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ABSTRACT This paper proposes a novel technique to identify black spots (prone-to-accident road locations)
using street view images. The proposed technique is derived based on the hypothesis that the characteristics
of the surroundings of the road have an effect on the safety level of a particular spot, and is the first black spot
classification technique that is fully environment-aware. Assessing four street view images around each spot,
a distance-aware pixel accumulation is developed to extract information about the objects surrounding the
road from a semantically segmented image. The accumulated vectors are then used to train fully-connected
neural networks to identify black spots. Performance evaluations are conducted with street view images in
Thailand, which represent a challenging scenario of analyzing road characteristics in developing countries,
with one of the highest road traffic fatality rates and limited historical accident records. Comparisons between
our proposed technique and previously proposed techniques are also provided. Experiments show that our
proposed technique succeeds in classifying black and safe spots in Thailand with an accuracy of 69.91%,
where 75.86% of the black spots are identified correctly. Also, the distance-aware pixel accumulation can
improve the accuracy of those machine learning techniques up to 6.4%. Our findings also evidently revealed
that the object surrounding the roads as well as their sizes and distances are determinants of road’s accident
proneness.

INDEX TERMS Black spot detection, machine learning, feature extraction, pixel accumulation, street view
images.

I. INTRODUCTION
A 2018 World Health Organization report has sent an alarm-
ing message that road traffic injuries have been the main
cause of death of children and young adults, and the SDG
3.6 target will not likely be met [1]. According to the
Third Global Status Report on Road Safety, Thailand has
the second-highest road traffic fatality rate in the world.
The Road Accident Victims Protection Company Limited
has recorded 829,201 people injured, disabled, or killed
in road accidents in 2018 or 2,271.78 victims each day.
The office of National Economic and Social Development
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Council (NESDC), under the Thai government, has initiated
Thai People Map and Analytics Platform (TPMAP) project.
The project’s aim is to develop a national data analytics
platform to analyze problems related to the quality of life of
Thai citizens including poverty,1 income, disabilities, as well
as road accidents. One of the pain points in developing the
platform is the lack of a mechanism to identify spots that are
prone to accidents and, subsequently, the fragmentation of
accident-related data. This paper presents an automated and
transferable approach to identify those accident-prone spots.

A black spot, in the field of road safety studies, is gener-
ically defined as a dangerous, prone-to-accident spot on the

1Fully accessible online at https://www.tpmap.in.th
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road. In practice, multiple more specific variations of a black
spot’s definition are adopted by different organizations. The
study in [2] reviews these definitions and studies their appli-
cability to streets in Thailand. In this paper, we follow the
precise definition accepted as a national standard by public
organizations in Thailand: a black spot is a spot at which at
least three serious accidents or five injury accidents have been
recorded within 100 meters in three years.

Most of the existing black spot classification approaches
rely on manually collected data or past traffic records as
parameters to correlate with accident-proneness and features
for the black spots prediction. In such data-driven approaches,
commonly used parameters include the number of lanes,
the traffic volume, road conditions, as well as the number
and types of intersections or curves [3]–[6]. In this paper,
we explore an alternative data source, a visual instead of
a numerical or categorical data. Although they come with
noises, visual data are much easier to obtain and richer with
information. Street view images, specifically, capture not
only the geometric characteristics of the streets, but also the
information on the surroundings from the perspective of a
moving car. We hypothesize that the surroundings of the
road, such as the number of the trees and the position of the
buildings, can influence the road’s safety level. To investigate
this hypothesis further, we select street view images as the
data for our prediction model. Surprisingly, while street view
images have been used for a variety of life quality-related
classification problems (see [7]–[13]), no work has been
done on using purely street view images to predict road safety,
to the best of our knowledge.

The final step of the proposed technique is to learn to
predict. In our initial attempts, we adopted a convolutional
neural network (CNN), for it is known as one of the best
performing standard learning techniques for recognizing pat-
terns in the images. However, it did not perform nearly as well
as expected (see IV-B for results). Hence, instead, we devel-
oped a feature extraction pipeline utilizing a CNN-based
semantic segmentation model, coupled with a pixel accu-
mulation algorithm that compresses and extracts information
about the objects surrounding the road from raw images. The
extracted features are then fed to a fully-connected neural
network to learn to identify black spots. Our model succeeds
in classifying black and safe spots in Thailand with an accu-
racy of 69.91%, correctly classifying over two-thirds of the
unseen spots based solely on street view images. Further-
more, 75.86% of the black spots in the data set are identified
correctly. Its performance, in turn, supports our hypothesis
that the surrounding environment correlates to the safeness
of a road.

The contributions of this paper can be summarized into
three main components as follows.

1) Data: We propose street view images as a novel data
source for the black spot prediction task. Street view
images are extremely rich with information, especially
for our task, as they contain both traditional informa-
tion (e.g. the number of the lanes and the condition of

the road) and additional backdrop information (e.g. the
density of trees and buildings, as well as the types and
quantity of vehicles), which are not captured in other
common data sources such as manually recorded road
conditions or even satellite images. Furthermore, only
four snaps of images are easy to access and retrieve,
making our technique relatively accessible to all types
of users.

2) Application: We have developed and tested a full-
pipeline, neural-network-based black spot classifica-
tion method that uses only street view images. Results
show that it outperforms several baseline techniques,
including CNN.

3) Algorithm:We also introduce a feature extraction tech-
nique called distance-aware pixel accumulation as a
component in the pipeline. The accumulation algo-
rithm compresses 2-dimensional, semantically seg-
mented images into a vector while preserving both
the relative magnitude and certain relevant structural
information.

This paper is organized as follows. Section II gives an
overview of existing works whose topic or methodology
partially overlaps with those of ours. Section III comprehen-
sively describes and justifies the data set and the mechanism
of our technique, covering three essential image processing
steps and the neural network structure. Section IV presents
the experimental results of our technique’s performance in
comparison to that of other candidate techniques, alongwith a
detailed description of how each technique was implemented
and tested. Section V discusses the results from Section IV in
terms of their implications and applications, and Section VI
summarizes our work and breaks down its contributions.

II. RELATED WORKS
Black Spots Analysis is a branch of road safety analysis that
has been widely studied in the past few decades. The studies
in [3] and [4] produced a comprehensive list of the traditional,
widely accepted methods used for black spots analysis. Var-
ious statistical models and different aspects of accident data,
namely the accident severity and accident involvement, were
used in the reviewed works. Sixteen risk factors were listed,
and different types of risk factors were said to have correla-
tions with different aspects of an accident. In the past decade,
there have beenmultiple works adopting a similar framework,
including the statistical analysis of the relationship between
geometric parameters such as road accesses and curve lengths
presented in [6]. Many works on accident risk prediction,
including [14]–[16], have also been done specifically on the
streets and highways in Thailand. The presentation in [17]
gives a comprehensive description of the state-of-art process
currently followed to handle road hazardous locations. The
number of accidents, the number of casualties, and the acci-
dent rate are used as a preliminary means to calculate the
risk. Other more labor-intensive methods, such as making
stick and collision diagrams and collecting additional data
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based on human observations, have been implemented as
well. While this procedure is detailed and highly accurate,
it requires enormous financial, labor, and time resources.

In recent years, new technological discoveries have
allowed the development of more advanced road safety anal-
ysis techniques. The study in [18] combined the Geographic
Information System (GIS) withmanual labeling of the street’s
attributes, such as road conditions and the number of lanes,
to find their correlations with accidents and to identify black
spots. Factors that had a positive correlation with high acci-
dent risks were: a lower road level, a smaller traffic volume,
and a smaller intersection spacing. Deep learning has also
been utilized to predict both short- and long-term accident
risk in more recent works [19], [20]. Unlike more traditional
methods of road safety analysis that focus on accident records
only, these recent works also showed that other parameters
including traffic flow, weather, and air quality help improve
the prediction.

While visual data, especially street view images, have
rarely ever been used directly for road safety or black spot
analysis, they have appeared in numerous works involving
other kinds of life-quality-related predictions. For instance,
[7] predicted accident risks based on a Google Street View
image of a house by first using human labor to classify
the condition of the house and the neighborhood based on
the image, and then finding the correlations between these
factors and the risk of that house’s residents getting into a car
accident. Another risk prediction paper [8] also used humans
to classify attributes in street view images before associating
them with pedestrian injuries statistically. Other works that
used machine learning techniques include [10]–[13], whose
goals were to predict demographic makeup, street walkabil-
ity, perceived safety (crime-wise) of the captured neighbor-
hood, and urban land for urban planning and management,
respectively. All four works used a large data set of street
view images to train neural networks of different complexity
to predict. The work in [9], which proposed an automated
system for identifying cracks on roads, also used street view
images as the input. Moreover, a segmentation to differen-
tiate the road from the background, a technique similar to
semantic segmentation used in our work, was applied onto
the images before they were fed to the support vector machine
for training. Even though these examples utilized both street
view imagery and machine learning tools, none of them were
directly concerned with predicting the safeness of a road.

In addition to street view images, the satellite image is
another possible source of visual data for the task, and it
was used in [21], the only existing work that used purely
visual data to predict road safety. It used deep learning to
associate a road safety map with satellite images obtained
from hundreds of thousands of accident reports in New York
City. Downloaded images were directly fed to a standard
convolutional neural network architecture without any major
data preparation process, and the result of the prediction was
a road map with three levels of safety. The trained model got
78% accuracy within the same city and 73% with a different

city. Unfortunately, due to the lack of complete and accessible
traffic accident records in Thailand, it is impossible to obtain
such complete map of past accidents or safety levels. Hence,
our task has to be framed slightly differently: to distinguish
critically dangerous spots (black spots) from acceptably safe
spots. In terms of the input data, satellite images are more
intuitive for detecting road structures than street view images.
However, our work explores the hypothesis that there are
details in the surroundings, such as how much the trees and
billboards cover the view of the drivers, that significantly
influence the safety level at a particular spot. Hence, street
view images, which capture exactly what the drivers see, are
a suitable – and unprecedented – option of input data for road
safety prediction.

III. MATERIALS AND METHODS
A. DATA SET
1) GEOGRAPHICAL COORDINATES
Prior to retrieving the images of streets, we need to have the
exact coordinates of safe and black spots in Thailand. All
coordinates used were retrieved from publicly accessible data
compiled and published online by Road Accident Victims
Protection Company Limited. The company was established
in 1998 under the Motor Vehicle Victims Act B.E. 2540 to
facilitate compensation to victims of road accidents in areas
not covered by insurance companies. With 59 insurance com-
panies contributing as shareholders, it has the most complete
records of accident reports available in Thailand.

For black spots, we retrieved 3,461 coordinates (in lati-
tude/longitude format) of officially declared black spots from
Black Spots System available online on the official website
of Road Accident Victims Protection Company Limited.2

For safe spots, 72,873 coordinates of places with reported
accidents between 2011-2019 were retrieved from the same
source; only locations where only 1 accident had occurred
within 100meters radius were considered safe spots to ensure
that the inaccuracy of pinning the accident’s location would
not interfere with the classification. The data points for both
safe and black spots are distributed over the entire country,
as illustrated in Figure 1.

Due to the inaccuracy of the location pinning of both
black and safe spots, a small fraction of coordinates does
not capture a spot on a road. Furthermore, at the time of our
investigation, Google Street View did not have a complete
coverage in Thailand, i.e. street view images could not be
retrieved for a small fraction of coordinates. After eliminating
coordinates under these two cases, we balanced the data set
with a simple, uniform under-sampling. Two thousand coor-
dinates per class (4,000 coordinates in total) were randomly
selected to represent black and safe spots. While a smaller
data size saves a considerable amount of both computational
resources and time, it is recommended that the complete data
set (balanced), if exists, is used to improve the accuracy.

2The company’s full website is accessible at http://www.thairsc.com/.
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FIGURE 1. The coordinates of road accidents in Thailand
from 2011 to 2019.

2) GOOGLE STREET VIEW IMAGES
For each of the 4,000 coordinates retrieved, four images
with heading angles of 0, 90, 180 and 270 degrees were
requested throughGoogle Street View Static API. The images
have dimensions 640 by 480 pixels and the horizontal field
of view of 90 degrees. (The dimension is adjustable since
one of the image pre-processing steps resize all images to
a pre-specified size.) Hence, the data set consists of 16,000
images from safe and black spots (8,000 of black spots and
8,000 of safe spots) distributed impartially over all regions of
Thailand.

B. IMAGE PRE-PROCESSING
In order to extract only relevant information, the images
need to be pre-processed as shown in Figure 2. For each
spot, the four 640 × 480-pixel images are converted into
28-component vectors, which are the inputs for training
the neural network model to predict the safety of the spot.
The pre-processing consists of three main steps: 1) seman-
tic segmentation, 2) distance-aware pixel accumulation, and
3) filtering.

1) SEMANTIC SEGMENTATION
As shown in Figure 2, the first step is semantic segmentation
(I). Individual pixels are categorized into classes of common
objects around the street. Figures 4 and 3 show a sample raw
Google Street View image and the corresponding semantic
segmentation of the image respectively. We used a standard
U-NET learner model [22] from the FastAI library and the
CamVid data set, a data set of labeled images of streets,
to train a semantic segmentation model with 92% accuracy.

We then used the model to segment each image into 32 mean-
ingful categories. The 32 classes, as employed in the label-
ing of the CamVid data set, are animal, archway, bicyclist,
bridge, building, car, cart/luggage/pram, child, column/pole,
fence, driving lane marks, non-driving lane marks, miscella-
neous text, motorcycle/scooter, other moving objects, parking
block, pedestrian, road, road shoulder, sidewalk, sign symbol,
sky, SUV/pickup truck, traffic cone, traffic light, train, tree,
truck/bus, tunnel, miscellaneous vegetation, void, and wall.

The model compresses any image down to the dimen-
sion of 480 by 360 pixels, and returns its segmentation
of the image as a 2-dimensional array with 480 columns
and 360 rows, each position storing the encoding of the object
type at that pixel (e.g. 1 represents an animal and 17 repre-
sents a road).

2) DISTANCE-AWARE PIXEL ACCUMULATION
The next step is the novel feature extraction algorithm:
distance-aware pixel accumulation (II), shown in Figure 2.
This step compresses the 480×360 array into a 32-component
vector by accumulating the number of pixels assigned to
each object class based on its pixel distance from the closest
road pixel. This technique is derived from the hypothesis that
objects closer to the road supposedly have higher influences
on the activities on the road, including accidents. Therefore,
in addition to the size of the object (represented in the number
of pixels), the distance from the road should also be an
influential factor. The fundamental concept of this accumu-
lation algorithm is that closer and larger objects are assigned
more weight. Note that the accumulation algorithm does not
attempt to capture the exact real-world magnitude, but rather
to capture the relative distance with respect to the road objects
in each image. The algorithm first generates a 480 × 360
mask of the reversed (negated) distance of every pixel from
its closest road pixel.

maski,j = distMAX − distance((i, j), (xi, yi)) (1)

where:

maski,j = the reversed distance from (i, j) to its nearest
road

distMAX = the maximum distance possible (480 in our
implementation)

(xi, yi) = position of the road pixel that is closest to (i, j)

It then iterates through the original array and the mask
simultaneously, and accumulates the value in the mask to its
object class’s component in the resultant vector. Therefore,
after the accumulation, each vector component, representing
an object class, contains the sum of that object’s reversed
distance from the closest road previously stored in the mask
matrix.

Vk =
∑
i,j

maski,j × 1arrayi,j=k (2)

where:

arrayi,j = value of the segmentation encoding at pixel (i, j)
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FIGURE 2. Flow chart of the full image pre-processing pipeline.

FIGURE 3. Sample raw Google Street View image from coordinate
(6.8651, 101.2414).

maski,j = the reversed distance from (i, j) to its nearest road

V = resultant 32-component vector

1f =

{
1, f evaluates to true
0, otherwise

Finally, the four vectors generated from images of different
angles of the same point are summed into a single vector.
Hence, the product of this step is a 32-component vector per
location that keeps a considerable amount of essential data in
the segmented images.

3) FILTERING
The final pre-processing step is filtering (III). There are four
object classes which, among the 16,000 images in our data
set, are not present at all. Therefore, they cannot assist the
learning model in differentiating the vectors into classes; and
they are henceforth removed from the input vector. With the
data set of Thailand roads, the four classes are bridge, child,
train, and tunnel. Note that this filtering step depends on
the data and should be adjusted if applied to different types
of landscape or different semantic segmentation models.

FIGURE 4. Color map corresponding to semantic segmentation of the
image in Figure 3. Each color is mapped to a segmentation class
(e.g. brown represents the ‘‘road’’ class).

All other components are preserved as they have the poten-
tial to be relevant. Static classes capture the features of the
environment, while the non-static classes, such as pedestrian
and car, represent the typical traffic situation of the road (e.g.
types of vehicles and level of congestion). Therefore, in our
case, by the end of the pre-processing, the data is in the form
of 28-component vectors and ready to be fed into the classifier
model for training and testing.

C. BLACK SPOTS CLASSIFICATION USING
FULLY-CONNECTED NEURAL NETWORK
Finally, we need a machine learning model to learn from
the prepared input vectors how to differentiate safe and
black spots. To select an appropriate model, several com-
monly known methods with various levels of complex-
ity – namely, linear regression, logistic regression, support
vector machine, and fully-connected neural network – are
tested. The fully-connected neural network outperforms other
standard machine learning methods, as will be shown in
Section IV-B.
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A fully-connected neural network model is a structure-
agnostic, general-purpose type of neural network that consists
of fully connected layers, each one representing a nonlinear
function with a specified number of parameters. For our
purpose, a simple, sequential model with 10 Dense layers
and 2 Dropout layers to prevent over-fitting, with a total of
36,593 parameters has proven to be sufficient. However, the
fact that simpler machine learning models (i.e. regressions
and support vector machine) perform worse than a neural
network model on the same data set shows that the model
needs a certain level of non-determinism to recognize the
complex relationships between each vector component. The
particular neural network architecture described earlier was
chosen due to its stably decent performance in experiments.
Other architectures with similar structure – fully-connected
layers and a few dropouts – also have similar performances.

TABLE 1. Summary of the data used in the experiments.

IV. RESULTS
A. EXPERIMENTAL SETUP
For all of the experiments, we split the 8,000 images from
each class into 75% training set and 25% testing set, as shown
in Table 1. Through the experiments, we noticed that this split
between training and testing data points is flexible, as long
as there are enough points for the neural network model to
learn and the number of points for safe and black spots are
equal. To ensure that the results are not biased by a specific
pair of training-testing data sets, we adopted the repeated
random test-train splits validation strategy with 10 training
and testing sessions. Three quarters of the datawere randomly
selected to train the model, and the rest were used to calculate
the accuracy. This process was used in every experiment,
including the baseline experiments. The experiments were
coded and run on Google Colaboratory in Python 3 using
its GPU as a hardware accelerator. The experiments were
divided into two parts in order to clearly illustrate the effect of
different parameters. More details of the experimental setup
of each part are described in the next section, along with the
performance evaluation results.

B. PERFORMANCE EVALUATION
1) BASELINE TECHNIQUES AND SEMANTIC SEGMENTATION
The first part comprises the performance tests of differ-
ent input formats with several standard machine learning
techniques. Six techniques were tested in the experiments

comparing the performances of using raw images, segmented
images, and simple pixel-accumulated vectors after seman-
tic segmentation. Simple pixel-accumulation is a simpler
version of distance-aware pixel accumulation described in
Section III, where each 480× 360 array is compressed into a
32-component vector by accumulating the number of pixels
assigned to each object class using equal weight for each pixel
regardless of its distance from road pixels. Where applicable,
we also compared the performances of standard machine
learning techniques compiled from techniques used in related
works: [11], [12], [19], [23]. The four selected techniques are
linear regression, logistic regression, support vector machine
(SVM), and appropriate neural network models.

Linear regression, logistic regression, and support vector
machine were implemented using the Scikit-learn library,
while all neural networks were implemented using Keras,
with Tensorflow as a backend. For the convolutional neu-
ral network, we tested with a standard pre-trained model,
InceptionV3, with a new fully-connected output layer, acti-
vated with softmax function. The model was compiled with
SDG as an optimizer with a learning rate of 0.0001. Sev-
eral newly built convolutional neural network models with
approximately 4-5 million total parameters were also tested
in the preliminary study, but their best accuracy was either
worse than or comparable to that of the model modified from
InceptionV3.

TABLE 2. Performance comparison of baseline machine learning
techniques with raw, segmented and segmented-and-simple-accumulated
data.

Results show that feeding raw images as inputs to a convo-
lutional neural network is not suitable, as the 50% accuracy
equals that of a blind guessing for a binary classification.
Segmented images do not produce any significant improve-
ment. On the other hand, the accuracy goes above 60% for
all machine learning techniques, showing that accumulat-
ing pixels of objects from segmented images extracts some
amount of relevant information. Among the four techniques,
the results are fairly similar, ranging between 61.2-63.5%,
with the fully-connected neural network having the best per-
formance by a small margin.

The distinction between the performance of 2-dimensional
(image) versus 1-dimensional (pixel-accumulated) data is
substantial. Even though the deep convolutional neural net-
work can detect very complex patterns, it fails to learn
from both raw and segmented images. We speculate that a
2-dimensional array, with 172,800 (360× 480) components,
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contains too much information and potentially too much
noise for the convolutional neural network to recognize any
useful patterns. On the other hand, the straightforward pixel
accumulation that compresses the size of input from 172,800
down to 32 improves the accuracy by about 11-14%, implying
that the accumulationmakes the input digestible for the neural
network while preserving at least some useful information.
This indicates that semantic segmentation followed by simple
pixel accumulation, which represents how much space each
type of object takes up in the image, can extract valuable
information from the street view images. However, the accu-
racy can be improved even further. Amore advanced variation
of the accumulation technique that boosts the performance up
to approximately 70% is explained and tested in the second
part of the experiment.

2) SIMPLE PIXEL ACCUMULATION VS. DISTANCE-AWARE
PIXEL ACCUMULATION
The second part emphasizes on the performance comparison
between the two methods of pixel accumulation: the simple
accumulation used in the first part and the distance-aware
accumulation described in Section III. Four machine learning
techniques from the previous part are used for each type
of accumulation; CNN is excluded because even though it
is suitable for feature extraction from an image, it is too
complex for a simple 28-component vector. The neural net-
work model used (abbreviated as NN in the Figure 2) is the
fully-connected neural network described in Section III-C.
All machine learning models were implemented using the
same library and architecture as those in the first part, except
for one small difference. For the neural network model, the
loss function‡ that performs best with the simple accumu-
lation is the binary cross-entropy, but in our preliminary
experiment, mean squared error performs better than binary
cross-entropy by approximately 2%. Hence, the loss func-
tion most suited for each accumulation technique is used.
Also based on preliminary parameter-tuning experiments, the
number of training epochs was fixed at 100, where training
accuracy starts to flatten. Note that, for reproduction pur-
poses, the number of epochs may need to be adjusted based
on the characteristics of the data set. The results of the simple
accumulation, which are included in the first part, are shown
again in the table to facilitate the comparison. Additionally,
the separate average accuracy for each class, i.e. black and
safe spots, is also presented in the table for both accumulation
techniques.

The experiment shows that distance-aware accumulation is
superior to simple accumulation for three out of four machine
learning techniques tested. The support vector machine is
the only technique that proves to be incompatible with the
distance-aware accumulated input and thus unsuitable for
our task. For the other three techniques, the improvements
in accuracy are fairly similar: 5.42% with linear regression,

‡The code for both loss functions used can be found at
https://github.com/keras-team/keras/blob/master/keras/losses.py.

6.3% with logistic regression, and 6.4% with the neural net-
work. Among them, the neural network continues to outper-
form regression by about 2.5%. Furthermore, across the ten
training and testing sessions, the minimum accuracy that the
distance-aware accumulation and neural network achieved
was 68.75% and the maximum was 72%. Even in its worst
round, the accuracy was only 1.16% below the average, and
the model still outperforms all other techniques. The narrow
range of accuracies also illustrates that the model has a stably
satisfactory performance, which shows potentials for repro-
ducibility.

TABLE 3. Performance comparison of simple and distance-aware
accumulation techniques.

Since the neural network proves to be the best technique,
we study it deeper by comparing its performance on black
spots versus safe spots, presented in the last two rows of
Table 3. The results show that, while the distance-aware accu-
mulation increases the average accuracy of safe spots only by
2.4%, it increases that of black spots by over 10%, i.e. an addi-
tional 10% of the black spots are correctly identified. Despite
being trained and tested with balanced data, the model is
more inclined to classify a spot as black. Hence, the proposed
distance-aware accumulation does not simply improve the
overall accuracy, but more specifically, the accuracy of black
spots detection. For real-world accident prevention purpose,
danger detection is slightly more critical than no-danger
detection, since it encourages precaution as opposed to ease
of mind. In this sense, our technique could identify 75.86%
of the black spots correctly.

According to the experimental results, distance-aware
accumulation and the neural network together make the opti-
mal combination, with the average accuracy of 69.91% over-
all and 75.86% for black spots. The performance exceeds
the accuracy of the simplest raw image with CNN technique
(50%) by almost 20%, which shows a promising outcome in
transforming the data into a form that has significant corre-
lations with the road’s safeness. In particular, distance-aware
accumulation proves to be capable of extracting and carrying
hidden but illuminating information for the task of differen-
tiating safe and black spots.

V. DISCUSSION
The experimental results show that the combination of
semantic segmentation, distance-aware accumulation, and
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neural network is the suitable solution to the problem of clas-
sifying black spots from street view images. Semantic seg-
mentation contributes by simplifying the data from a matrix
of pixels to a matrix of object classes, so that the information
is more digestible for the neural network. It also facilitates
the distance-aware accumulation, which is yet another level
of feature extraction as well as a form of data compression.
A 480×360 2-dimensional array of a segmented image stores
172,800 integers, but our accumulation technique compresses
that down to 32 integers carrying the information that allows
the neural network to differentiate the safe and black spots:
the presence of objects in the driver’s view and their dis-
tance from the road. The filtering further removes irrelevant
information that might interfere with the neural network’s
learning ability. Finally, neural network is required as the
learning model because it has the capability to recognize
the complex pattern in our inputs. Hence, every step of the
pipelining process plays a crucial part in our model’s ability
to differentiate safe and black spots – a task that has yet to be
accomplished before, either by a computer or a human.

The accuracy of 69.91% is an achievement for a road
safety prediction purely from images, without any traditional
traffic-based data. Since the accuracy of feeding the images
into a highly complex and a pre-trained convolutional neural
network model is 50% on average, the pre-processing steps
must be contributing by extracting the relevant variables for
distinguishing safe and dangerous spots. While the relation-
ship between these variables cannot be summarized into a
flat, intuitively comprehensible fact, nor do they perfectly
capture the differences between safe and black spots, we have
gained a useful insight about accident prevention.

The experimental results have proven our initial
hypothesis that the surrounding environment affects the
accident-proneness of a road. Even though only the amount
of the surrounding objects’ presence – not the shape of the
road or the relative position of any objects – is preserved, our
technique can still predict correctly 7 out of 10 times. More-
over, our auxiliary hypothesis that the size of the surrounding
objects and their distance from the road are crucial factors
also appears to be verifiable. A traditional belief exists that
the road safety level depends on its condition and structure
e.g. whether it is an intersection, the number of lanes, etc.
[16], [18], [23], [24]. However, we have shown that the
objects around the road, specifically within the driver’s eye
level, are also determinant of the road’s accident-proneness.
Therefore, the new insights discovered through our work
can enormously reshape our understanding of what impacts
the safety level of a road. In practice, objects surrounding a
road should be considered a major factor in future policies
regarding road safety. As such, further analyses of the results
from semantic segmentation of safe and black spots as shown
in Figure 6 and Figure 5 may reveal significant correlations
between the detected objects and their distances from the
road, and the level of accident risks at that location.

In terms of adaptability and flexibility, the proposed tech-
nique is not strictly specific to a data set. For the input, the

FIGURE 5. a) Sample Google Street View image and b) its corresponding
semantic segmentation from a safe location: (13.8673, 100.4582). Each
color is mapped to a segmentation class (e.g. brown represents the
‘‘road’’ class). Plantation is the dominating object. Tree and vegetation
have high presence for a large proportion of the images, especially with
safe locations.

images are assumed to be taken from a road, not, for example,
inside of a house. Any set of four images from four orthogonal
angles around the spot is a valid input; there are no restrictions
on whether they are from a street view database, captured
with a smartphone camera, or obtained through other means,
as long as the resolution is adequate. We acknowledge that
the camera angle may be an issue that influences the learning
performance. Despite controlling all the parameters allowed
in Google API, each set of four images does not in fact have
precisely consistent angles relative to the road. Unfortunately,
Google API does not have a control parameter that supports
exact angular alignment. The images do not have a strict size
specification, since the semantic segmentation step takes care
of re-sizing, but the ratio of all images should be consistent
and compatible with the target size of the re-sizing step in
semantic segmentation. For a different type of landscape or
street structure, the categories for segmentation may also
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FIGURE 6. a) Sample Google Street View image and b) its corresponding
semantic segmentation from a black spot: (15.189, 100.1304). Each color
is mapped to a segmentation class (e.g. brown represents the ‘‘road’’
class). Building, vehicle and sky are dominating objects. Buildings and
vehicles are closer to the road, but the sky also takes up a very large area.

be changed as appropriate. For instance, motorcycle object
class may need to be removed if there are no motorcycles
in the area. We anticipate that other semantic segmentation
models may work as well, as long as the segmentation is
accurate and object classes are sufficiently relevant to a road’s
accident-proneness, such as roads, cars, buildings and trees.
Furthermore, the architecture of the neural network model is
somewhat flexible. However, all three pre-processing steps
and a fully-connected neural network must be included, for
they have shown in the experiments to be the essence of our
proposed technique.

VI. CONCLUSION
We have developed a novel technique for identifying black
spots based on four street view images around the spot, using
semantic segmentation, distance-aware pixel accumulation,
and fully-connected neural network, which achieves the

average accuracy of 69.91%. The full process, from obtaining
the images to preparing them to training the neural network
model to predict, has been thoroughly tested to consistently
have the best performance. Nonetheless, it should be noted
that the same pre-processing steps produce only slightly infe-
rior performance with linear and logistic regression, which
are less costly in terms of computational resources and time.
The distance-aware pixel accumulation is designed to capture
the characteristics of a road that are relevant to its safeness,
which is the key step that boosts the performance up to almost
70% on average.

Our technique facilitates road safety evaluation without
the need for traffic and accident data, on which traditional
black spots analysis commonly rely. Therefore, the degree to
which the evaluation is up-to-date depends solely onwhen the
images are taken, instead of on the past traffic records which
could be incomplete, out of date, or inaccessible. The pre-
diction can also be performed before new streets are opened
for use as well as prior to street construction or repair, based
on a generated illustration of the street’s design (including its
surroundings).

It is important to note that, to the best of our knowledge, the
proposed technique is the first black spot classification tech-
nique that is fully environment-aware. Experimental results
suggest that the surroundings such as trees and buildings are
accurate identifiers of the safety level of a road, and these fac-
tors are constantly transforming. With our model, users could
conveniently obtain an updated safety assessment following
changes in the environment (e.g. new billboard installed) and
possibly make adjustments to create an environment suitable
for safe driving.

Though further works are needed to improve the accuracy
before our technique can make infallible predictions on its
own, we observed the trend that the accuracy significantly
improves with the size of the data set. Hence, an application
of our technique in other areas where amore complete data set
exists is expected to achieve better results. We also anticipate
that increasing the types of input data, such as using both
street view and satellite images, would helpwith the accuracy.
However, it should be noted that for user applications, the
ease of access and retrieval of street view images is a strength
of our technique; adding more input requirements would
compromise its simplicity. Furthermore, the insight that we
have discovered regarding the effect of the surroundings on
the road safety is valuable in itself. Regardless of the place
and data availability, the fact that the size and the distance
of objects surrounding the road correlate to the road’s safety
level can potentially be incorporated into the existing road
safety assessment procedures right away.
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