Komodo due to the limited performance
of hardware TPM. There is much room to improve the perfor-
mance in this aspect.

VII. DISCUSSION
From a security perspective, protecting the trusted application
is more complex than building a trusted kernel execution
environment for the following reasons: 1) it should protect
the confidentiality of the security monitor against the com-
promised kernel because the securitymonitor includes trusted
application context; 2) it should ensure the confidentiality and
integrity of the security monitor against trusted applications

121884 VOLUME 8, 2020



U. Lee, C. Park: SofTEE for User Applications

(TAs) launched by the malicious attacker. This is because
malicious usersmay try to launch trusted applications in order
to attack the security monitor; 3) it should guarantee the
confidentiality and integrity of trusted applications against
the compromised kernel; and 4) it should guarantee nonin-
terference between TAs.

A. TCB SIZE
In SofTEE, TCB includes the binary scanner tool and the
security monitor. Ultimately, all security monitor codes,
including TPM software stack (TSS) and TPM device driver,
should be trusted in the prototype. However, in this paper,
the security analysis of the TPM is out of scope because it is
too complex and enormous to deal with in this study. Instead,
we measured the TCB size of the binary scanner and the core
of the security monitor.

Our binary scanner and core of the security monitor have
only 187 LOC and 3.7K LOC, respectively. Therefore, the
TCB size of the main SofTEE is approximately 3.9K. This
TCB size is reasonable compared to the TCB of previous
studies [9], [18].

B. FORMAL VERIFICATION
In a trusted execution environment (TEE) for user applica-
tions, security properties such as confidentiality and integrity
of trusted application (TA) are essential. First, we have
defined seven invariants that SofTEE should meet. Second,
we have designed each component of SofTEE to satisfy the
seven invariants. Our future works include how to verify each
component of SofTEE meets such security invariants more
formally by formal verification to improve the assurance of
SofTEE correctness.

Based on TCB analysis, the security monitor in SofTEE is
small enough for formal verification.

C. SECURITY PROBLEMS
The attack surface of SofTEE is larger than the hardware-
based TEEs. In particular, SofTEE may be more vulnerable
to physical attacks, such as bus monitoring [38] and DMA
attacks [39], [40]. However, we can apply some previous
research to mitigate physical attacks. To address a bus mon-
itoring attack, we can apply an idea discussed in previous
research [44] to prevent this attack. The research attempted to
use iRAM within the SoC to store cryptographic keys. Also,
they encrypted privacy-sensitive data before the data were
transferred.

DMA attacks can bypass kernel deprivileging. Therefore,
we have to prevent the kernel from using DMA to access
the security monitor memory. The solution for DMA attacks
is straightforward in this model: 1) the monitor sets the
system memory management unit (SMMU) [52] or IOMMU
registers as read-only to the kernel using shadow page table
(discussed in Section IV); 2) the security monitor sets I/O
page table as read-only; and 3) the security monitor uses a
shadow I/O page table to handle the read-only I/O page table.

In SofTEE, all CPUs can switch between the normal
mode and the secure mode. In addition, the mode switching
overhead is low due to the ASID management. Therefore,
SofTEE uses CPU resources efficiently. However, CPU shar-
ing between two modes can be exposed to attacks such as
side channel attacks due to data cache sharing. To deal with
cache side channel attacks, in a single-core machine, it is
enough to simply clean and invalidate all data cache entries
before returning to the normal mode. However, in a multicore
environment, cleaning and invalidating cache entries is not
enough because some cache side channel attacks [59], [60]
are based on cross-core attacks via last level cache (LLC).
The fundamental solution for preventing these attacks is to
partition the LLC entries among cores. For example, some
previous studies [41], [51] used hardware techniques for
cache partitioning. On the other hand, SecTEE [56] proposed
software techniques to partition the LLC entries. In SecTEE,
the authors applied the page coloring technique [61], [62] to
partition cache entries into some number of cache partitions,
and used ARM cache locking mechanisms [57] to give exclu-
sive control of a cache partition to an enclave.

It is worth noting that SofTEE does not expand the attack
surface of hardware-based TEEs. For example, in an environ-
ment where ARM TrustZone and SofTEE coexist, SofTEE
does not expand the attack surface of the vendor software
running on ARM TrustZone.

D. PERFORMANCE
SofTEE proposed the ASID management technique as an
optimization to reduce the overall overhead. Nevertheless,
the overhead of running trusted applications (TAs) is still
high in real applications (especially when executing TAs with
short computation time), limiting the practical applicability
of SofTEE. We consider further optimizations for SofTEE to
improve its practical applicability as future works.

For simple prototyping of cryptographic operations and
attestation, SofTEE is using hardware TPM. In order to
eliminate the hardware dependency on TPM, SofTEE may
take advantage of software TPM such as fTPM [15], where
most of the cryptographic functions are provided by the
software. Due to the limited performance of hardware TPM,
software-based cryptographic operations can further improve
the performance of SofTEE. We consider software-based
cryptographic operations in SofTEE to improve its practical
applicability as future works.

E. COMPARISON WITH HARDWARE-BASED TEEs
There are many hardware-based TEE solutions [6], [9], [17],
[50], [51], [56], [70], [72]–[75] available on ARM, Intel, and
RISC-V processors. In particular, we compare SofTEE with
ARM TrustZone which is widely used on mobile devices.
SofTEE and ARM TrustZone require installing privileged
monitor software in the isolated execution environment to
manage trusted applications. The functionalities of the priv-
ileged monitor software are similar in both SofTEE and
ARM TrustZone. However, SofTEE and ARM TrustZone

VOLUME 8, 2020 121885



U. Lee, C. Park: SofTEE for User Applications

are different in the following ways: 1) SofTEE supports the
isolated execution environment through a software method
called kernel deprivileging, whereas ARM TrustZone sup-
ports the isolated execution environment by an additional
CPU state called secure world; and 2) SofTEE invokes the
security monitor by function calls to the entry gate, whereas
ARM TrustZone applies a hardware instruction called secure
monitor call (SMC) to invoke the privileged monitor in the
secure world.

Generally speaking, SofTEE has several advantages over
hardware-based TEEs. First, SofTEE is more suitable to be
applied in various machine environments because SofTEE
does not have any dependency on special hardware features
and higher privileges. Thus, applying SofTEE to various
environments requires little effort. Second, it is important to
fix any design flaws or deal with newly found vulnerabili-
ties in TEE specifications as soon as possible. In SofTEE,
faster (and cheaper) updates are possible. Third, it does not
expand the attack surface of hardware-based TEE. Thus,
SofTEE can be used together with hardware-based TEE on
the same platform. For example, due to security reasons,
most mobile device manufacturers strictly control the instal-
lation of security-sensitive applications on ARM TrustZone.
In this environment, SofTEE can be used to provide TEE for
security-sensitive applications, without affecting the security
of ARM TrustZone.

F. COST OF MANUAL EFFORTS
We manually added an explicit call to the entry gate before
some of the privileged operations, such as page table updates.
Thus, we needed to modify the Linux source code. To proto-
type SofTEE in the Linux kernel, we totally modified 45 files
and added 10 files. 8 out of 45 files were modified to support
hardware TPM in the secure mode. We modified 708 LOC
and added 4.8K LOC. 314 out of 708 LOC in Linux source
code was modified to support hardware TPM in SofTEE.

G. HARDWARE DEPENDENCY
SofTEE needs basic hardware supports such as root-of-trust
(RoT) and random entropy. In addition, we assumed that
SMEP (x86) or PXN (ARM) is enabled to prevent the kernel
from injecting or reusing user code. SofTEE on SMEP or
PXN may reduce the degree of hardware independence of
SofTEE. However, because of the following reasons, we think
the assumption of SMEP (x86) or PXN (ARM) does not
violate our claim of SofTEE as software-based TEE. First,
SMEP is considered general because AMD CPUs, as well as
Intel CPUs, support SMEP. Thus, SMEP or PXN is a common
technique regardless of architecture type. Second, SMEP and
PXN are to be widely adopted inmost x86 or ARMplatforms.

VIII. CONCLUSION
This paper presents a software-based TEE solution, SofTEE,
which protects the security-sensitive part of an application
from attackers, such as the compromised kernel. Using the
kernel deprivileging, SofTEE delegates privileged operations

such as memory-management-related operations from the
kernel to a softwaremodule called a securitymonitor. For per-
formance enhancement, SofTEE manages the address space
identifier (ASID) so that the security monitor does not have to
flush the TLB entries each time when switching the address
spaces between the normal kernel and the security monitor.

We analyzed seven security invariants of SofTEE. Four
invariants define the relationship between normal kernel-
managed address space (called normal mode) and security
monitor-managed address space (called secure mode), and
the other three invariants define the relationship between soft-
ware in the security monitor-managed address space (a.k.a.
the secure mode).

In conclusion, SofTEE protects trusted applications from
malicious attackers, such as the compromised kernel or
security-sensitive user applications launched by malicious
users. Unlike previous TEE solutions for user applications,
SofTEE does not rely on special hardware technologies, such
as Intel SGX and ARM TrustZone. Thus, it is applicable
to any machine environment. Note that SofTEE needs basic
hardware supports such as root-of-trust (RoT) and random
entropy. This assumption is considered reasonable because
these hardware requirements are fundamental for trusted
computing.

REFERENCES
[1] Samsung Developers. Device-side Security: Samsung Pay, TrustZone,

and the TEE. Accessed: Jul. 3, 2020. [Online]. Available:
https://www.securetechalliance.org/wp-content/uploads/TEE-101-White-
Paper-V1.1-FINAL-June-2018.pdf

[2] Secure Technology Alliance. Trusted Execution Environment
(TEE) 101: A Primer. Accessed: Jul. 3, 2020. [Online]. Available:
https://www.securetechalliance.org/wp-content/uploads/TEE-101-White-
Paper-V1.1-FINAL-June-2018.pdf

[3] WiDEVINE DRM Architecture Overview. Accessed: Jul. 3, 2020. [Online].
Available: https://www.encoding.com/widevine/

[4] HYPR. Accessed: Jul. 3, 2020. [Online]. Available: https://www.hypr.com/
[5] ARM Ltd. (2009). Security Technology Building a Secure System Using

TrustZone Technology (White Paper). [Online]. Available: http://
infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-
009492c/PRD29-GENC 009492C_trustzone_security_whitepaper.pdf

[6] (Oct. 2014). Software Guard Extensions Programming Reference. Intel
Corp., Ref. #329298-002. [Online]. Available: https://software.intel.com/
sites/default/files/managed/48/88/329298-002.pdf

[7] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh, and
R. Riley, ‘‘Iso-X: A flexible architecture for hardware-managed isolated
execution,’’ in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitecture,
Dec. 2014, pp. 190–202.

[8] Raspberry Pi 3 Board Reference. Accessed: Jul. 3, 2020. [Online]. Avail-
able: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[9] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger,
‘‘TrustShadow: Secure execution of unmodified applications with ARM
TrustZone,’’ in Proc. 15th Annu. Int. Conf. Mobile Syst., Appl., Services,
Jun. 2017, pp. 488–501.

[10] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel, ‘‘Inktag:
Secure applications on an untrusted operating system,’’ in Proc. 18th Int.
Conf. Architectural Support Program. Lang. Operating Syst. (ASPLOS),
Houston, TX, USA, 2013, pp. 265–278.

[11] J. Yang and K. G. Shin, ‘‘Using hypervisor to provide data secrecy for user
applications on a per-page basis,’’ in Proc. 4th ACM SIGPLAN/SIGOPS
Int. Conf. Virtual Execution Environ. VEE, 2008, pp. 71–80.

[12] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger,
D. Boneh, J. Dwoskin, and D. R. K. Port, ‘‘Overshadow: A virtualization-
based approach to retrofitting protection in commodity operating systems,’’
in Proc. 13th Int. Conf. Architectural Support Program. Lang. Operating
Syst. (ASPLOS), Seattle, WA, USA, 2008, pp. 2–13.

121886 VOLUME 8, 2020



U. Lee, C. Park: SofTEE for User Applications

[13] H. Chen, F. Zhang, C. Chen, Z. Yang, R. Chen, B. Zang, P. Yew, and
W. Mao, ‘‘Tamper-resistant execution in an untrusted operating system
using a virtual machine monitor,’’ Parallel Process. Inst., New Delhi, India,
Tech. Rep. FDUPPITR-2007-0801, 2007.

[14] Y. Cho, J. Shin, D. Kwon, M. Ham, Y. Kim, and Y. Paek, ‘‘Hardware-
assisted on-demand hypervisor activation for efficient security critical code
execution on mobile devices,’’ in Proc. USENIX Annu. Tech. Conf. (ATC),
Denver, CO, USA, 2016, pp. 565–578.

[15] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fenner,
K. Kinshumann, J. Loeser, D. Mattoon, M. Nystrom, D. Robinson,
R. Spiger, S. Thom, and D. Wooten, ‘‘fTPM: A software-only implemen-
tation of a TPM chip,’’ in Proc. 25th USENIX Conf. Secur. Symp. (USENIX
Secur.), Austin, TX, USA, 2016, pp. 841–856.

[16] N. Dautenhahn, T. Kasampalis,W.Dietz, J. Criswell, andV.Adve, ‘‘Nested
kernel: An operating system architecture for intra-kernel privilege
separation,’’ in Proc. 20th Int. Conf. Architectural Support
Program. Lang. Operating Syst. (ASPLOS), Istanbul, Turkey, 2015,
pp. 191–206.

[17] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, ‘‘Komodo: Using
verification to disentangle secure-enclave hardware from software,’’ in
Proc. 26th Symp. Operating Syst. Princ., Oct. 2017, pp. 287–305.

[18] J. Criswell, N. Dautenhahn, and V. Adve, ‘‘Virtual ghost: Protecting
applications from hostile operating systems,’’ in Proc. 19th Int. Conf.
Architectural support Program. Lang. Operating Syst. ASPLOS, 2014,
pp. 81–96.

[19] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers, ‘‘Extensibility safety and perfor-
mance in the SPIN operating system,’’ in Proc. 15th ACM Symp. Operating
Syst. Princ. SOSP, 1995, pp. 267–283.

[20] J. Liedtke, ‘‘On micro-kernel construction,’’ in Proc. 15th ACM Symp.
Operating Syst. Princ. SOSP, 1995, pp. 237–250.

[21] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and
M. Young, ‘‘Mach: A new kernel foundation for UNIX development,’’ in
Proc. USENIX Conf., 1986, pp. 1–20.

[22] Z. Wang, C. Wu, J. Li, Y. Lai, X. Zhang, W.-C. Hsu, and Y. Cheng,
‘‘ReRanz: A light-weight virtual machine to mitigate memory disclosure
attacks,’’ in Proc. 13th ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execu-
tion Environ. VEE, 2017, pp. 143–156.

[23] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi,
‘‘Timely rerandomization for mitigating memory disclosures,’’ in Proc.
22nd ACM SIGSAC Conf. Comput. Commun. Secur. CCS, 2015,
pp. 268–279.

[24] Y. Chen, Z. Wang, D. Whalley, and L. Lu, ‘‘Remix: On-demand live
randomization,’’ in Proc. 6th ACM Conf. Data Appl. Secur. Privacy
CODASPY, 2016, pp. 50–61.

[25] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, ‘‘Enhanced operating
system security through efficient and fine-grained address space random-
ization,’’ in Proc. 21st USENIX Conf. Secur. Symp. (USENIX Secur.),
Bellevue, WA, USA, 2012, p. 40.

[26] K. Lu, S. Nürnberger, M. Backes, and W. Lee, ‘‘How to make ASLR win
the clone wars: Runtime re-randomization,’’ in Proc. Netw. Distrib. Syst.
Secur. Symp., 2016, pp. 2–16.

[27] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake, X. Yuan,
P. Colp, M. Zheng, V. P. Kemerlis, J. Yang, and W. Aiello, ‘‘Shuffler:
Fast and deployable continuous code re-randomization,’’ in 12th USENIX
Symp. Operating Syst. Design Implement. (OSDI), Savannah, GA, USA,
2016, pp. 367–382.

[28] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee, ‘‘Enforcing kernel
security invariants with data flow integrity,’’ in Proc. Netw. Distrib. Syst.
Secur. Symp., 2016, pp. 1–15.

[29] Y. Cho, D. Kwon, and Y. Paek, ‘‘Instruction-level data isolation for the
kernel on ARM,’’ in Proc. 54th Annu. Design Autom. Conf., Jun. 2017,
pp. 1–6.

[30] S. Banescu, ‘‘Cache timing attacks,’’ Tech. Rep., 2011. [Online]. Available:
https://www.researchgate.net/profile/Sebastian_Banescu/publication/
235339284_Cache_Timing_Attacks/links/0912f5110df847f5a6000000/
Cache-Timing-Attacks.pdf

[31] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill, ‘‘Ironclad apps: End-to-end security via automated fullsystem
verification,’’ in 11th USENIX Symp. Operating Syst. Design Implement.
(OSDI), Broomfield, CO, USA, vol. 2014, pp. 165–181.

[32] L. Deng, P. Liu, J. Xu, P. Chen, and Q. Zeng, ‘‘Dancing with wolves:
Towards practical event-driven VMM monitoring,’’ in Proc. 13th ACM
SIGPLAN/SIGOPS Int. Conf. Virtual Execution Environ. (VEE), Xi’an,
China, 2017, pp. 83–96.

[33] Z. Wang, J. Li, C. Wu, D. Yang, Z. Wang, W.-C. Hsu, B. Li, and Y. Guan,
‘‘HSPT: Practical implementation and efficient management of embedded
shadow page tables for cross-ISA system virtual machines,’’ in Proc. 11th
ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execution Environ. VEE, 2015,
pp. 53–64.

[34] A. Azab, K. Swidowski, R. Bhutkar, J. Ma, W. Shen, R. Wang, and
P. Ning, ‘‘SKEE: A lightweight secure kernel-level execution environment
for ARM,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2016, pp. 21–24.

[35] D. Ray and J. Ligatti, ‘‘Defining code-injection attacks,’’ in Proc. 39th
Annu. ACMSIGPLAN-SIGACT Symp. Princ. Program. Lang. POPL, 2012,
pp. 179–190.

[36] S. Zhao and X. Ding, ‘‘On the effectiveness of virtualization basedmemory
isolation on multicore platforms,’’ in Proc. IEEE Eur. Symp. Secur. Privacy
(EuroS&P), Apr. 2017, pp. 546–560.

[37] MITRE. (Jul. 2017). CVE-2017-5691. [Online]. Available: https://nvd.
nist.gov/vuln/ detail/CVE-2017-5691

[38] G. Gogniat, T. Wolf, W. Burleson, J.-P. Diguet, L. Bossuet, and R. Vaslin,
‘‘Reconfigurable hardware for high-security/high-performance embedded
systems: The safes perspective,’’ Very Large Scale Integr. (VLSI) Syst.,
vol. 16, no. 2, pp. 144–154, Feb. 2008.

[39] D. Aumaitre and C. Devine, ‘‘Subverting windows 7 ×64 kernel with
DMA attacks,’’ in Proc. Hack Box Secur. Conf. (HITB), 2010, pp. 1–44.
[Online]. Available: http://esec-lab.sogeti.com/static/publications/10-
hitbamsterdam-dmaattacks.pdf

[40] P. Stewin and I. Bystrov, ‘‘Understanding DMA Malware,’’ in Proc. Conf.
Detection Intrusions Malware Vulnerability Assessment (DIMVA), Herak-
lion, Crete, Greece, 2012, pp. 21–41.

[41] X. Dong, Z. Shen, J. Criswell, L. Alan Cox, and S. Dwarkadas,
‘‘Shielding software from privileged side-channel attacks,’’ in Proc. 27th
USENIX Secur. Symp. (USENIX Secur.), Baltimore, MD, USA, 2018,
pp. 1441–1458.

[42] ARM Architecture Reference Manual. ARMv7-A and ARMv7-R Edition.
Accessed: Jul. 3, 2020. [Online]. Available: https://static.docs.arm.
com/ddi0406/c/DDI0406C_C_arm_architecture_reference_manual.pdf

[43] Linux TPM2 & TSS Software. Accessed: Jul. 3, 2020. [Online].
Available: https://github.com/tpm2-software

[44] P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. de Lara, H. Raj, S. Saroiu, and
A. Wolman, ‘‘Protecting data on smartphones and tablets from memory
attacks,’’ in Proc. 20th Int. Conf. Architectural Support Program. Lang.
Operating Syst. ASPLOS, 2015, pp. 177–189.

[45] L. McVoy and C. Staelin, ‘‘Lmbench: Portable tools for performance anal-
ysis,’’ in Proc. Annu. Conf. USENIX Annu. Tech. Conf. (ATC), San Diego,
CA, USA, 1996, p. 23.

[46] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, ‘‘vTZ: Virtualizing
ARM TrustZone,’’ in Proc. 26th USENIX Conf. Secur. Symp. (USENIX
Secur.), Vancouver, BC, Canada, 2017, pp. 541–556.

[47] B. Lapid and A. Wool, ‘‘Cache-attacks on the ARM TrustZone
implementations of AES-256 and AES-256-GCM via GPU-based
analysis,’’ in Selected Areas in Cryptography—SAC, Calgary, AB,
Canada. Cham, Switzerland: Springer, 2018. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-030-10970-7_11#citeas

[48] S. McCanne and V. Jacobson, ‘‘The BSD packet filter: A new architecture
for user-level packet capture,’’ in Proc. USENIX Winter Conf., San Diego,
CA, USA, 1993, p. 2.

[49] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and
T. Walter, ‘‘Breaking the memory secrecy assumption,’’ in Proc. 2nd Eur.
Workshop Syst. Secur. EUROSEC, 2009, pp. 1–8.

[50] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang, ‘‘TrustICE: Hardware-
assisted isolated computing environments on mobile devices,’’ in Proc.
45th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw., Jun. 2015,
pp. 367–378.

[51] V. Costan, I. Lebedev, and S. Devadas, ‘‘Sanctum: Minimal hardware
extensions for strong software isolation,’’ in Proc. 25th USENIX Conf.
Secur. Symp. (USENIX Secur.), Austin, TX, USA, 2016, pp. 857–874.

[52] ARM SystemMemoryManagement Unit. Architecture Specification, ARM
Ltd, Cambridge, U.K., 2012.

[53] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, ‘‘SANC-
TUARY: ARMing TrustZone with user-space enclaves,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., 2019, pp. 1–15.

[54] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher,
and D. Gruss, ‘‘ZombieLoad: Cross-Privilege-Boundary data sampling,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019,
pp. 753–768.

VOLUME 8, 2020 121887



U. Lee, C. Park: SofTEE for User Applications

[55] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom, ‘‘Fallout: Leaking data on meltdown-resistant CPUs,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019, pp. 769–784.

[56] S. Zhao, Q. Zhang, Q. Yu, W. Feng, and D. Feng, ‘‘SecTEE: A software-
based approach to secure enclave architecture using TEE,’’ in Proc. 26th
ACM SIGSACConf. Comput. Commun. Secur. (CCS), London, U.K., 2019,
pp. 1723–1740.

[57] N. Zhang, H. Sun, K. Sun, W. Lou, and Y. T. Hou, ‘‘CacheKit: Evading
memory introspection using cache incoherence,’’ in Proc. IEEE Eur. Symp.
Secur. Privacy (EuroS&P), Mar. 2016, pp. 337–352.

[58] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, ‘‘Preventing page
faults from telling your secrets,’’ in Proc. 11th ACM Asia Conf. Comput.
Commun. Secur. SIA CCS, 2016, pp. 317–328.

[59] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, ‘‘ARMaged-
don: Cache attacks onmobile devices,’’ inProc. 25th USENIX Secur. Symp.
(USENIX Secur.), Austin, TX, USA, 2016, pp. 549–564.

[60] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, ‘‘Last-level cache
side-channel attacks are practical,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2015, pp. 605–622.

[61] T. Kim,M. Peinado, and G.Mainar-Ruiz, ‘‘STEALTHMEM: System-level
protection against cache-based side channel attacks in the cloud,’’ in Proc.
21st USENIX Secur. Symp. (USENIX Secur.), Bellevue, WA, USA, 2012,
pp. 189–204.

[62] H. Raj, R. Nathuji, A. Singh, and P. England, ‘‘Resource management
for isolation enhanced cloud services,’’ in Proc. ACM Workshop Cloud
Comput. Secur. CCSW, 2009, pp. 77–84.

[63] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, ‘‘kGuard:
Lightweight kernel protection against returnto-user attacks,’’ in Proc.
21st USENIX Secur. Symp. (USENIX Secur.), Bellevue, WA, USA, 2012,
pp. 459–474.

[64] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, ‘‘ret2dir: Rethink-
ing kernel isolation,’’ inProc. 23rdUSENIX Secur. Symp. (USENIX Secur.),
San Diego, CA, USA, 2014, pp. 957–972.

[65] V. George, T. Piazza, and H. Jiang. (Sep. 2011). Technology Insight:
IntelNext Generation Microarchitecture Codename Ivy Bridge.
[Online]. Available: http://www.intel.com/idf/library/pdf/sf_2011/SF11_
SPCS005_101F.pdf

[66] Intel 64 and IA-32 Architectures Software Developer’s Manual. Instruction
Set Extensions Programming Reference, Intel Corporation, Santa Clara,
CA, USA, Jan. 2013.

[67] ARM Architecture Reference Manual. ARM v7-A and ARMv7-R Edition,
Advanced RISC Machine (ARM), Jul. 2012.

[68] ARM Architecture Reference Manual Supplement. ARM v8.1, for ARM
v8-A Architecture Profile, Jun. 2016.

[69] Y. Cho, D. Kwon, H. Yi, and Y. Paek, ‘‘Dynamic virtual address range
adjustment for intra-level privilege separation on ARM,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., 2017, pp. 1–15.

[70] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, ‘‘Keystone:
An open framework for architecting trusted execution environments,’’ in
Proc. 15th Eur. Conf. Comput. Syst., Apr. 2020, pp. 1–16.

[71] R. Hund, T. Holz, and F. C. Freiling, ‘‘Return-oriented rootkits: Bypassing
kernel code integrity protection mechanisms,’’ in Proc. 18th USENIX
Secur. Symp. (USENIX Secur.), Montreal, QC, Canada, 2009, pp. 383–398.

[72] C. Tsai, D. E. Porter, and M. Vij, ‘‘Graphene-SGX: A practical library OS
for unmodified applications on SGX,’’ in Proc. USENIX Annu. Tech. Conf.
(ATC), Santa Clara, CA, USA, 2017, pp. 645–658.

[73] A. Baumann, M. Peinado, and G. Hunt, ‘‘Shielding applications from an
untrusted cloud with haven,’’ in Proc. 11th USENIX Symp. Operating Syst.
Design Implement. (OSDI), Broomfield, CO, USA, 2014, pp. 267–283.

[74] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Eyers,
R. Kapitza, P. Pietzuch, and C. Fetzer, ‘‘SCONE: Secure Linux Containers
with Intel SGX,’’ in Proc. 12th USENIX Symp. Operating Syst. Design
Implement. (OSDI), Savannah, GA, USA, 2016, pp. 689–703.

[75] S. Weiser, M. Werner, F. Brasser, M. Malenko, S. Mangard, and
A.-R. Sadeghi, ‘‘TIMBER-V: Tag-isolated memory bringing fine-grained
enclaves to RISC-V,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2019,
pp. 1–15.

UNSUNG LEE received the B.S. degree in com-
puter science engineering from the Pohang Uni-
versity of Science and Technology, Pohang, South
Korea, in 2012, where he is currently pursuing the
Ph.D. degree. His research interests include system
security and embedded systems.

CHANIK PARK received the B.S. degree in elec-
tronics engineering from Seoul National Univer-
sity, Seoul, South Korea, in 1983, and the M.S.
and Ph.D. degrees in electronics and electrical
engineering (computer engineering) from KAIST,
Daejeon, South Korea, in 1985 and 1988, respec-
tively.

He was a Visiting Scholar with the Parallel Sys-
tems Group, IBM T. J. Watson Research Center,
and a Visiting Professor with the Storage Systems

Group, IBM Almaden Research Center. He also visited Northwestern and
Yale University, in 2009 and 2015, respectively. Since 1989, he has been
working with the Department of Computer Science and Engineering, Pohang
University of Science and Technology (POSTECH), as a Professor. His
research interests include storage systems, operating systems, and system
security, with the recent addition of blockchain. He has served as a Program
CommitteeMember at a number of international conferences andworkshops.

121888 VOLUME 8, 2020


