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ABSTRACT This study introduces an explainable artificial intelligence (XAI) approach of convolu-
tional neural networks (CNNs) for classification in vibration signals analysis. First, vibration signals are
transformed into images by short-time Fourier transform (STFT). A CNN is applied as classification
model, and Gradient class activation mapping (Grad-CAM) is utilized to generate the attention of model.
By analyzing the attentions, the explanation of classification models for vibration signals analysis can be
carried out. Finally, the verifications of attention are introduced by neural networks, adaptive network-based
fuzzy inference system (ANFIS), and decision trees to demonstrate the proposed results. By the proposed
methodology, the explanation of model using highlighted attentions is carried out.

INDEX TERMS Convolutional neural network, vibration signal, explainable AI, fault diagnosis.

I. INTRODUCTION
The physical phenomena causing vibrations are reflected on
the signals acquired by sensors and data acquisition systems.
There are several traditional methods to analyze informa-
tion of signals [1]–[8]. Fast Fourier transform (FFT), which
is employed inclusively in the field of signal processing,
is applied to find the frequency distribution. Empirical mode
decomposition can help decomposing signals into intrinsic
mode functions with different frequency ranges to isolate
signal components within specific frequency bands. Others
are proposed to find the characteristics and decompositions
of signal, for instance, wavelet transform, etc. Instead of
complex formulation, machine learning can help modeling
the relation between features and physical phenomena. The
features can be extracted in domains of signals, e.g., statis-
tical analysis, or by models automatically, e.g., autoencoder.
These features can be inputs of machine learning models for
prediction and classification.

Rolling element bearings (REBs) are crucial components
inside rotating machines. Bearing failures can cause serious
safety issues, to prevent the damages caused by bearing
failures, diagnosis methods using vibration signals of bear-
ings and machine learning methods are proposed by many
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researches [9]–[14]. Before convolutional neural networks
(CNN) and other deep learning methods are popularized,
characteristics of vibration signals are computed and uti-
lized to help identifying the signals. By considering rotat-
ing motion and relative motion between elements of REBs,
characteristic frequencies, which are common characteristics,
can be computed and discussed [9], [12]–[14]. There are
more information in frequency domain than time-domain
signals, therefore, frequency spectra are used for predic-
tions [15], [16]. The statistical features mentioned above also
can be applied to build automatic diagnosis models [17]–[19].
Recently, CNNs are applied in some researches for classifi-
cation and prediction, in which the features can be extracted
automatically [20], [21]. If a two-dimensional CNN is utilized
for vibration signals analysis, the inputs should be chosen as
time-frequency spectra, grey level images of signals, or other
two-dimensional data or images [22]–[24].

Deep learning can provide excellent performance in
prediction and classification. However, the parameters inside
models with network structures are unexplainable and lack
of practical meanings. In recent years, explainable AI (XAI)
becomes a popular field [25]–[28]. The main objective of
XAI is to convince users that machine learning can provide
reliable prediction and make machine learning methods more
transparent. When the model predicts wrong, explanations
can help tracking the reasons and phenomena. The explaining
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methods are summarized as follows [27]: (a) Explaining the
processing of data by networks [26], [29]–[31], e.g., class
activation mapping (CAM), gradient class activation map-
ping (Grad-CAM), and local interpretable model-agnostic
explanation. CAM and Grad-CAM are applied to create
salience maps and attention maps which help explaining
machine learning models by highlighting the attention area
of models. (b) Explaining the representation of data inside
networks [26], [32], [33]. It explains the models by internal
structures of models, such as the role of layers, individual
units, and vectors. (c) Create explanation-producing systems
designed to simplified explanation of their behaviors [34].
Explanation-producing systems have structures designed to
simplify the original models, which make their process-
ing or operation easier to be understood. For instance,
attention-based model is a success methodology used in natu-
ral language translation and image caption generation, which
are sequence problems. The mentioned methods can achieve
explanation of algorithms, but the explanations of machine
learning for vibration signals are less common.

In this study, explanation of convolutional neural
networks (CNNs) for vibration analysis is discussed. CNN
is employed as classification model for REB faults. Though
CNN can find features automatically, the features cannot
be recognized or identified manually. By visualizing the
attention of CNN model with Grad-CAM, the explanation
of CNN can be carried out. The explanation is verified by
neural network and other simple machine learning methods.
The proposed explanation process explains model using the
processing of data by networks [27]. Also, the proposed pro-
cess belongs to ‘‘explain to justify’’ and ‘‘explain to discover’’
[25]. For ‘‘explain to justify’’, the model is proved to be
legitimate. For ‘‘explain to discover’’, a new phenomenon,
which is different from traditional cognition and analysis
method, is discovered: The characteristics in low-frequency
bands are applied to classify and diagnose CWRU bearings
using traditional analysis methods. However, CNN tends to
focus at high frequency bands more.

In the rest of paper, preliminaries, including CNN,
Grad-CAM, short-time Fourier transform, and analyzed
dataset, are introduced in Section II. The proposed method
and applied CNN model are illustrated in Section III, includ-
ing the performance and explanation. The results of using
proposed method are discussed in Section IV. Finally, the
conclusion is given in Section V.

II. PRELIMINARIES
A. CONVOLUTIONAL NEURAL NETWORKS (CNNs)
Convolutional Neural Network (CNN) is first proposed
in 1998 [35], it is always utilized for classification and
prediction in image processing and other researching fields.
Structure of a classical CNN is shown as FIGURE 1, there
are three basic types of layers, including convolutional layers,
pooling layers, and fully-connected layers. In convolutional
layers, the inputs are convolved with filters to bring out
features. The hyperparameters are L, W (length and width

FIGURE 1. Structure of a classical CNN.

of inputs), LC , WC (length and width of filters), SCL , SCW
(stride of filters in different directions),N (filter number). The
operation of single filter in convolutional layer is

zkl = f (αl ∗ x+ b), (1)

where x ∈ RW×L is the input, l = 1, 2, . . . ,N is the index of
filters in the convolution layer, k is the index of convolutional
layer, f is the nonlinear activation function, ∗ represents the
convolutional operation, b is the bias, zkl is the feature map
generated by the lth filter, αl is the corresponding kernel
matrix of the lth filter. The output (feature map) of the kth
convolutional layer is

zk = [zk1, z
k
2, . . . , z

k
N ]. (2)

The length andwidth of feature map after convolved by single
filter become Lz= ceil(L−LcSCL

) and Wz= ceil
(
W−Wc
SCW

)
.

The objective of pooling layer is to extract and reserve
important information in feature maps. Max-pooling oper-
ation is mostly used to achieve the desired objective. The
hyperparameters are LP andWP (length and width of filters).
The operation of single filter in max-pooling layer is

pkl q,r=max




zkl q,r zkl q,r+1 . . . zkl q,r+LP
zkl q+1,r
...

. . .
zkl q+1,r+LP

...

zkl q+WP,r
zkl q+WP,r+1

. . . zkl q+WP,r+LP


,
(3)

where q and r are the row and column index of features
after pooling where q = 1, 2, . . . , ceil

(
Lz
LP

)
, r =

1, 2, . . . , ceil
(
Wz
WP

)
. If the boundary of filter is beyond the

range of signal, zero padding is applied to fit feature map’s
size with the size of filter. pkl is the pooling result of the lth
feature map after convolved by the kth convolutional layer.
The lth feature map after pooling can be represented as

pkl =


pkl 1,1 · · · pkl 1,ceil

(
Wz
WP

)
...

. . .
...

pkl ceil
(
Lz
LP

)
,1
· · · pkl ceil

(
Lz
LP

)
,ceil

(
Wz
WP

)

 . (4)
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FIGURE 2. An illustration of Grad-CAM.

The feature maps after convolving and pooling are
flatten into one-dimensional features which are inputs
of artificial neural networks. Fully-connected layers are
back-propagation neural networks which are widely applied
on prediction and classification. The feedforward operation
of neurons in fully-connected layers is

y = f
(∑n

a=1
waha + b

)
, (5)

where ha is the input of neuron, wa is weight of ha,
a = 1, 2, . . . , n, b is the bias, f is the activation function of
neuron, y is the output of neuron. Finally, a fully-connected
layer with softmax activation function is applied for classifi-
cation. The outputs of softmax function will be in range of
0 and 1. Softmax function is denoted as

σ (y) =
ey∑
ey
. (6)

In this study, the popular CNN structures are not applied
due to the huge number of parameters, e.g., VGG16 has over
10 million of parameters [36]. Therefore, a simple structure
of CNN is introduced to classify the bearing faults.

B. GRADIENT CLASS ACTIVATION MAPPING (GRAD-CAM)
Grad-CAM is proposed to understand the attention of CNN
model for classification [31]. By computing the weights
of each feature maps with respect to classification scores,
the heat maps (or attention maps) are generated. An illustra-
tion of Grad-CAM is shown in FIGURE 2. In the following,
the major operation of Grad-CAM is presented. At first,
the oth rectified feature map Fo can be represented as

Fo =
1
Z

∑
m

∑
n
Aom,n, (7)

where Z is the number of pixels in the feature map, m and n
are the index of row and column of the feature map, Aom,n is
the value of pixel in the mth row and nth column.
Since Grad-CAM is an improved method of class

activation mapping (CAM) [30], the attention map of CAM
is the beginning of proving Grad-CAM. The score of class C
(yC ), also known as the value of class C before softmax layer,
generated by CAM can be represented as

yC =
∑

o
αCo F

o, (8)

where αCo is the weight of the oth feature map. The forward
activation map (LCGrad−CAM ) generated using Grad-CAM is

LCGrad−CAM= ReLU
(∑

o
αCo F

o
)
. (9)

The weights of single pixel can be evaluated using gradient
method. The process can be represented as

αCo =
∂yC

∂Fo
=

∂yC

∂Aom,n

∂Aom,n
∂Fo

=
∂yC

∂Aom,n
· Z . (10)

The weight of the oth feature map is the average of weights of
every pixel in the feature map. The weight of the oth feature
map is

1
Z

∑
m

∑
n
αCo =

1
Z

∑
m

∑
n

∂yC

∂Aom,n
· Z . (11)

Since the weights of each pixel in the oth feature map should
be the same, (11) is simplified as

1
Z
·Z ·αCo =

1
Z

∑
m

∑
n

∂yC

∂Aom,n
·Z =

∑
m

∑
n

∂yC

∂Aom,n
, (12)

αCo =
∑

m

∑
n

∂yC

∂Aom,n
. (13)

Finally, the normalized localization map (heat map or
attention map) using Grad-CAM can be represented as

S =
1
Z

∑
m

∑
n

∑
o
αCo A

o
m,n. (14)

Before applying Grad-CAM, the model must be trained.
Then the attentions of model with specific inputs can be com-
puted using Grad-CAM. The advantage of using Grad-CAM
is that the structure of model will not affect the process since
the whole operation is based on feature maps and classifi-
cation results. By observing and analyzing attention maps,
the attention of models can be explained and verified.

C. SHORT-TIME FOURIER TRANSFORM (STFT)
The frequency spectra of signals can be computed using
Fourier transform (FT). In order to apply FT to real-time
application, discrete Fourier transform (DFT) is introduced
and represented as

FFT (x [n]) ≡ X
(
e−jω

)
=

∑N−1

n=0
x [n] e−jωn. (15)

From (15), a discrete signal x with size N can be understood
as a series of frequencies ω with different magnitudes of
energy. Another type of representation for DFT is known as

FFT (x [n]) ≡ Xk =
∑N−1

n=0
x [n] e−

j2πkn
N ,

k = 0, 1, . . . ,N − 1. (16)

Though DFT works well to evaluate the frequency
components of signal, the computational effort of DFT is
considerable.

In this study, short-time Fourier transform (STFT) is
adopted to transform vibration signal to image [37]. Although
frequency spectra provide information in frequency domain,
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TABLE 1. Characteristic frequencies under different rotating speed.

TABLE 2. Four types of fault and corresponding label.

there is no any time-domain information. If arranging the
frequency spectra of short signal segments together, the vari-
ety of frequency in time domain can be observed. In other
word, the information of both time domain and frequency
domain are shown at the same time. The signal is broken
up into frames by window functions, each frame is Fourier
transformed. The equation can be represented as

STFT (x [n]) ≡ X
(
m, e−jω

)
=

∑N−1

n=0
x [n]w[n− m]e−jωn

(17)

where w is discrete window function, m is discrete index in
the window w. FFT can also be used in STFT to enhance
efficiency and reduce requirement in computation.

D. BEARING DATASET
Bearing dataset used in this paper is provided by Case
Western Reserve University (CWRU), the dataset is widely
discussed and analyzed in many researches [38]–[42]. The
signals applied in this study are collected using accelerom-
eters mounted at the drive end of the motor with 12 kHz of
sampling frequency. There are four different damage condi-
tions of bearings, (1) normal; (2) inner ring faults; (3) outer
ring faults; and (4) ball faults. These faults with different
diameters are man-made using electrical-discharge machine.
The diameters are not discussed in this study, for example,
a 7-mil inner ring fault and a 14-mil inner ring fault are
considered as the same class. There are four different types of
load on the motor which lead to different rotating speeds. The
characteristic frequencies under different rotating speeds are
evaluated and shown in TABLE 1, and the labels are manually
set as TABLE 2.

There are 64 data in the dataset, sliding window is applied
to slice original signals into one-second signals and increase
the number of training and testing data. The length and stride
of window are 12000 data points and 3000 data points respec-
tively. There are 2368 data after applying sliding window
with the four mentioned bearing conditions under different
rotating speeds. The training sets and testing sets are selected
randomly, 1657 data (70%of data) for training, 711 data (30%
of data) for testing.

III. METHODOLOGY FOR VIBRATION SIGNALS
ANALYSIS USING XAI APPROACH
In this section, the proposed methodology is introduced,
the corresponding scheme of proposed method is shown

FIGURE 3. Scheme of explaining CNN models for vibration signals
analysis.

in FIGURE 3. At first, the signal segmentations are
transformed into STFT time-frequency spectra. Then, a CNN
model is trained to classify the bearing conditions. The testing
accuracy is recommended to be as high as possible. After the
model is trained, a few data are applied to help explaining the
model and verifying the explanation. The attentions of model
are computed using Grad-CAM. The attention can show the
frequency band which model focuses at the most. After ana-
lyzing the frequency band with high attention, the features
of the focused frequency band are generated using statistical
analysis methods. Finally, these features are adopted to verify
the attention using other simple model, e.g., NN with simple
structure, ANFIS, and decision trees utilized in this study.
If the models can provide great performance, the features
contain information for classification. The frequency band
where the model pays more attention is legitimate.

The process of training CNN, analyzing attention of
model, and assumption of explanation are discussed as
follows. Classification performance of CNN using STFT
time-frequency spectra is discussed in part A firstly. Then,
the attention of model is analyzed and explanation of CNN
is carried out in part B. The verifications are introduced in
Section IV.

A. CLASSIFICATION OF BEARING FAULTS USING
TIME-FREQUENCY SPECTRA OF
VIBRATION SIGNALS
Time-frequency spectra of one-second signals in CWRU
dataset mentioned in the end of part D in Section II
are generated using STFT. FIGURE 4(a), FIGURE 4(b),
FIGURE 4(c), and FIGURE 4(d) are time-frequency spec-
tra of a normal bearing, a bearing with inner ring fault,
a bearing with outer ring fault, and a bearing with ball
fault, respectively. By observation, the time-frequency spec-
tra are different between each status of bearings. The structure
of CNN using time-frequency spectra to classify bearing
faults is shown in TABLE 3. The initial learning rate is
0.001, the optimizer is Adam. Categorical cross-entropy is
adopted as loss function. The training and testing accuracy of
model are 100%. The confusion matrix of model predicting
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FIGURE 4. Time-frequency spectra after STFT of (a) a normal bearing,
(b) a bearing with inner ring fault, (c) a bearing with outer ring fault, and
(d) a bearing with ball fault.

TABLE 3. Structure of 2DCNN for bearing classification.

FIGURE 5. Confusion matrix of CNN model for classifying CWRU bearing
data.

testing data is shown in FIGURE 5. The accuracy shows that
time-frequency spectra can be adopted for classification.

B. EXPLANATION UAING TIME-FREQUENCY SPECTRA
Firstly, the attentions of model using Grad-CAM are shown
in FIGURE 6. FIGURE 6(a), FIGURE 6(b), FIGURE 6(c),
and FIGURE 6(d) are the results of a normal bearing, a bear-
ing with inner ring fault, a bearing with outer ring fault,
and a bearing with ball fault, respectively. The rotating
speed of bearings are 1797 rpm. The left ones are the input
images with axes and the right ones are attention maps.
By observing the attention map of a normal bearing in
FIGURE 6(a), themodel focuses at low-frequency band since
there is no obvious structure resonance for a normal bearing.
As shown in FIGURE 6(b), the attention of model using a
bearing with inner ring fault is focusing at high-frequency
bands from about 1000 Hz to 4000 Hz, which is caused
by structure resonance [43], [44] but not where the char-
acteristic frequency locates. The time-frequency spectra of
bearing with outer ring fault and ball fault are shown in
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FIGURE 6. Input image with axis (left) and input image overlapped with
attention map (right) of (a) a normal bearing, (b) a bearing with inner ring
fault, (c) a bearing with outer ring fault, and (d) a bearing with ball fault
under 1797 rpm.

FIGURE 6(c) and FIGURE 6(d). The model is still focusing
at high-frequency bands which is identical to the result using
a bearing with inner ring fault. The attention and analysis
of attention using bearings under 1772, 1750, 1730 rpm are
shown in FIGURE 7, FIGURE 8, and FIGURE 9. The same
phenomena can be observed.

After analyzing the attentions, an assumption of
explanation for the model can be carried out: the features in
high-frequency band can be applied for classification more
easily for machine learning models than the characteristics
shown in TABLE 1. The verifications of explanation are
introduced in next section.

IV. VERIFICATIONS OF EXPLANATIONS
In this section, several examples are introduced to verify
using simple neural network, decision trees, and adaptive
network-based fuzzy inference system (ANFIS) that the
features of high-frequency bands can be used to classify

FIGURE 7. Input image with axis (left) and input image overlapped with
attention map (right) of (a) a normal bearing, (b) a bearing with inner ring
fault, (c) a bearing with outer ring fault, and (d) a bearing with ball fault
under 1772 rpm.

the faults. The comparison between decision trees andANFIS
is also discussed. Finally, the summary of verifications is
brought out in E.

A. OBSERVATION AND ANALYSIS FOR
HIGH-FREQUENCY BANDS
At first, the frequency distribution of bearings with different
conditions in CWRU bearing data are observed. The aver-
age frequency spectra of bearings under different conditions
are computed and shown in FIGURE 10. FIGURE 10(a),
FIGURE 10(b), FIGURE 10(c), and FIGURE 10(d) are spec-
tra of normal bearings, bearings with inner ring faults, outer
ring faults, and ball faults, respectively. By observation,
the distributions of frequency in 1000∼4000 Hz are different
and can be applied for classification preliminarily.
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FIGURE 8. Input image with axis (left) and input image overlapped with
attention map (right) of (a) a normal bearing, (b) a bearing with inner ring
fault, (c) a bearing with outer ring fault, and (d) a bearing with ball fault
under 1750 rpm.

Next, the features of high-frequency bands are sorted
out and applied in classification. The high-frequency band
is separated into 1000∼2000 Hz, 2000∼3000 Hz, and
3000∼4000 Hz. The eight statistical features are average
magnitude and kurtosis in 1000∼2000 Hz, average mag-
nitude, kurtosis, and skewness in 2000∼3000 Hz and
3000∼4000 Hz. The computation of kurtosis and skewness
can be represented as

kurtosis =
1
N

∑N

i=1

(xi − x)4

σ 4 , (18)

skewness =
1
N

∑N

i=1

(xi − x)3

σ 3 , (19)

B. VERIFICATION USING NEURAL NETWORK
A simple neural network (NN) is set up for classification.
The structure of NN is shown in TABLE 4. The learning rate

FIGURE 9. Input image with axis (left) and input image overlapped with
attention map (right) of (a) a normal bearing, (b) a bearing with inner ring
fault, (c) a bearing with outer ring fault, and (d) a bearing with ball fault
under 1730 rpm.

is 0.008. The optimizer is Adam. Categorical cross-entropy
is applied as loss function. The training and testing accu-
racy are both 100%. The confusion matrix of model is
shown in FIGURE 11. The result shows that high-frequency
bands also contain key features for classification. Though
high-frequency bands are excited by structure resonance,
different types of faults can generated different frequency
distributions which can be used for classification and diagno-
sis. The differences in high-frequency bands are more obvi-
ous than low-frequency bands. Therefore, the model tends
to focus on high-frequency bands instead of low-frequency
bands.

C. VERIFICATION USING DECISION TREES
Decision tree is a simple algorithm mostly applied for
classification (classification and regression tree, CART) [45],
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FIGURE 10. Average frequency spectra of (a) normal bearings,
(b) bearings with inner ring faults, (c) bearings with outer ring faults, and
(d) bearings with ball faults.

TABLE 4. Structure of NN for classifying bearing faults using features of
high-frequency bands.

the basic structure of a tree contains nodes and branches.
The nodes are divided into root node, internal nodes, and
leaf nodes. The root node represents the start of the tree
and contains entire dataset. The internal nodes, also known
as decision nodes, are the conditions that can separate the
dataset or subset into two subsets.

FIGURE 11. Confusion matrix of NN for classifying bearing faults using
features of high-frequency bands.

In order to assess and choose the best decision, information
gain is applied, including information entropy and Gini
impurity. The information entropy can be represented as

entropy =
∑

c
pc log2 pc (20)

while Gini impurity can be represented as

Gini Impurity=
∑

c
pc(1−pc)=

∑
(pc−p2c)=1−

∑
p2c
(21)

where pc is the percentage of class c in the dataset. The
target of decision is to maximize the separated informa-
tion. Therefore, the information gain must be minimized. If
summation of information gain in the subsets after the deci-
sion is smaller than other decisions, the decision is selected.
The process will stop until all categories in data are separated
completely.

Herein, decision tree is adopted for classification. The
tree using entropy and Gini impurity as information gain
are shown in FIGURE 12(a) and FIGURE 12(b), respec-
tively. It takes 11 and 10 layers to complete the classifica-
tion for each tree. By observing the decision tree, skewness
of 3000∼4000 Hz is not applied in both decision trees.
Therefore, a NN is used to check if the feature is not necessary
for classification. The structure of NN is shown in TABLE 5.
The learning rate, optimizer, and loss function are the same
as the NN in B. The testing accuracy of model is 100%.
The result shows that the skewness of 3000∼4000 Hz is not
essential for classification using CWRU bearing dataset.

D. VERIFICATION USING ADAPTIVE NETWORK-BASED
FUZZY INFERENCE SYSTEM (ANFIS)
Fuzzy inference system is based on the way human beings
making decisions with imprecise and non-numerical infor-
mation. It uses If-Then rules that are defined by dataset to
predict or reach control purposes. ANFIS is a combination
of fuzzy inference system and neural network. It has layer
structure similar to neural networks but with the operations
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FIGURE 12. Decision tree for classification using features in
high-frequency band. (Information gain: (a) entropy, (b) Gini impurity).

TABLE 5. Structure of NN for classifying bearing faults using features of
high-frequency bands (without skewness of 3000∼4000 Hz).

of fuzzy inference system, e.g. rules layer, defuzzification
layer. A first-order Sugeno-type ANFIS (TSK) is applied in
this study and shown in FIGURE 13. In the training pro-
cess of ANFIS, the membership functions and parameters
in defuzzification layer are adjusted by training algorithm
(backpropagation, least mean square (LMS)) according to
If-Then rules.

The previous features in part A are inputs of ANFIS,
the membership function utilized here is triangular

FIGURE 13. Structure of ANFIS.

TABLE 6. Confusion matrix of ANFIS using testing data.

TABLE 7. Rules of ANFIS.

membership function. There are two membership functions
for each input. After training, the classification accuracy
using ANFIS is 96.9%. The confusion matrix of ANFIS
using testing data is shown in TABLE 6. As above, there are
total 256 rules shown in TABLE 7. The result also shows
that the features in high-frequency band can be applied for
classification even in a fuzzy system.

Herein, we try to find the relation betweenANFIS rules and
decision tree. Since all of the features need to be considered
in ANFIS rules, a decision with more complete features
is chosen. The selected decision is shown in FIGURE 14.
Noting that the normalization operation is done for inputs
and outputs. The prediction result using ANFIS is 3.08 which
belongs to outer ring fault. The firing strength of partial rules
are shown in FIGURE 15. As FIGURE 15 shows that the
first rule has a larger firing strength. In other words, the
first rule is more important while predicting the selected
data. By observing the details of the first rule in TABLE 7,
the features of chosen data match the membership functions,
in which the features are all belong to low, of the first rule.
The comparison shows that some of decisions match the rules

134254 VOLUME 8, 2020



H.-Y. Chen, C.-H. Lee: Vibration Signals Analysis by XAI Approach: Application on Bearing Faults Diagnosis

FIGURE 14. The chosen decision of the decision tree.

FIGURE 15. Firing strength of ANFIS rules using chosen data.

in ANFIS. However, since the decision tree does not need full
features to complete the classification, not all of decisions
have corresponding rules.

E. SUMMARY OF VERIFICATIONS FOR EXPLANATION
OF CNN
From the verification results, the assumption by observing
attention maps can become a correct explanation for CNNs in
classifying CWRU bearings: the features in high-frequency
band can be applied for classification more easily for the
model instead of focusing at characteristic frequencies which
are applied in most researches. The explanation is verified
using simple NN models, ANFIS, and decision trees to
increase the persuasive and correctness of explanation.

V. CONCLUSIONS
In this paper, XAI approach of CNNs in using vibration analy-
sis is discussed using bearing faults classification. First, CNN
for classifying bearing faults using time-frequency spectra
is carried out. The results show that CNN can be applied
for vibration analysis and provide great performance. Then,
explanation for CNN is discussed. Grad-CAM is applied to

help explaining model in vibration analysis. Attentions of
CNN are computed and analyzed. The attentions show that
the model pays more attention at high-frequency bands which
are excited by structure resonance. Finally, an explanation
for model is sorted out and verified using NN, ANFIS, and
decision trees: The features in high-frequency band can be
applied for classification more easily for machine learn-
ing than focusing on characteristics computed by traditional
signal analysis.
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