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ABSTRACT The rapid increase in data volume and features dimensionality have a negative influence
on machine learning and many other fields, such as decreasing classification accuracy and increasing
computational cost. Feature selection technique has a critical role as a preprocessing step in reducing these
issues. It works by eliminating the features that may negatively influence the classifiers’ performance, such as
irrelevant, redundant and less informative features. This paper aims to introduce an improved Harris hawks
optimization (IHHO) by utilizing elite opposite-based learning and proposing a new search mechanism.
Harris hawks optimization (HHO) is a novel metaheuristic general-purpose algorithm recently introduced to
solve continuous search problems. Compared to conventional HHO, the proposed IHHO can avoid trapping
in local optima and has an enhanced search mechanism, relying on mutation, mutation neighborhood search,
and rollback strategies to raise the search capabilities. Moreover, it improves population diversity, compu-
tational accuracy, and accelerates convergence rate. To evaluate the performance of IHHO, we conducted
a series of experiments on twenty benchmark datasets collected from the UCI repository and the scikit-
feature project. The datasets represent different levels of feature dimensionality, such as low, moderate,
and high. Further, four criteria were adopted to determine the superiority of IHHO: classification accuracy,
fitness value, number of selected features, and statistical tests. Furthermore, a comparison between IHHO and
other well-known algorithms such as Generic algorithm (GA), Grasshopper Optimization Algorithm (GOA),
Particle Swarm Optimization (PSO), Ant Lion Optimizer (ALO), Whale Optimization Algorithm (WOA),
Butterfly Optimization Algorithm (BOA) and Slime Mould Algorithm (SMA) was performed. The experi-
mental results have confirmed the dominance of IHHO over the other optimization algorithms in different
aspects, such as accuracy, fitness value, and feature selection.

INDEX TERMS Harris Hawks optimization, optimization, feature selection, elite opposite based-learning,
mutation, mutation neighborhood search.

I. INTRODUCTION
The growth in data volume and features dimensionality in the
last few years has caused severe difficulties to researchers in
many fields such as big data, data mining, data science and
other fields. It is well-known that the analysis of high dimen-
sional data suffers from problems of dimensionality, sparsity,
and complexity [1]. Also, high dimensional data have a
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negative influence on machine learning classifiers, such as
decreasing classification accuracy and increasing computa-
tional cost. The main reason for these issues is because the
domain of features has expanded from tens to thousands in
the last few years [2]. Therefore, performing feature selection
technique is mandatory to reduce the number of features.
The feature selection technique works by removing noisy and
irrelative features from the dataset. Therefore, to deal with
high dimensional features in machine learning, it is common
to apply feature selection to select themost informative subset
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of features [3]. Feature selection has been used in many other
fields such as security systems, sentiment analysis, disease
detection and classification, data mining and text classifica-
tion, and many other fields [4].

Besides, feature selection aims to choose the best subset
of features that can improve the learning model in terms of
performance, simplicity, and speed [5]. Further, feature selec-
tion techniques are classified into two categories: filter-based
and wrapper-based. In filter-based, features are evaluated
independently from the classifier. It relies on the information
content to weight the features and select the most infor-
mative subset [6]. This category includes Chi-Square Test,
Variance Threshold, Pearson Correlation, Information Gain
(IG), Mutual Information (MI), and Fisher Score. Although
filter-based techniques are not optimized to match particular
classifiers, they are fast and usually used as a preprocessing
step for other feature selection techniques [7]. Unlike filter-
based, wrapper-based techniques utilize machine learning
classifier to train the subsets of features and choose the best
subset that can retain the highest possible accuracy based on
the used optimization algorithm. Recursive Feature Elimina-
tion, Genetic Algorithms, and Sequential Feature Selection
are some examples of wrapper methods.

Moreover, there are several search techniques to allocate
the best subset of features, including greedy search, random
search, and meta-heuristic search. Greedy search works by
evaluating all possible combinations of features in the dataset.
Therefore, it is time-consuming. In contrast, random search
follows the random strategy in exploring to find the best
subset of features. However, it could be easily trapped in a
local optimal solution [8]. On the other hand, meta-heuristic
methods (wrapper-based) explore the search space by imi-
tating physical or biological phenomena or even animal’s
behaviors in nature. Meta-heuristic search strategies have
proved their success in dealing with significant scale prob-
lems in different areas such as data mining, data sciences, and
machine learning [9].

One of the main categories of meta-heuristic algorithms
is the nature-inspired algorithm (NIA), which is inspired by
natural phenomena. NIA consists of two main subcategories:
swarm intelligence (SI) and evolutionary algorithm (EA).
EA algorithms, like genetic algorithm (GA), are influenced
by natural selection and evolution, such as elitism, mutation
and crossover. In contrast, SI algorithms mimic natural phe-
nomena like the living style of birds, ants, whales and but-
terflies. The following are some examples of SI algorithms:
GA [10], Grasshopper Optimization Algorithm (GOA) [11],
Particle SwarmOptimization (PSO) [12], Ant LionOptimizer
(ALO) [13], Whale Optimization Algorithm (WOA) [14],
Butterfly Optimization Algorithm (BOA) [15], Slime Mould
Algorithm (SMA) [16] and Harris Hawk Optimization
(HHO) [17]. Due to the stochastic nature of SI algorithms,
it is commonly utilized to solve large space and complex
optimization problems [18].

All meta-heuristic methods consist of two phases: explo-
ration (diversification) and exploitation (intensification).

Therefore, they explore the whole search space looking for
a promising area. Hence, the selected promising area is
exploited to find the best solution. Generally, meta-heuristic
algorithms were showing excellent results when dealing with
feature selection [19]. The more significant number of fea-
tures makes more challenges for feature selection techniques
to find the best solution. The number of possible solutions
increases exponentially with the number of features in the
search domain. For example, when the number of features
is n features in the dataset, there will be 2n combinations of
features (solutions). Hence, the use of standard exhaustive
search is time-consuming and inapplicable. However, meta-
heuristic algorithms can solve these issues and return the
optimal or close to the optimal solution within an acceptable
time.

HHO is considered one of the most recent meta-heuristic
proposed by Heidari et al. [17]. It is a fast, powerful, and
high-performance population-based optimization algorithm.
The algorithm mimics the style of Harris Hawk birds in
searching and chasing the prey in nature. The prey, which
is treated as the best solution, is symbolized by a rabbit in
the algorithm. Based on the authors of HHO, the algorithm
outperformed other well-known algorithms, including PSO,
GA, GOA, ALO, WOA, BOA and SMA. Further, the algo-
rithm was tested on 29 benchmark problems and other tasks
that represent real-world engineering tasks. The experiments
had shown very competitive results [17].

However, like most of the optimization algorithms, HHO
has some limitations. First, it has limited solution diversity
generated by its random function at the initialization phase.
Second, there is no guarantee that the Harris hawks (solu-
tions) will not end up in local optima instead of the optimal
solution. Third, HHO depends on the rabbit energy to specify
the type of search it will do. The rabbit energy approximately
starts at 2 and gradually reduced to 0 with each iteration.
Hence, the global search is performed in the first half of the
iterations, when the rabbit energy is greater than 1 (E ≥ 1).
Accordingly, HHO does not perform a global search in
the second half of iterations, although the currently selected
area may not be the optimal one [20]. Premature convergence
is another issue where the Harris hawks (population) con-
verge to a local solution instead of the global solution [21].

Therefore, this paper introduced two improvement strate-
gies to enhance the feature selection abilities of the standard
HHO. As for the former, the Elite Opposition-Based Learn-
ing (EOBL) strategy is applied to improve the population
diversity and the exploration phase of HHO. EOBL enhances
the distribution of the initialized solutions in the search
space. Unlike the random distribution used by the standard
HHO, the use of EOBL strategy improves the computational
accuracy of the algorithm and accelerates its convergence
rate. As for the latter, a dynamic search is introduced based
on the following three strategies: mutation technique, muta-
tion neighborhood search, and rollback. The purpose of the
dynamic search is to enhance the capabilities of both global
and local searches of HHO. The proposed search strategies
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look for alternative promising areas in the search space to
avoid the Harris hawks from being trapped in local optima.

Therefore, based on the reasons mentioned above, this
research is motivated to improve the original HHO to suit
the feature selection problem. The main contributions of this
paper are summarized in the following:

1) Proposed an improved version of the conventional
HHO, called improved Harris hawks optimization
(IHHO), for feature selection in wrapper mode that can
overcome its limitations.

2) EOBL strategy is utilized to improve the population
diversity of HHO in the initialization phase and accel-
erate its convergence rate.

3) A new three search strategies mechanism is proposed
to avoid the Harris hawks from trapping in local
optima by exploring new promising areas in the search
space.

4) The performance of IHHO is evaluated by comparing
its accuracy, fitness value, and the number of selected
features with a number of well-known optimization
algorithms, including HHO, GA, GOA, PSO, ALO,
WOA,BOA and SMA. IHHOoutperformed other algo-
rithms on 20 benchmark datasets representing various
types of feature dimensionality: low, moderate, and
high.

The rest of the paper is organized as follows: Section II
presents the related work. Section III introduces some state-
of-the-art about HHO, EOBL, and the three search strategies.
The details of the improved IHHOare described in Section IV.
Section V presents the details of the experiments and the
benchmark datasets. In Section VI, discussion and analysis
of experimental results are presented. Finally, Section VII
concludes the paper.

II. RELATED WORK
EOBL was introduced in 2012 by Zhou et al. to enhance
the quality of Opposition-Based Learning (OBL). The main
idea of EOBL is to generate more promising solutions by
evaluating the opposite solutions of elite solutions. The oppo-
site solution is more likely to locate in a better position in
which the global optimum is located [22]. EOBL strategy has
been used to improvemeta-heuristic optimization algorithms.
In [23], the authors applied EOBL in the initialization phase
of water wave optimization (WWO) to enhance convergence
speed and precision calculation.

Similarly, in work by [24], EOBL is used to improve the
computational accuracy and convergence speed rate of the
spider optimization algorithm (SOA). Further, in research
by [25], they applied the EOBL strategy to enhance the
balance between exploration and exploitation ability in the
Cuckoo search algorithm (CSA). Furthermore, the authors
in [26] utilized EOBL to overcome the limitations of grey
wolf optimizer (GWO) such as poor population diversity
and slow convergence rate. Also, Zhou et al. applied EOBL
to enhance the diversity of population and greedy strat-
egy to enhance the exploitation ability of flower pollination

algorithm (FPA) [27]. Likewise, in the research conducted
by [28], the authors improved the whale optimization algo-
rithm (WOA) and used it for feature selection. They improved
the exploration phase by applying the EOBL strategy and
introduced an advanced local search to improve the algo-
rithm’s exploitation phase.

Several kinds of research have applied standard HHO
or modified it to solve general and specific problems. For
example, in [29], the authors combined HHO with differen-
tial evolution (DE) for color image multilevel thresholding
segmentation. Similarly, in [20], they modified the search
mechanism of HHO for satellite image segmentation. Like-
wise, the authors in [30], appliedHHO and improved adaptive
generalized Gaussian distribution threshold to remove possi-
ble noise from the satellite image. Also, in work conducted
by [31], the exploration phase of HHO has updated using a
sine-cosine algorithm to optimize various engineering design
problems.

Further, in work by [21], the authors improved the explo-
ration phase of HHO for parameter identification of simulated
annealing (SA) single-diode solar cell models. Additionally,
In [32], the authors proposed to solve the job scheduling
problem in cloud computing using modified HHO with a
simulated annealing algorithm. Moreover, in their work [33],
the authors predicted the slope stability by utilizing HHO
and k-fold cross-validation. Yin et al. proposed a new
control parameter method to HHO and random OBL to
construct DNA storage [18]. Recently, the authors in [34]
introduced a four strategies technique, including the OBL
strategy, to improve HHO transition rules.

The standard HHO was designed for continuous search
space, and it needs to be modified to match binary fea-
ture selection. For this purpose, the authors in [19] pro-
posed a binary quadratic algorithm for feature selection.
The approach integrates the two transfer functions, S-shaped
and V-shaped, to convert the continuous HHO into binaries.
In their work, the authors engaged twenty datasets collected
from the UCI machine learning repository to test the perfor-
mance of the approach. The experimental results showed that
the proposed algorithm could maintain high classification
accuracy based on selecting a relatively small number of
features.

Similarly, the authors in [8] introduced binary HHO to
select the best subset of features while retaining the highest
possible accuracy. The techniquewas applied on ninemedical
datasets representing high dimensional features and a low
number of samples, using 5-neighbors KNN classifier. The
experimental result has ranked HHO to be the first over
the other compared algorithms. Another work performed by
Menesy et al. applied ten chaotic functions to improve the
HHO search capabilities and avoid falling in local optima.
The authors utilized the algorithm to extract parameters of
fuel cell stacks [35]. Recently, in research conducted by [36],
the authors applied theOBL strategy to improve the technique
used by HHO in selecting the optimal size of the feature
subset with maximum accuracy.
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III. STATE-OF-THE-ART
A. HARRIS HAWKS OPTIMIZATION
Harris HawksOptimization (HHO) is a novel nature-inspired,
gradient-free, and population-based optimization algorithm
that imitates the chasing style of Harris Hawks’ birds. HHO
was introduced recently by Heidari et al. in 2019 [17]. The
algorithm follows the attacking behaviors of Harris hawks
on the prey in nature, such as preaching, predation, and sur-
prise pounce strategies. Like other meta-heuristic algorithms,
HHO includes twomain phases: exploration and exploitation,
which are shown in Figure 1. However, HHO has two stages
for exploration and four for exploitation, which described in
detail as follows.

FIGURE 1. Exploration and exploitation phases of Harris hawks
optimization (HHO).

Initialization Phase: In this phase, the objective function
and its solution space are defined. In addition, the values
for the parameters are assigned, and the initial population is
created.
Exploration Phase: It is the phase where Harris Hawks

search for the prey (the rabbit). The hawks have compelling
eyes that can help them to detect and track the prey, but it is
sometimes difficult to see the prey. In this case, the hawks
wait and monitor the site hoping to observe the prey. Prac-
tically, in each iteration, all Harris hawks are the candidate
solutions, and the fitness value is calculated for each of them
based on the intended prey. After that, the Harris hawks
may wait in some positions to detect the prey based on the
following equation:

X (t + 1)

=

{
Xrand (t)− r1 |Xrand (t)− 2r2X (t)| q ≥ 0.5
(X rabbit (t)−Xm(t))−r3(LB+r4(UB−LB)) q ≤ 0.5,

(1)

FIGURE 2. The exploration phase and the four types of exploitation
phases in HHO. Note that transferring between the different phases
depends on the rabbit escaping energy

∣∣E∣∣.
whereX (t + 1) is the position of hawks in the next iteration t ,
Xrabbit (t) is the rabbit position, X (t) is the current position
vector of the hawks, Xm (t) refers to the average position
of the current population of hawks. The variables r1, r2,
r3, r4, and q (wait) are random numbers over the interval
[0, 1], and LB and UB represent the upper and lower bounds
of the problem variables. HHO uses a straightforward way
to calculate the average position of hawks Xm (t) using the
following equation:

Xm (t) =
1
N

N∑
i=1

Xi (t), (2)

where Xi (t) refers to the position of the hawks in iteration t,
and N represents the total number of hawks.
Transition From Exploration to Exploitation: It is critical

to the performance of meta-heuristic algorithms to main-
tain the right balance between exploration and exploitation.
In HHO, shifting between the exploration phase and exploita-
tion phase, and between different exploitations depend on the
prey escaping energy (E). HHO assumes that the energy of
the rabbit is reducing during escaping from the hawks, which
can be calculated as follows:

E = 2E0

(
1−

t
T

)
, (3)

where E is escaping energy, E0 is the initial state of energy
which its value randomly changes over the interval (-1, 1), and
T is the maximum number of iterations. When the escaping
energy of the rabbit |E| ≥ 1, HHO redirects the hawks to
explore different regions searching for the rabbit (exploration
phase). However, when its energy is reduced |E| < 1,
the hawks search the neighborhood for the solution during
the exploitation phase.
Exploitation Phase: In this phase, Harris hawks attack the

prey based on the position detected in the previous phase.
However, the rabbit always attempts to escape, and the hawks
follow the chasing strategy. Hence, HHO is designed based
on four possible strategies of attacking techniques. Two vari-
ables indicate which strategy will be performed, r and |E|.
While |E| is the escaping energy of the rabbit, r refers to the
probability of escaping, where r < 0.5 indicates a higher
chance for the rabbit to escape successfully and r ≥ 0.5 for
failure to escape. The exploration phase and the four types
of exploitation are illustrated in Figure 2. In the following, a
summary of each attacking strategy is presented:

121130 VOLUME 8, 2020



R. Sihwail et al.: IHHO Using Elite Opposition-Based Learning and Novel Search Mechanism for Feature Selection

Soft Besiege:When r ≥ 0.5 and |E| ≥ 0.5, the rabbit still
has some energy to escape. Hence, the hawks softly encircle
around the rabbit to make it lose more energy before perform-
ing the surprise pounce. Soft besiege can be mathematically
formulated as follows:

X (t + 1) = 1X (t)− E |JXrabbit − X (t)| , (4)

1X (t) = Xrabbit − X (t) , (5)

where 1X (t) represents the difference between the rabbit
location and the Harris Hawk location in iteration t . J denotes
the random jump strength of the rabbit with the value of
J = 2(1− r5) as r5 is a random variable.
Hard Besiege: When r ≥ 0.5 and |E| < 0.5, then the

rabbit is so tired with low escaping opportunity. In this situa-
tion, the hawk hardly encircles around the rabbit to perform
the final surprise pounce. The next location of the hawk is
updated using the following equation.

X (t + 1) = Xrabbit (t)− E |1X (t)| , (6)

Soft Besiege With Progressive Rapid Dives: In the situation
of soft besiege, |E| ≥ 0.5 but r < 0.5, the prey still has
the energy to escape from the attack. The hawk performs
smart zigzag movement around the rabbit and several dives
before the surprised pounce. This stage is considered more
intelligent soft besiege, in which the position of the hawks is
updated into two steps. In the first step, the hawks attempt to
approach the rabbit by evaluating the next move based on the
following equation:

Y = Xrabbit (t)− E|JXrabbit (t)− X (t) |, (7)

Based on the comparison between the last dive and the pos-
sible evaluated result, a decision is made to dive or not. If it
is not, the hawks start performing rapid and irregular dive,
based on the levy flight concept, when approaching the rabbit.
Hence, this step can be formulated as:

Z = Y + S × LF (dim), (8)

where dim is the dimension of the optimization problem to
be solved, S is a randomly generated vector of size 1× dim,
and LF denotes the Levy flight function that is calculated as
follows:

LF(x)=0.01×
u× σ

|v|
1
β

, σ =

 0(1+ β)× sin (πβ2 )

0( 1+β2 )× β × 2(
β−1
2 )

 1
β

,

(9)

where u and v are random values over the interval [0,1], and
β is a constant equal to 1.5.
Therefore, the equation for updating the Harris hawks

positions in the soft besiege phase can be mathematically
formulated as follows:

X (t + 1) =

{
Y if F (Y ) < F(X (t))
Z if F (Z ) < F(X (t)),

(10)

where F is the calculated fitness function for Y and Z .

Algorithm 1 Standard HHO Algorithm
Input: N : the population size, T : the maximum number of
iterations.
Output: The rabbit location and its fitness value
Initialize the population randomly Xi(i = 1, 2, . . . ,N )
While (maximum iteration not reached (t < T )) do

Check the location boundaries and Evaluate the fitness of
Harris hawks locations

Set the rabbit best location to Xrabbit
For (each hawk Xi(i = 1 to N )) do

Update the rabbit initial energy E0
Update the rabbit energy E using Equation (3)
If (|E| ≥ 1) then %Exploration phase

Update the hawk’s position using Equation (1)
if (|E| < 1) then %Exploitation phase

If (r ≥ 0.5 and |E| ≥ 0.5) then %Soft besiege
Update the hawk’s positions using Equation (4)

Else if (r ≥ 0.5 and |E| < 0.5) then %Hard
besiege

Update the hawk’s positions using Equation (6)
Else if (r < 0.5 and |E| ≥ 0.5) then %Soft

besiege with progressive rapid dives
Update the hawk’s positions using Equation (10)

Else if (r < 0.5 and |E| < 0.5) then %Hard
besiege with progressive rapid dives

Update the hawk’s positions using Equation (11)
Return the rabbit location (X rabbit )

Hard Besiege Progressive Rapid Dives: When |E| < 0.5
and r < 0.5, the prey does not have enough energy to escape.
In this case, the Harris hawks attempt to decrease the distance
by getting closer to the rabbit with rapid dives before perform-
ing surprise pounce to catch the rabbit. The movement of the
hawks in the case of hard besiege is formulated as follows:

X (t + 1) =

{
Y if F (Y ) < F(X (t))
Z if F (Z ) < F(X (t)),

(11)

where

Y = Xrabbit (t)− E |JX rabbit (t)− Xm (t)| , (12)

Z = Y + S × LF (dim) , (13)

Finally, calculation of fitness function involves classifica-
tion error rate and a minimum number of selected features,
which can be mathematically formulated as:

↓ Fitness = αγ (R)+ β
|F |
|N |

, (14)

where γ (R) is the classifier error rate, |F | is the number
of selected features, and |N | represents the total number of
features. α ∈ [0, 1] and β = (1 − α) are two factors.
Furthermore, the pseudocode of the original HHO algorithm
is presented in Algorithm 1.
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B. ELITE OPPOSITION-BASED LEARNING (EOBL)
EOBL is an enhanced version of the OBL technique, which
was proposed by Tizhoosh in 2005 [37]. OBL is a machine
intelligence strategy that aims to enhance the performance of
meta-heuristic optimization algorithms. Its strategy is based
on finding a more effective solution between the current indi-
viduals, which is generally initialized randomly by the opti-
mization algorithm, and its corresponding opposite solution.
The fitness value is calculated for both solutions, and the best
one is selected to proceed with the next iteration. However,
it has been proved that OBL gives more opportunity to get
closer to the optimal global solution for an objective function,
enhancing the performance of optimization algorithms [37].
Therefore, the OBL technique has been successfully applied
to enhance meta-heuristic search algorithms such as improv-
ing cuckoo optimization in [38], evolution algorithm in [39],
PSO in [40], GOA in [41], WOA in [28], and salp swarm
algorithm (SSA) for feature selection in [42]. OBL can be
mathematically modeled as follows: Let x = (x1, x2, . . . , xD)
is a point in current population, D is the problem dimensional
space and x ∈ [ai, bi] , i = 1, 2, . . . ,D. then, the opposi-
tion point x̆ = (x̆1, x̆2, . . . , x̆D) is defined as the following
equation:

x̆i = ai + bi − xi (15)

EOBL strategy relies on the elite individual to lead the pop-
ulation towards the global solution. The elite individual most
probably has more useful information than other individu-
als. Practically, EOBL works based on the elite individual
from the current population to generate the complementary
opposites of the current population located within the search
boundaries. The population is guided then by the elite indi-
vidual to reach eventually to the promising region, in which
the global optimum may be found. Therefore, applying the
EOBL technique will enhance the population diversity and
improve the global search of the optimization algorithm [25].
Asmentioned earlier in the literature, EOBL has been utilized
to improve many optimization algorithms.

In this paper, the EOBL technique is used to improve the
global search ability of HHO. The opposition point is defined
as follows: for the individual Xi = (xi,1, xi,2, . . . , xi,D) in the
current population Xe = (xe,1, xe,2, . . . , xe,D), then the elite
opposite point X̆i = (x̆i,1, x̆i,2, . . . , x̆i,D) can be mathemati-
cally modeled as:

x̆i,j = S × (daj + dbj)− xi,j (16)

where x ∈ [ai, bi], S ∈ U (0, 1) , S is a generalized factor. daj
and dbj are dynamic boundaries, which can be defined as:

daj = min(x i,j), dbj = max(x i,j) (17)

However, the corresponding opposite can exceed the
search boundary [ai, bi]. To solve this matter, the trans-
formed individual is assigned a random value within [ai, bi]
as follows:

x̆i,j = rand(aj, bj), if x̆i,j < aj ‖ x̆i,j > bj (18)

FIGURE 3. An example of bit string mutation, in which the 2nd and 6th

features are flipped.

EOBL can enhance the search space by producing a new
population from inverse solutions. Consequently, it can also
improve the global search ability of the optimization algo-
rithm by enhancing its population diversity.

C. THE THREE SEARCH STRATEGIES
HHO relies on the rabbit energy |E| to shift from exploration
to exploitation and to choose the current type of exploitation.
It also uses the rabbit energy to prevent the hawks from falling
in local optima. However, the rabbit escaping energy may
rapidly change its convergence towards the optimal solution,
which may cause the hawks to trapped in local optima [21].
In this subsection, we explain the proposed three search
strategies (TSS) to enhance both of the global and local search
mechanisms of the HHO algorithm. Besides, solving, to some
extent, the problem of being trapped into local optima.

1) MUTATION
The purpose of mutation in the Genetic algorithm (GA) is to
enhance the diversity into the sampled population. Mutation
operators are used for preventing the population of chromo-
somes from falling in local optimum by preventing them from
becoming too similar to each other.

There are various types of mutations based on the adopted
technique. However, in this method, we utilized bit string
mutation, which is performed by flipping features at random
positions. For the solution X = (x1, x2, . . . , xD), then the bit
string mutation can be mathematically modeled as:

M (y) = |1− X (y) | (19)

where M is the solution after applying bit string mutation,
y = 1, 2, . . . ,D is a matrix of randomly selected posi-
tions (features) to be flipped in solution X. In solution X , for
example, the second and sixth features are flipped, as illus-
trated in Figure 3.

Based on several numbers of trial and error experiments,
we selected the mutation size randomly between 10% and
50% in the exploration phase, and from 1% to 9% in the
exploitation phase. HHO relies on the rabbit escaping energy
|E| to shift from exploration to exploitation phase. The value
of |E| indicates the selection of the exploration phase when
it is greater than 1, and the exploitation phase when it is less
than 1. Based on Equation (3), the value of |E| depends on E0
and t . Hence, the value of |E| is fluctuated between [0, 2] in
the first half of iterations and between [0, 1] in the second
half. Therefore, HHO is able to perform exploration and
exploitation in the first half of iterations. However, it can
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only perform exploitation in the second half, as illustrated
in Figure 4.

FIGURE 4. Escaping rabbit energy |E | indicates the HHO status, either
exploration or exploitation.

In IHHO, we adopted the |E| strategy to select the size
of features to be flipped. Basically, in the exploration phase,
more features of the current best location need to be flipped
to enhance the ability of the global search. However, in the
exploitation phase, the hawks are assumed to be close to
the rabbit location (optimal solution). Therefore, few features
are flipped to improve the local search. The mutation size is
modeled as the following:

Mutationsize

=


Number of Features ∗

10 ∗ rand [1, 5]
100

if |E| ≥ 1

Number of Features ∗
rand [1, 9]

100
if |E| < 1,

(20)

2) MUTATION NEIGHBORHOOD SEARCH (MNS)
The idea of the neighbor search was used byDas et al. in 2009
to balance between exploration and exploitation phase in
DE [43]. The purpose of the neighbor search is to search the
small area surrounding the current best solution rather than
the entire population. In this work, we propose the mutation
neighborhood search (MNS). The use of the MSN search is
controlled by updating the current best solution caused by the
mutation strategy. In other words, MNS is applied whenever
there is a change in the location of the current best solution
(the rabbit location) by the mutation. Hence, the fitness value
is calculated each time after applying mutation on the current
best location. If the fitness of the new position is better than
the current position, then the current best solution is replaced
by the new mutated solution, and the neighborhood search is
performed.

Basically, MNS considers the two adjacent features to the
flipped feature. The feature to the right side is flipped, and
the fitness values for the two solutions are compared. After
that, the same procedure is applied to the left-side feature.

Therefore, two more solutions are generated, and the best one
is considered as the best solution. Moreover, the ring MNS is
applied, in which the last feature is connected to the first one
to make it possible for them to have adjacent neighbors from
both sides. The ring MNS strategy is illustrated in Figure 5.

FIGURE 5. An example of the mutation neighborhood search (MNS).
(a) Mutation. (b) MNS applied to the right neighbors. (c) MNS applied to
the left neighbors.

3) ROLLBACK STRATEGY
A mutation is a robust strategy that can effectively enhance
the global and local search. However, it may change the
direction of the optimization algorithm and lead to local
optima. In general, local optima is one of the most common
problems for all optimization algorithms. Hence, the rollback
strategy is followed in our proposed IHHO. Rollback strategy
is a simple yet effective technique. The new mutated solution
is not immediately considered as the current best solution,
although it has a better fitness value compared to the current
solution. It is temporarily saved as a potential solution. After
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the next iteration, the current best solution may be changed if
the HHO algorithm has found a better solution. Consequently,
the potential solution is compared to the current best solution,
and this time the better solution is assigned as the best current
solution. In other words, TSS accepts the new position gener-
ated by mutation or MSN, if it preserves the best fitness value
for two subsequent iterations. The TSS strategies: mutation,
MNS, and rollback are illustrated in Figure 6.

FIGURE 6. The framework of the proposed three search strategies (TSS)
to enhance the HHO search mechanism.

IV. IMPROVED HARRIS HAWKS ALGORITHM (IHHO)
The standard HHO is a robust and high-performance
optimization algorithm for solving practical engineering

problems. However, based on the NFL theorem, no algo-
rithm is perfect to handle all optimization problems [44].
Therefore, to avoid the limitations of HHO, to some extent,
and to enhance its capabilities in handling feature selection,
this paper proposed two main improvements for HHO. The
first improvement includes utilizing the EOBL strategy at
the initialization phase to enhance its population diversity.
The second improvement aims to enhance the algorithm’s
global and local search abilities by applying the proposed
TSS.

The following are the steps of the proposed IHHO algo-
rithm:

Step 1: The population X is initialized, using the random
function, with a size of N .
Step 2: Apply the EOBL technique and generate opposite

solutions, then select the fittest N solutions.
Step 3: Perform the HHO algorithm to update the position

of each individual in the population and find the Rabbit
Location (best current location) according to the best fitness
value.

Step 4: Apply the mutation strategy to improve the rabbit
location. If the fitness of the new location is better than the
current location, then set the new location as a potential rabbit
location and perform the MNS strategy to further enhance
its location. Lastly, set the best location to potential rabbit
locations.

Step 5: Perform the next iteration in HHO. Compare
the current rabbit location to the potential rabbit loca-
tion. If the rabbit location is better than the potential
location, then apply rollback strategy. Otherwise change
the rabbit location to be equal to the potential rabbit
location.

Step 6: Continue with the iterations until the termination
condition is satisfied.

Note that the pseudocode of the proposed IHHO is pre-
sented in Algorithm 2.

However, HHO is designed for continuous solution search
space and it needs to be modified to match binary feature
selection. Therefore, the position of every Harris haws is
converted into binary solutions by applying the following
equation:

Xi,j =

1 if
1

1+ e−Xi,j
≥ 0.5

0 otherwise,
(21)

Therefore, the features corresponding to ones in the dataset
are selected as relevant features, while features corresponding
to 0’s are ignored.

V. EXPERIMENTS
A. PLATFORM
All of the algorithms and comparisons are implemented using
Matlab R2020a software, and experiments are performed on
a PC running Intel i5 processor with 2.2 GHz, 8 GB of RAM,
and Windows 8 operating system.
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Algorithm 2 IHHO Algorithm
Input:N : population size, T : maximum number of iterations.
Output: The rabbit location (X rabbit ), potential rabbit loca-
tion (Xpotential) and their fitness values
Initialize the population randomly Xi(i = 1, 2, . . . ,N )
Find the best N opposite solutions based on EOBL, then
select the fittest N solutions, according to Equation (16),
Equation (17) and Equation (18).
While (maximum iteration not reached (t < T )) do

Check the location boundaries and Evaluate the fitness of
Harris hawks locations

Set the rabbit best location to Xrabbit
For (each hawk Xi(i = 1 to N )) do
Update the rabbit initial energy E0
Update the rabbit energy E using Equation (3)
If (|E| ≥ 1) then %Exploration phase

Update the hawks’ position using Equation (1)
If (|E| < 1) then %Exploitation phase

If (r ≥ 0.5 and |E| ≥ 0.5) then %Soft besiege
Update the hawks’ positions using Equation (4)

Else if (r ≥ 0.5 and |E| < 0.5) then%Hard besiege
Update the hawks’ positions using Equation (6)

Else if (r < 0.5 and |E| ≥ 0.5) then %Soft
besiege with progressive rapid dives

Update the hawks’ positions using Equation (10)
Else if (r < 0.5 and |E| < 0.5) then %Hard

besiege with progressive rapid dives
Update the hawks’ positions using Equation (11)

For (i=1 to 10) do %TSS
If (Fitness Xpotential < Fitness X rabbit(t+1)) then
Xrabbit = Xpotential

Else
Xrabbit = Xrabbit(t+1) % Rollback
Apply mutation strategy to rabbit location (X rabbit )

using Equation (19) and Equation (20)
If rabbit location (Xmutation < Xrabbit ) then
ApplyMNS search on Xmutation
Set Xpotential = Xmutation

Return the rabbit location (X rabbit )

B. BENCHMARK DATASETS
To verify the effectiveness of the proposed IHHO algorithm,
we selected twenty benchmark datasets from the UCI datasets
repository and scikit-feature project, which is an open-source
feature selection repository at Arizona State University. The
datasets are used to determine the capabilities of the IHHO
algorithm. Further, to confirm the stability of IHHO, we used
datasets with various feature dimensionality, including low,
moderate and high dimensionality. The datasets’ details are
presented in Table 1.

C. PARAMETER SETTING
For the parameter setting, it is noted that the performance
of algorithms can be improved by a fine-tuning of control

TABLE 1. Details of the 20 benchmark datasets.

parameters. Therefore, the choice of parameter setting is
critical that should be selected carefully. In this work, we have
set the parameters after many experimental comparisons as
follows:

For the experiments, we used 10-fold cross-validation
to evaluate the performance of the algorithms. The vali-
dation splits and shuffles the dataset into ten equal folds.
While nine of them are utilized for the training phase,
the last fold is left for testing. Further, the fitness function
in Equation (14) was applied with parameter α was set
to 0.99 and β to 0.01 [17]. In addition, to assure fairness
comparison for all the algorithms, the maximum iterations
for each algorithm was set to 50 iterations, and the pop-
ulation size was set to 10. Further, the experiments were
repeated for 30 times; these settings are recommended by [8]
and [45]. Therefore, the results were obtained from the
average of 30 trials. Furthermore, IHHO was compared to
the standard HHO and other state-of-the-art optimization
algorithms such as GA, GOA, PSO, ALO, WOA, BOA
and SMA. All the algorithms have been transferred to fit
binary feature selection using Equation (21). TABLE 2
displays the general parameter settings for the utilized
algorithms.

In this work, the proposed TSS was set to run for ten
iterations. Also, we used classification accuracy, fitness func-
tion and selected features to evaluate the performance of
optimization algorithms, mainly the KNN classifier with k
was set to 5.
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TABLE 2. General parameter settings of optimization algorithms.

D. COMPUTATIONAL COMPLEXITY
The computational complexity of IHHO depends on the fol-
lowing four factors: initialization, updating the Harris hawks,
fitness function, and the TSS strategy. The complexity of the
initialization process is O(N ), where N is the number of Har-
ris hawks. Note that the computational complexity of updat-
ing mechanism, which consists of updating the Harris hawks’
positions and finding the best location, isO (T × N )+O(T×
N × D), where T and D represent the maximum number of
iterations and the dimension of features respectively. Finally,
the computational complexity of applying TSS strategy can
be calculated as O(T × L × S), where L is the number of
TSS iterations and S is the TSS search strategies, including
mutation and MNS. Thus, the computational complexity of
IHHO is O(N × (T + TD+ 1)+ TLS).

VI. RESULTS AND ANALYSIS
In this section, the results of the two main experiments we
have performed are outlined. In the first comparison, we com-
pared the proposed IHHO to the standardHHO. In the second,
we compared the IHHO with other well-known optimiza-
tion algorithms like PSO, GA, GOA, ALO, WOA, BOA
and SMA. In all experiments, each algorithm is applied on
all the datasets to determine the stability of the algorithm
over various feature dimensionality. Further, the results are
reported based on calculating the average of 30 runs for each
experiment.

A. COMPARISON OF HHO AND IHHO
In this experiment, the improved IHHO is compared with
the original HHO. The comparison has been made based on

the following four metrics: classification accuracy, number
of selected features, fitness value, and performing Wilcoxon
rank-sum test as a statistical test. The experimental results are
shown in TABLE 3. For the statistical test, the improvement
is considered significant if the p-value is less than 0.05;
otherwise, it is not. The statistical test is used to determine
whether the improvement in the classification accuracy of
IHHO is significant or not.

Based on the results, IHHO has outperformed HHO in all
datasets in terms of classification accuracy. Therefore, it is
evident that the use of EOBL and TSS has improved the
performance of IHHO. We have also found that the proposed
algorithm has raised the average of classification accuracy
by almost 3.2% and lower the average of fitness value by
3.1%. In terms of the number of selected features, IHHO
outperformed the original algorithm by reducing the number
of selected features in 14 datasets with 5.4% less in total
average. In addition, the results of the fitness values support
the previous discussion since IHHO outperformed on all the
datasets. However, as a result of applying the TSS search
strategy to the standard HHO, IHHO required extra time to
optimize the datasets. Approximately an average of 20% is
added to the time consumed by HHO. A comparison between
IHHO and HHO is shown in Figure 7. Finally, the statis-
tical test results showed that P-value is less than 0.05 for
18 datasets. Therefore, the IHHO improvement over HHO is
significant. Hence, IHHO significantly enhanced the classifi-
cation accuracy, fitness function value, and feature selection
over various sizes of datasets.

FIGURE 7. A comparison between IHHO and HHO in terms of accuracy,
fitness value, number of selected features and the consumed time.

To show the effectiveness of the two proposed improve-
ments on HHO, we repeated the experiment and compared
the results from HHO with each improvement separately as
shown in TABLE 4. First, in HHO-EOBL, the EOBL tech-
nique was applied only. The results show a slight improve-
ment in the performance of HHO in all criteria after apply-
ing the EOBL in 15 datasets. Second, we applied the
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TABLE 3. A comparison between HHO and IHHO based on classification accuracy, fitness value, time and the number of selected features.

TSS strategy on the HHO without the EOBL technique.
In this case, the results indicate a significant improve-
ment in the performance of HHO on all the datasets.
Finally, the IHHO, which contains the two improvements,
has been ranked the first outperforming HHO, HHO-EOBL,
and HHO-TSS in three criteria except for the consumption
time.

From the results reported in the same table, we can see how
the use of EOBL, achieved by equation (16), has enhanced the
selection of the solutions instead of using the randommethod
in the standard algorithm. A possible explanation is that
EOBL chooses the best available solutions. The opportunity
to select weak solutions is less compared to the solutions
generated by the random method. In addition, the use of
TSS has enhanced the algorithm’s capabilities to balance
exploration and exploitation. The algorithm uses the Harris
hawk’s best position to update the positions of the other
search agents. Hence, the use of the proposed TSS has
increased the algorithm’s exploration ability in locating the
promising region. It also prevents the algorithm from falling
into a local solution by applying the mutation mechanism
in Equation (20). Furthermore, both of the proposed neigh-
borhood search and mutation mechanisms have improved the
algorithm’s exploitation ability in searching for the rabbit in
the indicated local region. Therefore, the superiority of IHHO
is proved in three aspects: classification accuracy, number of
selected features, and fitness value.

B. COMPARISON OF IHHO ALGORITHM WITH OTHER
OPTIMIZATION ALGORITHMS
The previous experiment has demonstrated a superior
enhancement for IHHO, especially in classification accuracy
and fitness value over the standard HHO. These improve-
ments are the result of enhancing population diversity, proper
balancing between exploration and exploitation, and the abil-
ity to avoid local optimum. Therefore, to confirm the superi-
ority of IHHO, another comparison has been made between
IHHO and other optimization algorithms such as GA, PSO,
GOA,ALO,WOA, BOA and SMA. Like the first experiment,
the second experiment utilized the four evaluation metrics to
evaluate the performance of IHHO compared to other opti-
mization algorithms. Classification accuracy was measured
for all the algorithms, as shown in TABLE 6. Based on the
results, the classification accuracy of IHHOhas outperformed
other algorithms in all of the datasets. The average of IHHO
accuracy is 11.5% higher thanGA, 7.3% than PSO, 5.9% than
GOA, 5.5% than ALO, 6% than WOA, 11% than BOA and
10% than SMA algorithm. A comparison of the classification
accuracy results for IHHO and the other algorithms are shown
in TABLE 6.

The statistical test has been applied to determine the sig-
nificance of classification accuracy, as shown in TABLE 7.
As per results, with P-value is less than 0.05 for 18 datasets
except for warpAR10P and ALLAMAL datasets. Therefore,
we can detect that there is a significant difference between
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TABLE 4. A comparison between HHO, HHO-EOBL, HHO-TSS and IHHO based on classification accuracy, fitness value and the number of features.

IHHO and other algorithms. The results indicate the abil-
ity of IHHO to balance between global search and local
search. Besides, it has a better opportunity to escape trapping
in local optimum and avoid immature convergence, which
results in a significant improvement in IHHO classification
accuracy eventually.

TABLE 8 shows the average number of selected features
by each algorithm over 30 runs. We can notice that IHHO
outperformed 60% of the cases in terms of selected features.
Moreover, it has been ranked first with selecting fewer fea-
tures in 12 datasets out of 20, followed byWOA in 5 datasets,
GA in two datasets, and PSO outperformed in one dataset
only. GOA, ALO, BOA, SMA came last without outperform-
ing any dataset. These results demonstrate the effectiveness of
applying EOBL and TSS in reducing the number of selected
features as well as improving the classification accuracy. It is
also evident that IHHO focuses on informative regions in
the search space to select the essential features and avoid
irrelevant ones.

In TABLE 9, the results related to measuring fitness value
is presented. As per the results, we can notice the dominance
of IHHO over the rest of the algorithms. IHHO outperformed
all of the algorithms in all the datasets, which indicates
the superiority of IHHO. A comparison between IHHO and
optimization algorithms based on average of fitness function
value is shown in Figure 8. That means IHHO has minimum
classification error, among other algorithms. The superiority

TABLE 5. A summary of IHHO improvements (based on median).

in fitness values indicates a strong ability of IHHO. In addi-
tion, the TSS search is dynamic and effective in searching for
a promising area and best solution.

From the results reported in TABLE 6 - TABLE 9, it can
be noticed that the datasets have multiple local optima, which
are challenging for all optimization algorithms. Thus can
discriminate the capabilities of the algorithms in balancing
exploration and exploitation. For example, the classification
accuracy of the ‘‘Exactly’’ dataset has shown variated results
through the algorithms. While the highest accuracy achieved
by IHHO, followed by HHO and PSO, with accuracy values
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TABLE 6. A comparison of classification accuracy between IHHO and other optimization algorithms.

TABLE 7. p-values for the classification accuracy based on Wilcoxon rank-sum test.

equal to 1, 0.946 (from TABLE 3) and 0.852 respectively,
GOA could achieve a modest result of 0.735 only. The
proposed IHHO is flexible that it keeps looking for new

promising regions, achieved by mutating the best solution
using Equation (20). This technique helps to prevent the algo-
rithm from falling into local optima. In addition, the mutation
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TABLE 8. A comparison between IHHO and other optimization algorithms based on average of number of selected features.

TABLE 9. A comparison between IHHO and other optimization algorithms based on average of fitness function value.

neighborhood strategy has improved the local search of the
IHHO by digging inside the promising area looking for a
better solution.

Considering the convergence behavior of an optimiza-
tion algorithm is very important in evaluating its perfor-
mance. Convergence shows the ability of the algorithm
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TABLE 10. A comparison between IHHO and other optimization algorithms based on average time in seconds.

FIGURE 8. A comparison between IHHO and optimization algorithms
based on average of fitness function value.

to escape local optima and immature convergence. If the
optimization algorithm cannot balance between exploration
and exploitation in all stages, it will probably be converged
to local optima. A comparison between IHHO convergence
and the other algorithms are shown in Figures 9, 10, and 11.
From the convergence curves in the figures, we can observe
that IHHO can achieve superior solutions faster than the
other algorithms, which indicates the superiority of IHHO

in dealing with all the datasets. Also, we can notice the
effectiveness of the proposed TSS search, which transfers
from global to local search in the middle of iterations (iter-
ation number 25 in our experiments as maximum iteration
was set to 50), in improving the convergence curves for all
cases.

The algorithms’ consumption time is shown in TABLE 10.
Based on the results, IHHO has consumed more time, with
an increased rate of 20%, compared to the HHO algorithm.
It can also be noticed that IHHO came last in the rank.
A good explanation is that IHHO proposes a simple search
strategy, which is added to HHO to enhance its exploration
and exploitation capabilities. However, HHO is ranked in the
7th place in the same table, two places before IHHO. In other
words, the consumed time of IHHO is considered relatively
high because the time of the standard algorithm is high in the
first place.

A summary comparing IHHO with the other algorithms
by calculating the median of classification accuracy, selected
features and fitness value for all experiments is shown in
TABLE 5.

C. LIMITATIONS OF IHHO ALGORITHM
The proposed IHHO is a beneficial algorithm, which can
solve large space and complex optimization problems. IHHO
enhanced the standard HHO in many aspects, such as
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FIGURE 9. Convergence speed for low dimensional features datasets.

FIGURE 10. Convergence speed for moderate dimensional features datasets.

classification accuracy, fitness value, and the number of
selected features. However, like other optimization algo-
rithms, IHHO has some limitations. Themain limitation is the
relatively high time consumption compared to the other algo-
rithms. However, the high consumption is not mainly caused
by the proposed improvements, but it is caused by the high

computational complexity of the standard HHO. Therefore,
improving the complexity of HHO will result in improving
the complexity of IHHO as well. Another limitation is related
to the iterations of the proposed TSS; we believe that the
time complexity of IHHO can be reduced by replacing the
ten iterations of TSS with a less complicated solution.
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FIGURE 11. Convergence speed for high dimensional features datasets.

VII. CONCLUSION
Harris hawks optimization (HHO) is one of the latest
meta-heuristic, population-based, and high-performance
algorithms that mimic Harris hawks’ style in searching and
chasing the prey in nature. HHO has two phases devoted to
the exploration and four phases for exploitation. In this work,
we proposed an improvement of the original HHO algorithm
called IHHO using the EOBL technique and the proposed
TSS search. The TSS search uses mutation, mutation neigh-
borhood search, and rollback strategies to improve the global
and local searches of HHO. Further, the new IHHOhas shown
the right balance in transferring between exploration and
exploitation.While the use of EOBL enhanced the population
diversity of HHO, TSS search strategies have helped the
algorithm in its search for the global optima and to avoid
trapping in local optima.

We utilized twenty low, moderate, and high-dimensional
benchmark datasets from the UCI repository and scikit-
feature, which is a project introduced by Arizona State
University, to evaluate the performance of IHHO. Besides,
we compared IHHO with well-known optimization algo-
rithms, such as HHO, GA, GOA, PSO, ALO, WOA, BOA
and SMA. The comparison based on the following four eval-
uation metrics: classification accuracy, fitness value, number
of selected features, and statistical tests. The results from the
experiments have confirmed the superiority of IHHO over
the other algorithms in all metrics. Moreover, its abilities to
improve computational accuracy and accelerates convergence
rate besides lowering the number of selected features have
been proved for most of the twenty datasets.

The results from the conducted experiments suggest that
IHHO can be applied as a promising technique to deal with
real-world feature selection datasets that have low, moder-
ate, and high dimensional features. It also works in dif-
ferent domains like data science, data mining, engineering

problems, digital forensics analysis, sentiment analysis, and
many more applications.

For the future work, we believe that there are several
directions in which IHHO can be extended to tackle
new real-world datasets such as applying IHHO to hybrid
wrapper-filter feature selection techniques. Further, the per-
formance of IHHO can be acquired using different classifiers
such as Support vector machine (SVM) and neural networks.
Additionally, time reduction is to be considered in future
work as well. Furthermore, EOBL and the proposed TSS
techniques can be utilized to improve other optimization
algorithms.
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