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ABSTRACT Traffic state information is widely applied into all aspects of Intelligent Transportation System
(ITS), such as the macro-control of government departments, the implementation of traffic managers’ plans,
the decision-making of residents travel, and so on. At present, Mel Frequency Cepstrum Coefficient (MFCC)
is generally used as characteristic of traffic noise to characterize different traffic states, and performs well in
simple noise environment, but performs poorly in complex noise environment. Based on the analysis of traffic
noise acquired from a roadside-installed acoustic acquisition equipment, the evaluation problem of traffic
state in complex noise environment is considered in this paper. Traffic state is divided into three categories
according to traffic speed in our work: free flow (40 km/h and above), saturated flow (10-40 km/h), and
jammed flow (0-10 km/h). Teager Energy Operator (TEO) is introduced to improve theMFCC characteristic,
thus a novel characteristic called T-MFCC is proposed. Principal Component Analysis (PCA) is introduced
to reduce dimension of T-MFCC characteristic, thus a novel characteristic called PT-MFCC is proposed.
Support Vector Machine (SVM) optimized by Particle Swarm Optimization (PSO) algorithm is applied as
classifier to identify traffic state. Characterization capabilities of two modified characteristics and traditional
MFCC characteristic for traffic state are compared in this paper. Experimental results demonstrate that
the evaluation accuracy of traffic state based on T-MFCC characteristic is 3.685% higher than that based
on MFCC characteristic, and the evaluation accuracy of traffic state based on PT-MFCC characteristic is
26.466% lower than that based on MFCC characteristic. Therefore, T-MFCC characteristic is superior to
MFCC characteristic, while MFCC characteristic is superior to PT-MFCC characteristic, namely, T-MFCC
characteristic can better characterize traffic state than MFCC characteristic, meanwhile, there are no
redundancy attributes in T-MFCC characteristic, thus PCA is not needed to reduce the dimension of T-MFCC
characteristic.

INDEX TERMS Traffic state, traffic noise, intelligent transportation systems, mel frequency cepstrum
coefficient, teager energy operator, principal component analysis.

I. INTRODUCTION
Statistics from China Statistical Yearbook and theMinistry of
Public Security show that from 2005 to 2019, the ownership
of civil vehicles (small passenger vehicles) increases from
16.1835 million to 220 million, and the ownership of private
vehicles (small passenger vehicles and miniature passenger
vehicles) increases from 13.544 million to 207 million. The
rapid increase of private car ownership and the continuous
rise of residents travel demand lead to the ceaseless pro-
longation of peak time and the gradual expansion of traffic
congestion. The growing traffic congestion has caused a
series of life problems, such as frustration and ‘‘road rage’’,
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meanwhile, it has also caused huge economic losses (such
as fuel consumption and time waste) and security risks for
residents travel. How to effectively solve the problem of
traffic congestion has attracted extensive attention of the
transportation industry personnel, government departments,
and the public. Nowadays, the application of Intelligent
Transportation System (ITS) to automatically collect traffic
information and identify traffic state has become a new
breakthrough to solve the problem of traffic congestion [1].

In ITS, various infrastructure-based technologies (such as
magnetic induction coils, and video cameras) are applied
into vehicles and roads to detect various traffic parameters.
The existing evaluation research of traffic state are mostly
based on traditional detectors such as magnetic induction
coil, video camera, and cellular networks [2]–[9]. Although

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 120627

https://orcid.org/0000-0003-2641-0924
https://orcid.org/0000-0001-9508-2368
https://orcid.org/0000-0002-3472-8660


Q. Ma, Z. Zou: Traffic State Evaluation Using Traffic Noise

these traffic detectors are widely used and have achieved
good detection results, they have their own advantages and
disadvantages: The advantages of magnetic inductive coil
detector are that it has high detection accuracy and only
needs a small investment in the preliminary stage, and the
disadvantages are that once the coil detector broke down,
it needs to close the lane and dig the road surface for mainte-
nance, thus seriously reducing the road capacity and greatly
increasing the maintenance difficulty of the coil detector; The
advantages of video camera detector are that it can acquire
visual images and obtain various traffic information such as
traffic volume, density, vehicle type and license plate, and the
disadvantages are that the detection results are easily affected
by light conditions, such as day and night alternation, and
ponding reflection, at the same time, the occlusion between
vehicles will also affect the detection results, and the image
processing is relatively time-consuming [10]. Compared with
the magnetic inductive coil detector, the acoustic detector has
lower maintenance cost and will not damage the road surface.
Compared with the video camera detector, the acoustic detec-
tor is not affected by occlusion, day and night alternation, and
light intensity, meanwhile, the calculation load required by
the acoustic signal processing is reduced. Therefore, acous-
tic detector owns great development potential in the future,
and it is meaningful to explore and study the application of
traffic noise in traffic information detection. In recent years,
the research of traffic information detection technology based
on acoustic sensors is gradually increasing.

In order to understand and analyze traffic noise better, a few
scholars have studied the internal properties of traffic noise.
Traffic noise is mainly composed of tire and road friction
noise, engine noise, exhaust noise, and aerodynamic noise
[11]. In-depth research is conducted on the relevant properties
of traffic noise: Tire/road noise increases with the increase of
vehicle speed, it also changes with the change of road materi-
als, and the change will become more evident when the vehi-
cle speed is above 50 km/h; The engine noise always exists at
all vehicle speeds, and its power depends on the engine load
and rotation speed, in themeanwhile, the low-frequency noise
component in the engine noise is in the majority, but a small
number of high-frequency harmonics also exist; The exhaust
noise belongs to low-frequency noise, and it has less impact
on traffic noise under standard conditions; The aerodynamic
noise increases with the increase of vehicle speed, and the
increase will become more evident when the vehicle speed is
above 90 km/h [10]. Traffic noise has non-stationary property,
and it is difficult to extract robust acoustic characteristics due
to the interference of environmental noise (such as vehicles
in the adjacent lane on the highway) [12].

Currently some scholars utilize traffic noise to identify
traffic state. In literature [13],Mel FrequencyCepstrumCoef-
ficient (MFCC) characteristic of traffic noise is extracted,
and Support Vector Machine (SVM) is used as classifier
to identify free flow (40 km/h and above), saturated flow
(20-40 km/h), and jammed flow (0-20 km/h). In literature
[14] and [15], a traffic state evaluation method based on

vehicle whistle noise is proposed, and the corresponding
software and hardware systems are developed for near real-
time traffic congestion monitoring on chaotic roads. In liter-
ature [16], a traffic state evaluation method based on MFCC
characteristic of traffic noise is proposed: First, the traffic
state is divided into free flow (40 km/h and above), saturated
flow (10-40 km/h), and jammed flow (0-10 km/h); Second,
the traffic noise is collected from three different places (in
city), namely the traffic noise collection locations of each
traffic state are different; Third, the MFCC characteristic
of traffic noise is extracted, and the Vector Quantization
(VQ), Artificial Neural Network (ANN), and K Nearest
Neighbor (KNN) classification algorithms are compared in
the experiment; Finally the experimental results show that
VQ classification algorithm has better classification effect.
In literature [17], a traffic state evaluation method based on
Gray Level Co-Occurrence Matrix (GLCM) characteristic of
traffic noise is proposed: First, the traffic state is also divided
into jammed flow (0-10 km/h), saturated flow (10-40 km/h),
and free flow (40 km/h and above); Second, the traffic noise
data is also collected from three different places (including
city and suburb); Third, the GLCM characteristic of traffic
noise is extracted, and the SVM classifier is applied as
classifier to identify the traffic state; Finally the experimental
results show that the proposed method owns high evaluation
accuracy. In literature [18], a traffic state evaluation method
based on MFCC characteristic of traffic noise is proposed:
First, the traffic state is still divided into free flow (40 km/h
and above), saturated flow (10-40 km/h), and jammed flow
(0-10 km/h); Second, the traffic noise data is still collected
from three different places (in city); Third, the MFCC char-
acteristic of traffic noise is extracted, the Gaussian Mixture
Model (GMM) and SVM are utilized as classifier to identify
the traffic state, and the SVM classifier is implemented by
LIBSVM toolbox; Finally, the experimental results show that
SVM owns higher evaluation accuracy than GMM. In litera-
ture [19], the traffic state is divided into ‘‘Busy Street’’ and
‘‘Quiet Street’’, and a traffic state evaluation method based
on smart phone is proposed (smart phone is used to collect
traffic noise data): First, the collected traffic noise data is
divided into fixed size frames; Second, the characteristics
based on time and frequency domain from each frame is
extracted (including Zero Crossing Rate (ZCR), Short Time
Energy (STE), Root Mean Square (RMS) andMFCC); Third,
the SVM and Neural Network (NN) are used as classifier
to identify the traffic state; Finally, the experimental results
shows that the evaluation accuracy of SVM is slightly higher
than that of NN.

There are also some scholars using traffic noise for vehicle
type classification. Literature [20] mainly focuses on how to
select the description characteristics of traffic noise that can
make the vehicle classifier work normally. Literature [21]
utilizes traffic noise and Probabilistic Neural Network (PNN)
to identify different vehicle positions and types. Literature
[22] studies the automatic vehicle type classification based
on the spectrum characteristic of traffic noise. Literature
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[23] proposes a new algorithm for accurately estimating
the fundamental frequency of automobile engine sound, and
then uses the proposed algorithm to identify different civil
vehicles. Literature [24] introduces a sensor equipped with
magnetometer and microphone to collect traffic noise and
detect emergency vehicles. Literature [25] uses the Linear
Prediction Coefficient (LPC) characteristic and Time Delay
Neural Network (TDNN) to identify a single moving vehicle.

Traffic noise analysis is also applied to vehicle speed mea-
surement. Literature [26] makes use of a small microphone
array to collect traffic noise data and estimate vehicle speed.
Literature [27] extracts the peak characteristic of traffic noise,
and detects the number of vehicles, then estimates the pass-
ing time of vehicles using Generalized Cross Correlation
(GCC) function, finally obtains the passing distance of vehi-
cles through video in order to estimate the vehicle speed.
Literature [28] finds through experiments that if the target
vehicle moves rapidly or the traffic noise signal presents high
frequency component, then the serious deviation may hap-
pen to the vehicle speed estimation, aiming at this problem,
an improved vehicle speed estimation method is proposed.

Traffic noise analysis is also applied to traffic volume
estimation. Literature [29] proposes a Triangular Wave Anal-
ysis (TWA) characteristic extraction algorithm for traffic vol-
ume estimation in order to solve the problem of intersectant
Vehicle-Pass-Signals (VPSs) identification. Literature [30]
uses traffic noise to study vehicle positioning so as to detect
the existence of vehicle, and the number of vehicles finally
can be converted into hourly traffic volume. Literature [31]
proposes a real-time automatic vehicle detection algorithm
based on the acoustic characteristic of wavelet packet trans-
form. Literature [32] extracts the peak characteristic of the
power envelope spectrum of traffic noise, then the num-
ber of vehicles is counted according to the peak number,
finally the number of vehicles is converted into hourly traffic
volume. Literature [10] conducts an 11.5-day experimental
study on the roadside of Paris Ring Road, then extracts the
MFCC characteristic of traffic noise and estimates the traffic
volume with the Support Vector Regression (SVR) method,
finally the experimental results demonstrate a good applica-
tion prospect. Literature [33] constructs a Multilayer Percep-
tron Neural Network (MPNN), then estimates the short-term
traffic volume of urban roads by taking the acoustic spectrum
profile characteristic of traffic noise as the input data.

Research achievements above demonstrate that utilizing
traffic noise to detect traffic information is feasible and effec-
tive. In the meanwhile, these research achievements also have
important guiding significance for further research on the
application of traffic noise in traffic information detection.
Although some scholars have made use of traffic noise to
evaluate traffic state, generally speaking, there is still a lack of
comprehensive consideration on the following two aspects:

(1) Research on the evaluation of traffic state of the same
road section in the city. At present, most scholars study the
traffic state evaluation under the conditions of different road
sections or suburban road section, while few scholars study

traffic state evaluation under the conditions of the same urban
road sections. Compared with the conditions of different road
sections, the transition among different traffic states in con-
dition of the same road section is more coherent and smooth,
and the similarity among different traffic states is stronger,
so it is more difficult to evaluate traffic state in condition
of the same road section. The surrounding environment of
suburban road section is usually quiet, so it is easier to evalu-
ate traffic state compared with urban road section. However,
the population density and the residents travel demand in
urban are both bigger than those in suburban, thus urban road
section is more prone to traffic congestion than suburban road
section. Therefore, it is still of great significance to study the
traffic state evaluation in condition of the same urban road
section.

(2) Research on the acoustic characteristic extraction of
traffic noise in condition of complex noise environment.
So far, most scholars tend to detect traffic information by
extracting MFCC characteristic of traffic noise, this also
shows that it is reliable to use MFCC characteristic to charac-
terize traffic state. Some scholars use peak frequency charac-
teristic or GLCM characteristic of traffic noise to characterize
traffic state, however, MFCC characteristic is more consistent
with human ears auditory properties than peak frequency and
GLCM characteristics. Although it is feasible to use MFCC
characteristic to characterize traffic state, most scholars study
traffic state evaluation problem in the condition that the sur-
rounding environment interference is weak (such as no traffic
noise interference from other road sections), while few schol-
ars study traffic state evaluation problem in the condition
that the surrounding environment interference is strong (such
as traffic noise interference from other road sections). The
stronger the environmental noise interference is, the more
complex the traffic noise acquired is. Therefore, it remains
to be further studied whether MFCC characteristic is still
appropriate for characterizing traffic state in the condition
that the surrounding environment interference is strong.

In Section I, the present situation of research of traf-
fic information detection using traffic noise is introduced,
and the problems remain to be solved in current traf-
fic state evaluation research using traffic noise are ana-
lyzed. Section II introduces the pretreatment of traffic noise.
Section III introduces the SVM classifier and LIBSVM
toolbox. In Section IV, traditional traffic state evaluation
method using traffic noise is introduced. In Section V,
the modified traffic state evaluation methods using traf-
fic noise are proposed. Traffic state evaluation results
based on different methods are compared and discussed in
Section VI. The research contents of this paper are concluded
in Section VII.

II. PRETREATMENT OF TRAFFIC NOISE
Traffic noise should be pretreated before extracting its acous-
tic characteristics. The pretreatment operation of traffic noise
mainly includes framing and windowing. The two steps are
detailed below.
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A. FRAMING
Traffic noise owns non-stationary property, thus it is not
appropriate to analyze frequency domain directly [12]. Once
the traffic noise is framed, then each frame can be regarded
as a stationary acoustic signal. Generally, two adjacent frames
will overlap in part each other. The framing diagram of traffic
noise is shown as Figure 1.

FIGURE 1. Framing diagram of traffic noise.

The traffic noise signal changes over time. 1t represents
the time length of a short signal from the traffic noise signal.
Constantly changing 1t , it can be observed that the larger
the 1t is, the more obvious the change of the short signal is.
Therefore, when1t is small enough, the short signal then can
be treated as a steady-state signal, commonly, the short signal
is called frame, and the frame length is equal to1t . In order to
make the characteristic parameter of adjacent frames of traffic
noise change continuously and smoothly, some sample points
between adjacent frames is added, thus forming the overlap
between adjacent frames.

In Figure 1, m represents the frame length (i.e. the number
of sample points contained in a frame), and s represents
the frame shift (i.e. m minus the number of overlapping
sample points between adjacent frames). Sequence x = (x1,
x2, . . . , xN ) represents the traffic noise signal, N represents
the number of sample points in the sequence, and f (unit:
Hz) represents the sampling frequency of traffic noise, then
the frame number n can be calculated via formula (1), and
the time tk (unit: s) of the kth frame can be calculated as
formula (2),

n = [(N − m)/s]+ 1 (1)

tk = (1/f ) ∗ ((k − 1)s+ [m/2]) (2)

where [] represents the rounding operation (namely directly
discarding the decimal part), k = 1, 2, . . . , n. It can be also
seen from formula (1) that if the length of last frame is less
thanm, then the last framewill be directly discarded. Formula
(2) shows that the time of each frame can be expressed
through the time of center sample point of each frame.

B. WINDOWING
After the traffic noise signal is divided into frames, each
frame should be multiplied by a window function, and the
framemultiplied by the window function can be regarded as a

periodic signal approximately. Most of the window functions
have low-pass properties, in addition, the bandwidth and
spectrum leakage caused by different window functions are
also different. The frequently used window functions are rect-
angular window [34], hanning window [35], and hamming
window [36]. Hanning window and hamming window are
respectively defined as formula (3) and formula (4), where
m represents the length of window function (generally equal
to the frame length), and j = 1, 2, . . . ,m.

aj = 0.5
(
1− cos

(
2π (j− 1)

/
m− 1

))
(3)

bj = 0.54− 0.46cos
(
2π (j− 1)

/
m− 1

)
(4)

Hamming window owns small spectrum leakage, what’s
more, literature [19] shows that hamming window can better
eliminate the influence of sinusoidal signal sidelobe than
hanning window, so hamming window is usually selected as
the windowing function of traffic noise signal. The result after
windowing the frame is shown as formula (5).

yk (j) = bjx ((k − 1) s+ j) (5)

III. SVM CLASSIFIER OPTIMIZED BY PSO ALGORITHM
In the case of less training data and linear indivisibility,
Support Vector Machine (SVM) is still able to achieve high
classification accuracy. SVM has become one of the most
popular machine learning theories in the fields of data analy-
sis and pattern recognition. In addition, most scholars also use
SVM classifier to identify traffic state. In the aspect of SVM
parameters optimization, Particle SwarmOptimization (PSO)
algorithm is frequently used.

SVM is originally proposed to solve the problem of binary
classification, but binary classifier is helpless in dealing with
the problem of multi classification. The emergence of multi
classification SVM is tomake up for this defect of binary clas-
sifier. In order to solve practical problems efficiently, some
SVM toolkits have been developed and designed, such as
LIBSVM, LSSVM, SVMlight, and WEKA, where LIBSVM
is most frequently used. LIBSVM toolbox is a convenient
and efficient software package developed at the beginning
of the 21st century, and its main function is to realize SVM
pattern recognition and regression. The software package can
be used across platforms, and the codes are open-source,
namely, it can be second developed by users. In addition, LIB-
SVM involves relatively less parameter adjustment for SVM,
and provides many default parameters, so it can still solve
many problems. In practical application, Radial Basis Func-
tion (RBF) is usually used as kernel function. When SVM
is used for classification and prediction, generally, penalty
parameter c and RBF parameter g are adjusted to obtain ideal
accuracy. LIBSVM provides Cross Validation (CV) function,
dependent on the CV function, the best parameters can be
obtained, and to some extent, the occurrence of ‘‘over learn-
ing’’ and ‘‘under learning’’ can be prevented, thus the better
prediction effect can be achieved.

PSO algorithm belongs to the global stochastic search
heuristic algorithm based on swarm intelligence. PSO
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algorithm is usually utilized to optimize the penalty param-
eter c and the RBF parameter g for SVM. The idea of PSO
algorithm originates from the foraging behavior of birds.

In the field of present pattern recognition, the problem
that how to select appropriate penalty parameter c and RBF
parameter g for SVM is still unsolved. In other words, c
and g are generally determined according to experience,
experimental test or some toolbox including CV function.
While CV function is usually combined with PSO algorithm
to improve the ability of optimization. Steps for optimiz-
ing SVM parameters c and g with PSO algorithm (namely
PSO-SVM algorithm) are as follows:

Step 1: Initialize basic parameters. Let F(x) represent the
fitness function and set F(x) = −H (x), where H (x) repre-
sents the objective function, x = [c g]T, generally, H (x) is
equal to 100 multiplied by the accuracy of CV. The number of
population particles is set as Npop. Let j represent the particle
counter and set j = 1. Let Ngen represent the maximum
evolution generation. Let i represent the generation counter
and set i = 1. Let x(0)j represent the initial location of particle,

and set x(0)j =

[
c(0)j g(0)j

]T
. Let v(0)j represent the initial

moving speed of particle, and set v(0)j =
[
v(0)j,1 v(0)j,2

]T
. Let

yj represent the historical optimal location of the jth particle
in the population, and set yj = x(0)j . Let z represent the
global optimal location of the population, and z satisfies
F (z) = min

1≤j≤Npop
F
(
x(0)j

)
. Let γ1 represent the local search

capability, and set γ1 = 1.5. Let γ2 represent the global
search capability, and set γ2 = 1.7. Let ω0 represent the
inertia weight, and set ω0 = 1.0. Let cmax represent the high
threshold of penalty parameter c, and set cmax = 100. Let
cmin represent the low threshold of penalty parameter c, and
set cmin = 0.1. Let gmax represent the high threshold of RBF
parameter g, and set gmax = 1000. Let gmin represent the low
threshold of RBF parameter g, and set gmin = 0.01. Let κ
represent the relationship coefficient between speed threshold
and location threshold, and set κ = 0.6. Let vcmax = κcmax,
vcmin = −vcmax, vgmax = κgmax, and vgmin = −vgmax,
where vcmin and vcmax respectively represent the minimum
updating speed and the maximum updating speed of penalty
parameter c, while vgmin and vgmax respectively represent the
minimum updating speed and the maximum updating speed
of RBF parameter g.
Step 2: Update speed and location. Update the moving

speed of particle according to formula (6), and update the par-
ticle location according to formula (7), where v(i)j represent

the moving speed of particle, x(i)j represent particle location,
ϑ1 and ϑ2 both represent a random number between 0 and 1.
Judge whether the location and moving speed exceed their
respective thresholds. If exceeding the threshold, then the
threshold is taken directly.

v(i)j = ω0v
(i−1)
j +γ1ϑ1

(
yj−x

(i−1)
j

)
+ γ2ϑ2

(
z−x(i−1)j

)
(6)

x(i)j = x(i−1)j + v(i)j (7)

Step 3: Update the historical optimal location of particle.
If F

(
x(i)j
)
< F

(
yj
)
, then set yj = x(i)j .

Step 4: Update the global optimal location of the popula-
tion. If F

(
x(i)j
)
< F (z), then set z = x(i)j .

Step 5: Judge whether all particles of the ith generation are
completely updated. If j < Npop, then set j = j+1, and return
to Step 2. Otherwise, set j = 1, and return to Step 6.
Step 6: Determine whether to finish the PSO-SVM algo-

rithm. If i < Ngen, then set i = i + 1, and return to Step 2.
Otherwise, finish the PSO-SVM algorithm.

IV. THE TRADITIONAL TRAFFIC STATE EVALUATION
METHOD BASED ON MFCC CHARACTERISTIC
Mel Frequency Cepstrum Coefficient (MFCC) is one of the
most commonly used acoustic characteristics in the fields of
speech endpoint detection and speech recognition. At present,
most scholars also utilizeMFCC characteristic of traffic noise
to characterize different traffic states. The traditional traffic
state evaluation method based on MFCC characteristic of
traffic noise is reviewed in this section.

A. REVIEW OF MFCC CHARACTERISTIC
The MFCC characteristic extraction flowchart is shown as
Figure 2. MFCC extraction process mainly includes Fast
Fourier Transform (FFT), Mel filter bank design, and Dis-
crete Cosine Transform (DCT).

FIGURE 2. Flowchart of MFCC characteristic extraction.

1) FAST FOURIER TRANSFORM (FFT)
If x(n) is a complex sequence and its length is N , then its
N -point Discrete Fourier Transform (DFT) sequence X (k)
usually also represents a complex sequence and its length
is still N . The discrete sequence x(n) and periodic complex
index sequence can be written as the complex form of real
part plus virtual part, i.e. x (n) = Re [x (n)] + jIm [x (n)],
W nk
N = Re

[
W nk
N

]
+jIm

[
W nk
N

]
= cos

(
2π
N nk

)
−j sin

(
2π
N nk

)
,

so the DFT of x(n) can be defined as formula (8), where
k = 0, 1, . . . ,N − 1.

DFT [x (n)]

= X (k) =
N−1∑
n=0

x (n)W nk
N

=

N−1∑
n=0

{
Re [x (n)] cos

(
2π
N
nk
)
+ Im [x (n)] sin

(
2π
N
nk
)}

+ j
{
Im [x (n)] cos

(
2π
N
nk
)
− Re [x (n)] sin

(
2π
N
nk
)}
(8)
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Since one-time complex number multiplication is equiva-
lent to four times of real number multiplication and two times
of real number addition, while one-time complex number
addition is equivalent to two times of real number addition,
therefore, every X (k) calculated is equivalent to perform-
ing 4N times of real number multiplication and 2N + 2
(N − 1) = 4N − 2 times of real number addition. From
formula (8), it can be concluded that DFT[x(n)] needs to
execute N times of calculation of x(k) in total. Therefore,
in DFT calculation process, 4N 2 times of real multiplication
operations and 4N 2

−2N times of real addition operations are
required. In conclusion, the longer the sequence is, the larger
the calculation of DFT is, what’s more, when N is very large,
the DFT calculation will increase dramatically.

FFT is essentially a fast algorithm of DFT, and FFT can
greatly reduce the DFT operation load. Compared with DFT
algorithm, the longer the sequence length is, the larger the
operation load saved by FFT algorithm is, and the more
obvious the advantages are. FFT algorithm can be divided
into two categories: time extraction algorithm and frequency
extraction algorithm.

a: TIME EXTRACTION ALGORITHM
Assuming that the sequence length N satisfies N = 2m,
where m represents a positive integer, the sequence x(n) is
decomposed into the sum of even and odd terms, as shown in
formula (9),{

x (2r) = x1 (r)
x (2r + 1) = x2 (r)

r = 0, 1, · · · ,N/2− 1 (9)

correspondingly, the DFT is also decomposed into the com-
bination of odd and even terms, as shown in formula (10),

x (k) =
N−1∑
n=0

x (n)wnkN =
N/2−1∑
r=0

x (2r)w2rk
N

+wkN

N/2−1∑
r=0

x (2r + 1)w2rk
N (10)

according to the symmetry, it can be derived that w2n
N =

e−j
2π
N 2n
= wnN /2. X (k) can be also expressed as formula (11).

X (k) =
N /2−1∑
r=0

x (2r)W rk
N
2
+W k

N

N /2−1∑
r=0

x (2r + 1)W rk
N
2

(11)

Therefore, an N -point DFT can be decomposed into two
N /2-point DFTs, and these two N /2-point DFTs can be
recombined into one N -point DFT, and so on. If N satis-
fies N = 2m (m is a positive integer), then the N -point
DFT can finally become a linear combination of 2-point
DFT after m-times decomposition. The above decomposition
process is also known as m-level operations from x(n) to
X (k). Each level of operations experiences N /2-times com-
plex multiplication and N -times complex addition, so the
m-level operations finally experience N /2log2N -times com-
plex multiplication and N log2N -times complex addition.

b: FREQUENCY EXTRACTION ALGORITHM
Compared with time extraction algorithm, in frequency
extraction algorithm, the sequence X (k) is not divided into
two parts according to the way of odd and even division, but
according to the way of front and back half division. The
specific implementation of decomposition of N -point DFT
in frequency extraction algorithm is shown as formula (12).

X (k) =
N /2−1∑
n=0

x (n)W nk
N +

N−1∑
n=N /2

x (n)W nk
N

=

N /2−1∑
n=0

x (n)W nk
N +

N /2−1∑
n=0

x
(
n+ N

/
2
)
W

(
n+N

2

)
k

N

=

N /2−1∑
n=0

[
x (n)+W

N
2 k
N x

(
n+ N

/
2
)]
W nk
N (12)

It can be further divided into even and odd groups,
as shown in formulas (13), (14), and (15). If N satisfies
N = 2m, then N /2 is still an even number, that is to say,
after m-times decomposition of N -point DFT, the final DFT
is composed of 2-point DFT, and only includes addition and
subtraction operations.

X (k) =
N /2−1∑
n=0

[
x (n)+(−1)k x

(
n+N

/
2
)]
W nk
N (13)

X (2r) =
N /2−1∑
n=0

[
x (n)+ x

(
n+ N

/
2
)]
W 2nr
N /2 (14)

X (2r + 1) =
N /2−1∑
n=0

[
x (n)+ x

(
n+ N

/
2
)]
W n(2r+1)
N (15)

2) MEL FILTER BANK
When designingMel filter bank, some band-pass filtersHn(k)
are usually inserted into different frequency ranges of signals,
and the triangle filter is generally selected as the band-pass
filter. The central frequency of the filter is represented by
f (n). In Mel frequency range, the filter bandwidth is equal.
The transfer function of band-pass filter in different fre-
quency range can be expressed by formula (16),

Hn (k) =



0 k < f (n− 1)
k − f (n− 1)

f (n)− f (n− 1)
f (n− 1) ≤ k ≤ f (n)

f (n+ 1)− k
f (n+ 1)− f (n)

f (n) ≤ k ≤ f (n+ 1)

0 k > f (n+ 1)

(16)

where f (n) can be expressed in the form of formula (17),

f (n)=
(
N
fs

)
F−1mel

(
Fmel (fl)+n

Fmel (fh)−Fmel (fl)
m+ 1

)
(17)

where fl represents the lowest frequency, fh repre-
sents the highest frequency, N represents the sequence
length, fs represents the sampling frequency, Fmel
represents the Mel function (Fmel = 1125ln(1 + f /700)),

120632 VOLUME 8, 2020



Q. Ma, Z. Zou: Traffic State Evaluation Using Traffic Noise

and F−1mel represents the inverse operation of Mel function
(F−1mel(x) = 700(ex/1125 − 1)).

3) DISCRETE COSINE TRANSFORM (DCT)
DCT owns many advantages, such as rich spectrum compo-
nents, energy concentration, and no phase estimation. DCT
can achieve good signal enhancement effect under low com-
putational complexity. Let x(n) denote a signal sequence and
its length is N , where n = 0, 1, . . . ,N −1, then the complete
orthogonal normalization function of DCT can be expressed
as formula (18),

X (k) = δ (k)
N−1∑
n=0

x (n) cos
(
π (2n+ 1) k

2N

)
x (n) =

N−1∑
k=0

δ (k)X (k) cos
(
π (2n+ 1) k

2N

) (18)

where δ (k) can be defined according to formula (19),

δ (k) =


√
1
/
N k = 0√

2
/
N 1 ≤ k ≤ N − 1

(19)

therefore, X (k) can be also expressed as formula (20), as
shown at the bottom of the next page.

Another representation of DCT can be obtained from for-
mula (20), as shown in formula (21), where k = 0, 1, . . . ,
N − 1, and C(k) represents the orthogonal factor, which
ensures the normalization of the transformation basis.

X (k) =

√
2
N

N−1∑
n=0

C (k) x (n) cos
[
π (2n+ 1) k

2N

]
C (k) =

{√
2/2 k = 0

1 k = 1, 2, · · · ,N − 1

(21)

Therefore, the DCT matrix can be written as X = CN x,
where X and x are both column vector, X represents the
output sequence of DCT, and x represents the input sequence
of DCT, CN represents the transformation matrix, and the
element of CN can be solved according to formula (21).

B. THE TRADITIONAL TRAFFIC STATE EVALUATION
METHOD BASED ON MFCC CHARACTERISTIC
The flowchart of traffic state evaluation based on MFCC and
PSO-SVM is shown as Figure 3. First, the traffic noise is
collected under different traffic states, and each traffic state
is marked. Second, the traffic noise is pretreated through
framing and windowing, thus the framematrix of traffic noise
is acquired. Third, the MFCC characteristic of traffic noise is
extracted according to the frame matrix. Fourth, the MFCC
characteristic sets are divided into two parts: training sets
and testing sets. The optimal parameters c and g are acquired
after executing the PSO-SVM algorithm. Finally, the SVM
prediction model constructed by the optimal parameters c and
g is used to predict the testing sets, thus different traffic states
are evaluated.

FIGURE 3. Flowchart of traffic state evaluation based on MFCC.

V. THE PROPOSED TRAFFIC STATE EVALUATION
METHOD BASED ON THE MODIFIED MFCC
CHARACTERISTIC
A. TEAGER ENERGY OPERATOR
Teager Energy Operator (TEO) is a non-linear operator pro-
posed by Kaiser [37]. TEO can effectively reflect the signal
energy, and has been successfully applied to acoustic signal
processing. TEO can enhance the stable or semi-stable signal,
and also attenuate the unstable signal, meanwhile, it also
owns the non-linear energy tracking property. In addition,
TEO is also extremely sensitive to the amplitude envelope of
amplitude modulated signal and the instantaneous frequency
change of frequency modulation signal.

The calculation of TEO can be realized by formula (22)
and (23), where i = 2, 3, . . . , r − 1, and j = 1, 2, . . . , n.
Acoustic signal after framing and windowing, can be repre-
sented by matrix Y (also called frame matrix), where each
column represents a frame, r represents the frame length
(number of sample points of a frame), n represents the number
of frames, T represents the TEO characteristic matrix of
acoustic signal, and each element tij in T can be calculated
by formula (23).

Y =


y1,1 y1,2 . . . y1,n
y2,1 y2,2 . . . y2,n
...

...
. . .

...

yr,1 yr,2 · · · yr,n

 ,

T =


t1,1 t1,2 . . . t1,n
t2,1 t2,2 . . . t2,n
...

...
. . .

...

tr,1 tr,2 · · · tr,n

 (22)
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
ti,j = y2i,j − yi−1,jyi+1,j
t1,j = 2t2,j − t3,j
tr,j = 2tr−1,j − tr−2,j

(23)

B. PRINCIPAL COMPONENT ANALYSIS
In order to solve the practical problem, two or more variables
will be introduced more often than not, but some variables
may correlate strongly, and it will not only increase the
amount of calculation but also may produce many mistakes
if using strongly correlated variables directly to analyze
problems. To increase the utilization rate of data, more old
variables are usually replaced with fewer new variables,
meanwhile, the new variables are required to reflect the
original information of data as much as possible. Therefore,
Principal Component Analysis (PCA) is designed under this
background. The essence of PCA is to replace multiple
variables with a few comprehensive variables [38].

1) PRINCIPAL COMPONENT ANALYSIS MODEL
Let Xi represent the ith random variables, and X = (X1,
X2, . . . , Xp)T. Expectation of X is recorded as E(X) =
(E(X1), E(X2), . . . ,E(Xp))T, and the covariance matrix 6 is
shown as formula (24), where Cov represents the covariance
function.

6=
(
σi,j
)
p = Cov (X,X) = E

(
(X − E (X)) (X − E (X))T

)
(24)

The new variable Yi can be created by old variables X. It is
calculated by formula (25),

Y1 = lT1X = l11X1 + l12X2 + · · · + l1pXp

Y2 = lT2X = l21X1 + l22X2 + · · · + l2pXp
...

Yp = lTpX = lp1X1 + lp2X2 + · · · + lppXp

(25)

where li = (li1, li2, · · · , lip)T denotes the composite variable
coefficient, and i = 1, 2, · · · , p. Meanwhile, formula (25) is
required to meet the following three restrictions:

(1) The composite variable coefficient li is a unit vector,
as shown in formula (26), where i = 1, 2, · · · , p.

lTi l i = l2i1 + l
2
i2 + · · · + l

2
ip = 1 (26)

(2) Yi is not related to Yj, namely, the covariance of Yi and Yj
is 0, as shown in formula (27).

Cov
(
Y i,Y j

)
= Cov

(
lTi X, l

T
j X
)
= lTi 6l j = 0 (27)

(3) The variance of Yi decreases monotonically with the
increase of i, as shown in formula (28).

Var(Y1) ≥ Var(Y2) ≥ · · · ≥ Var(Yp) ≥ 0 (28)

Therefore, Yi is called the ith principal component, coef-
ficient li is called the ith principal component coefficient,
where i = 1, 2, · · · , p.

2) MODEL SOLUTION
According to the limit conditions from formula (26) to for-
mula (28), the principal component and its related parameters
(such as variance and contribution rate) can be calculated.

a: PRINCIPAL COMPONENT SOLUTION
Let λi represent eigenvalue of the covariance matrix 6, and
ei = (ei1, ei2, · · · , eip, ) denote the unit orthogonal eigenvec-
tor. If 6 has been determined, then Yi can be calculated via
formula (29), in addition, the variance of principal compo-
nent and the covariance between principal components can
be calculated by formula (30), where i 6= j, meanwhile
i, j = 1, 2, · · · , p.

Y i = eTi X = ei1X1 + ei2X2 + · · · + eipXp (29){
Var (Y i) = eTi 6ei = λi
Cov

(
Y i,Y j

)
= eTi 6ej = 0

(30)

b: TOTAL VARIANCE OF PRINCIPAL COMPONENTS
AND ITS CONTRIBUTION RATE
Let Y = (Y1, Y2, · · · , Yp)T, and P = (e1, e2, · · · , ep),
then Y = PTX, and the covariance matrix of Y is shown in
formula (31). The total variance of Yi is equal to the total
variance of Xi, as shown in formula (32).

6Y = PT6P = 3 = Diag
(
λ1, λ2, · · · , λp

)
(31)

p∑
i=1

Var (Y i) =
p∑
i=1

Var (X i) (32)

Let αm represent the sum of the contribution rate of the
first m (m ≤ p) principal components, αm is generally also
called the cumulative contribution rate. In practical problems,
m principal components are usually selected to make the
cumulative contribution rate reach more than 80%.

αm =

m∑
i=1

λi

/ p∑
j=1

λj (33)


X (0)
X (1)
...

X (N − 1)

 =
√

2
N



1
√
2

1
√
2

· · ·
1
√
2

cos
π

2N
cos

3π
2N

· · · cos
(2N − 1) π

2N
...

...
...

...

cos
(N − 1) π

2N
cos

3 (N − 1) π
2N

· · · cos
(2N − 1) (N − 1) π

2N




x (0)
x (1)
...

x (N − 1)

 (20)
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C. THE PROPOSED TRAFFIC STATE EVALUATION METHOD
BASED ON T-MFCC CHARACTERISTIC
1) THE PROPOSED T-MFCC CHARACTERISTIC
We utilize TEO to modify the MFCC characteristic, thus a
new acoustic characteristic is acquired, and this new charac-
teristic is named T-MFCC by us in this paper. First, theMFCC
characteristic is extracted; second, the characteristic value
of each dimension of MFCC is fused with the mean value
of TEO characteristic; finally, the T-MFCC characteristic is
acquired, and its extraction flowchart is as shown in Figure 4,
where the content in the red dotted box represents the modi-
fied part relative to MFCC characteristic.

FIGURE 4. Extraction flowchart of T-MFCC characteristic.

The acoustic signal data is pretreated by framing and
windowing, and the frame matrix is obtained. At this time,
the frame matrix is operated in two aspects: on the one hand,
the frame matrix is processed by FFT, Mel filtering and DCT
to obtain MFCC characteristic matrix; on the other hand,
the TEO characteristic is extracted directly based on the frame
matrix. The mean value of each column of TEO characteristic
is calculated, and then the TEO mean is multiplied by the
characteristic value of each dimension ofMFCC to realize the
fusion between TEO characteristic and MFCC characteristic.

Let M and χ represent MFCC characteristic matrix and
T-MFCC characteristic matrix respectively, as shown in for-
mula (34), where p represents the characteristic dimension
and n represents the total number of frames.

M =


m1,1 m1,2 . . . m1,n
m2,1 m2,2 . . . m2,n
...

...
. . .

...

mp,1 mp,2 · · · mp,n

 ,

χ =


χ1,1 χ1,2 . . . χ1,n
χ2,1 χ2,2 . . . χ2,n
...

...
. . .

...

χp,1 χp,2 · · · χp,n

 (34)

In formula (34), each column of M represents a frame of
MFCC characteristic, and each frame ofMFCC characteristic
owns p attributes M1, M2, · · · , Mp, where Mi = (mi1,
mi2, · · · ,min)T, i = 1, 2, · · · , p. Similarly, each column of χ
represents a frame of T-MFCC characteristic, and each frame
of T-MFCC characteristic owns p attributes TM1, TM2, · · · ,
TMp, where TMj =

[
χj,1 χj,2 · · · χj,n

]T, j = 1, 2, · · · , p.

FIGURE 5. Flowchart of traffic state evaluation based on T-MFCC.

Therefore, according to Figure 5, the T-MFCC characteristic
extraction algorithm can be concluded as follows:

Step 1: Extract MFCC characteristic matrix according to
Figure 3, and initialize j = 1.
Step 2: Calculate the TEO mean of frame j, as shown in

formula (35), where tij can be calculated by formula (23).

t̄j =
1
r

r∑
i=1

ti,j (35)

Step 3: Define χi,j as shown in formula (36).

χi,j = t̄jmi,j (36)

Step 4: Let j = j + 1. If j ≤ n, then return to Step 2;
otherwise, generate T-MFCC characteristic matrix and end
the T-MFCC characteristic extraction algorithm.

2) THE PROPOSED TRAFFIC STATE EVALUATION METHOD
BASED ON T-MFCC CHARACTERISTIC
The flowchart of traffic state evaluation based on T-MFCC
and PSO-SVM is shown as Figure 5. First, the traffic noise is
collected under different traffic states, and each traffic state
is marked. Second, the traffic noise is pretreated through
framing and windowing, thus the framematrix of traffic noise
is acquired. Third, the MFCC and TEO characteristics of
traffic noise are extracted according to the frame matrix.
Fourth, the mean value of each column of TEO character-
istic is calculated, and the TEO mean is multiplied by the
characteristic value of each dimension of MFCC to acquire
the T-MFCC characteristic. Fifth, the T-MFCC characteristic
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sets are divided into two parts: training sets and testing sets.
The optimal parameters c and g are acquired after executing
the PSO-SVM algorithm. Finally, the SVM prediction model
constructed by the optimal parameters c and g is used to pre-
dict the testing sets, thus different traffic states are evaluated.

D. THE PROPOSED TRAFFIC STATE EVALUATION METHOD
BASED ON PT-MFCC CHARACTERISTIC
1) THE PROPOSED PT-MFCC CHARACTERISTIC
Using PCA to reduce the dimension of T-MFCC characteris-
tic, thus we can generate another new acoustic characteristic,
and this new characteristic is named PT-MFCC by us in this
paper. The extraction flowchart of PT-MFCC characteristic
is shown as Figure 6, where the content in the red dotted box
represents the modified part relative to MFCC characteristic,
and the content in the blue dotted box represents the modified
part relative to T-MFCC characteristic.

FIGURE 6. Extraction flowchart of PT-MFCC characteristic.

T-MFCC is modified by PCA to reduce its characteristic
dimension. The steps of PT-MFCC characteristic extraction
algorithm are as follows:

Step 1: Extract the T-MFCC characteristic matrix and
initialize the threshold of cumulative contribution rate
α0 (0 < α0 < 1).

Step 2: Standardize the T-MFCC characteristic matrix.
In order to reduce the data level differences, the T-MFCC
characteristic matrix is standardized according to for-
mula (37), and the standardization process is shown as for-
mula (38), where 1 ≤ i ≤ p, 1 ≤ j ≤ n, χ̄i represents the
sample mean, and sij represents sample variance.

χ∗ =


χ∗
1,1

χ∗
1,2

. . . χ∗
1,n

χ∗
2,1

χ∗
2,2

. . . χ∗
2,n

...
...

. . .
...

χ∗
p,1

χ∗
p,2
· · · χ∗

p,n

 (37)



χ∗i,j =
χi,j − χ̄i
√
si,i

χ̄i =
1
n

n∑
k=1

χi,k

si,i =
1

n− 1

n∑
k=1

(
χi,k − χ̄i

)2
(38)

Step 3: Calculate the covariance matrix 6χ∗ of χ∗,
as shown in formula (39), where 1 ≤ j ≤ n.

6χ∗ =
1

n− 1

n∑
j=1

(
χ∗j − χ̄

∗

) (
χ∗j − χ̄

∗

)T
χ̄∗ = 1

n

n∑
j=1
χ∗j

χ∗j =
(
χ∗1,j χ

∗

2,j · · · χ
∗
p,j

)T
(39)

Step 4: Calculate the eigenvalues �i of the principal com-
ponent and the eigenvalues λi of 6χ∗ , as shown in for-
mula (40) and (41) respectively, where i = 1, 2, · · · , p.

�i = χ
∗Tei =

(
ei,1χ∗1 + ei,2χ

∗

2 + · · · + ei,pχ
∗
p

)T
(40)

λi = eTi 6χ∗ei (41)

Step 5: Calculate the cumulative contribution rate αm of the
firstm principal components according to formula (33). Obvi-
ously, αm strictly monotonically increases with the increase
of m. If αm ≤ α0, then let mmax represent the maximum
m value, so the former mmax principal components can be
regarded as the attributes of the PT-MFCC characteristic, that
is, mmax is the dimension of PT-MFCC. The characteristic
matrix � of PT-MFCC, and can be expressed in the form of
� =

(
�1 �2 · · · �mmax

)T, each column of � represents
a frame of PT-MFCC characteristic. End the PT-MFCC char-
acteristic extraction algorithm.

2) THE PROPOSED TRAFFIC STATE EVALUATION METHOD
BASED ON PT-MFCC CHARACTERISTIC
The flowchart of traffic state evaluation based on PT-MFCC
and PSO-SVM is shown as Figure 7. First, the traffic noise is
collected under different traffic states, and each traffic state
is marked. Second, the traffic noise is pretreated through
framing and windowing, thus the frame matrix of traffic
noise is acquired. Third, the MFCC and TEO characteristics
of traffic noise are extracted according to the frame matrix.
Fourth, the mean value of each column of TEO characteristic
is calculated, and the TEO mean is multiplied by the char-
acteristic value of each dimension of MFCC to acquire the
T-MFCC characteristic. Fifth, PCA is introduced to reduce
the T-MFCC characteristic dimension, thus PT-MFCC char-
acteristic is acquired. Sixth, the PT-MFCC characteristic sets
are divided into two parts: training sets and testing sets. The
optimal parameters c and g are acquired after executing the
PSO-SVM algorithm. Finally, the SVM prediction model
constructed by the optimal parameters c and g is used to pre-
dict the testing sets, thus different traffic states are evaluated.

VI. CASE STUDY
A. TRAFFIC NOISE DATA ACQUISITION
Up to now, there is not a consistent definition regarding
traffic state all over the world. In different road conditions,
drivers have different feelings about traffic state, that is,
the characteristic parameters of traffic flow change with the
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FIGURE 7. Flowchart of traffic state evaluation based on PT-MFCC.

change of traffic state. In order to collect the traffic noise
under different traffic states, it is necessary to acquire the
traffic state by other ways in advance. The average speed
of vehicles is generally used to judge the traffic state. Most
scholars divide 0-10 km/h into jammed flow, 10-40 km/h
into saturated flow, and 40 km/h above into free flow. A few
scholars divide 0-20 km/h into jammed flow, 20-40 km/h
into saturated flow, 40 km/h above into free flow. There is
not a clear standard regarding which division way is more
suitable, therefore, we adopt the popular division way in this
paper, namely, 40 km/h and above are divided into free flow,
10-40 km/h is divided into saturated flow, and 10 km/h is
divided into jammed flow. The division way of traffic state
corresponding to average speed are shown in Table 1.

TABLE 1. The division way of traffic state corresponding to average
speed.

Chongqing Yangtze River Bridge in China is selected as
the road section for traffic noise data acquisition. This road
section includes four lanes, one of them is a bus lane. The
traffic noise data acquisition scene is shown in Figure 8. The
traffic noise data corresponding to three different traffic states
are all acquired from this same road section. The number of
vehicles per lane are not the same. We obtained the acoustic
data in a four-lane road segment, namely we take into account
the traffic noise in a set of lanes. Therefore, the number of
vehicles per lane does not affect the acoustic analysis.

When acquiring the traffic noise from the expected road
section, the acquisition data will be greatly disturbed by the

FIGURE 8. Traffic noise data acquisition scene.

traffic noise of the opposite lanes, the wind noise blowed
from the surface of the river, and the traffic noise of other
road sections under the bridge, so the traffic noise acquired
from the expected road section is more complex. In some
areas or segments of city, the surrounding environment is
quiet, while others are noisy. However, no matter how the
surrounding environment changes, acoustic characteristics is
the key factor affecting the accuracy of traffic state evaluation.
Therefore, the traffic state evaluation based on traffic noise in
different surrounding environments, the problem can still be
regarded as the selection of acoustic characteristics, which
is also the research content of this paper. If the surrounding
environment of segment is complex enough, thenwe just need
to extract a new more robust acoustic characteristics.

When using the acoustic acquisition equipment to collect
the traffic noise, the equipment is fixed to the top of the
tripod. At present, there is not a specific standard for the
placement of tripod, generally, it can be placed within one
meter from the edge of the road section. Considering the
pedestrians on the bridge, the tripod is placed at the edge
of the road section. In order to better acquire the traffic
noise, the microphone should face the approaching vehicles.
The format of the collected audio data is ‘‘.wav’’, and the
sampling frequency is 48 kHz. The traffic noise acquired for
five seconds under each traffic state is shown in Figure 9,
where the class label represents the traffic state corresponding
to the traffic noise, namely, ‘‘1’’ represents free flow, ‘‘2’’
represents saturated flow, and ‘‘3’’ represents jammed flow.
The traffic noise signal in each traffic state is taken 5 seconds,
sowe collect 15 seconds of traffic noise for three traffic states.

Nowadays, radar velocimeter is widely used in vehicle
speed detection, so we use hand-held radar velocimeter
to measure the speed of the passing vehicle. It should be
noted that speed measurement and traffic noise collection
are carried out at the same time, because we do not know
which traffic state the collected traffic noise belongs to before
finishing data acquisition.

B. TRAFFIC STATE EVALUATION RESULTS BASED
ON MFCC CHARACTERISTIC
1) MFCC CHARACTERISTIC EXTRACTION
In speech recognition, 25ms is generally selected as the frame
length, and the frame shift is generally set as one half of the
frame length. In view of this, we also set the frame length
of traffic noise equal to 25 ms (namely 1200 sample points)
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FIGURE 9. Traffic noise data acquisition under different traffic states.

FIGURE 10. Frequency response curve of Mel filter bank.

and frame shift equal to 12.5 ms (namely 600 sample points).
Generally, the MFCC characteristic dimension is set equal
to 8, correspondingly, the number of Mel filters should be
set equal to twice of MFCC characteristic dimension. The
frequency response curve of Mel filter bank using hamming
window function is shown as Figure 10.

Figure 11 shows the fractal dimension visualization graph
of MFCC characteristic under different traffic states, where
Mi (i = 1, 2, · · · , p) represents the ith dimension attribute
of MFCC characteristic, here, the parameter p is 8. It can be
seen from Figure 11 that in the same dimension, the attribute
values of saturated flow and jammed flow are close, but
different from those of free flow.

The class label of traffic state corresponding to each frame
of MFCC is shown as Figure 12. There are 399 frames of
MFCC in each traffic state, so the total number of frames of
MFCC is 1197.

2) TRAFFIC STATE EVALUATION RESULTS
In the field of digital signal processing, the normalization
method is usually utilized to process sample points into values
in [0, 1] interval, so as to reduce the differences between
different data levels. The MFCC characteristic is normalized

according to formula (42), where mij denotes the ith dimen-
sion attribute value of the acoustic characteristic of the jth
frame, n represents the number of frames, p represents the
acoustic characteristic dimension.

mi,j =
mi,j − min

1≤j≤n
mi,j

max
1≤j≤n

mi,j − min
1≤j≤n

mi,j
(42)

The definition of comprehensive evaluation accuracy rall of
traffic state is shown in formula (43), where n(i)correct represents
the number of correctly identified test sample frames in the
traffic state corresponding to label i, n(i) represents the total
number of test sample frames in the traffic state correspond-
ing to label i (i = 1, 2, 3), andN denotes the number of traffic
state classification. Therefore, rall can be used to compare
the advantages and disadvantages of different traffic state
evaluation methods.

rall =

(
N∑
i=1

n(i)correct

/
N∑
i=1

n(i)
)
× 100% (43)

The first 200 frames of MFCC of each traffic state are
selected as the training sets, and the last 199 frames of
MFCC of each traffic state are selected as the testing sets.
Therefore, the total number of training frames is 600, and the
total number of testing frames is 597. The first 200 frames
of MFCC of each traffic state is used to train the SVM
classifier. PSO algorithm is introduced to optimize the SVM
parameters, and the optimal parameter copt and gopt are shown
in Figure 13 (a), where CVAccuracy represents the accuracy
of interactive verification under the current optimal param-
eters, at this time, CVAccuracy is 90.167%. CVAccuracy is
also called training accuracy. The trained SVM classifier is
used to predict the last 199 frames of MFCC of each traffic
state, and the comprehensive evaluation accuracy of traffic
state based on MFCC characteristic is 81.742%, as shown
in Figure 13 (b).

Let ncorrect represent the number of correctly identified
testing samples, and nerror represent the number of incorrectly
identified testing samples. Evaluation results of three differ-
ent traffic states based on MFCC characteristic are shown
in Figure 14.

The evaluation results of free flow based on MFCC char-
acteristic are shown in Figure 14 (a) - (d). ncorrect is 50 and
nerror is 0 in frame 1-50; ncorrect is 50 and nerror is 0 in frame
51-100; ncorrect is 47 and nerror is 3 in frame 101-150; ncorrect
is 45 and nerror is 4 in frame 151-199. So, ncorrect of free
flow is 50 + 50 + 47 + 45 = 192, and nerror of free flow
is 0+ 0+ 3+ 4 = 7.
The evaluation results of saturated flow based on MFCC

characteristic are shown in Figure 14 (e) – (h). ncorrect is
43 and nerror is 7 in frame 200-249; ncorrect is 38 and nerror
is 12 in frame 250-299; ncorrect is 27 and nerror is 23 in frame
300-349; ncorrect is 7 and nerror is 42 in frame 350-398. So,
ncorrect of saturated flow is 43+38+27+7 = 115, and nerror
of saturated flow is 7+ 12+ 23+ 42 = 84.
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FIGURE 11. Fractal dimension visualization graph of MFCC characteristic.

The evaluation results of jammed flow based on MFCC
characteristic are shown in Figure 14 (i) – (l). ncorrect is 46 and
nerror is 4 in frame 399-448; ncorrect is 48 and nerror is 2 in
frame 449-498; ncorrect is 43 and nerror is 7 in frame 499-548;
ncorrect is 44 and nerror is 5 in frame 549-597. So, ncorrect of
jammed flow is 46 + 48 + 43 + 44 = 181, and nerror of
jammed flow is 4+ 2+ 7+ 5 = 18.
In order to better observe the evaluation results of three

different traffic states based on MFCC, according to the
statistical results of Figure 14, the evaluation accuracies of
each traffic state are calculated as shown in Table 2.

3) LIMITATIONS
It can be seen from Table 2 that the evaluation accuracy of
free flow is 96.482%, and that of jammed flow is 90.955%.
However, the evaluation accuracy of saturated flow is only
57.789%. Because of the low evaluation accuracy of saturated
flow, the comprehensive evaluation accuracy of traffic state
is also low. Therefore, the traditional MFCC characteristic is
relatively strong in characterizing free flow and jammed flow,
but very weak in characterizing saturated flow. In addition,
saturated flow itself is a transition state from free flow to
jammed flow, thus its characteristics are similar to the other
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FIGURE 12. Traffic state corresponding to each frame of MFCC.

FIGURE 13. Traffic state evaluation results based on MFCC characteristic.

two states. Because the traffic noise is acquired on the same
road section, the similarity are stronger. In summary, the
recognition of saturated flow is generally more difficult than
the other two states, and the MFCC characteristic performs
poorly when characterizing saturated flow.

C. TRAFFIC STATE EVALUATION RESULTS BASED ON
T-MFCC CHARACTERISTIC
1) T-MFCC CHARACTERISTIC EXTRACTION
Figure 15 shows the fractal dimension visualization graph of
T-MFCC characteristic under different traffic states, where

FIGURE 14. Evaluation results of three different traffic states based on
MFCC characteristic.

TABLE 2. Evaluation accuracies of three different traffic states based on
MFCC characteristic.

TMi (i = 1, 2, · · · , p) represents the ith dimension attribute
of T-MFCC characteristic, here, the parameter p is 8. It can be
seen from Figure 15 that in the same dimension, the attribute
values of different traffic states are quite different.

The class label of traffic state corresponding to each frame
of T-MFCC is shown as Figure 16. There are 399 frames of
T-MFCC in each traffic state, so the total number of frames
of T-MFCC is 1197.

2) TRAFFIC STATE EVALUATION RESULTS
The first 200 frames of T-MFCC of each traffic state are
selected as the training sets, and the last 199 frames of
T-MFCC of each traffic state are selected as the testing sets.
Therefore, the total number of training frames is 600, and
the total number of testing frames is 597. The first 200
frames of T-MFCC of each traffic state is used to train the
SVM classifier. PSO algorithm is introduced to optimize the
SVM parameters, and the optimal parameter copt and gopt
are shown in Figure 17 (a). The trained SVM classifier is
used to predict the last 199 frames of T-MFCC of each traffic
state, and the comprehensive evaluation accuracy of traffic
state based on T-MFCC characteristic is 85.427%, as shown
in Figure 17 (b).

Let ncorrect represent the number of correctly identified
testing samples, and nerror represent the number of incorrectly
identified testing samples. Evaluation results of three differ-
ent traffic states based on T-MFCC characteristic are shown
in Figure 18.
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FIGURE 15. Fractal dimension visualization graph of T-MFCC characteristic.

The evaluation results of free flow based on T-MFCC
characteristic are shown in Figure 18 (a) - (d). ncorrect is 50
and nerror is 0 in frame 1-50; ncorrect is 50 and nerror is 0 in
frame 51-100; ncorrect is 34 and nerror is 16 in frame 101-150;
ncorrect is 32 and nerror is 17 in frame 151-199. So, ncorrect of
free flow is 50+ 50+ 34+ 32 = 166, and nerror of free flow
is 0+ 0+ 16+ 17 = 33.

The evaluation results of saturated flow based on T-MFCC
characteristic are shown in Figure 18 (e) - (h). ncorrect is 43 and
nerror is 7 in frame 200-249; ncorrect is 38 and nerror is 12 in
frame 250-299; ncorrect is 40 and nerror is 10 in frame 300-349;
ncorrect is 26 and nerror is 23 in frame 350-398. So, ncorrect of
saturated flow is 43 + 38 + 40 + 26 = 147, and nerror of
saturated flow is 7+ 12+ 10+ 23 = 52.
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FIGURE 16. Traffic state corresponding to each frame of T-MFCC.

FIGURE 17. Traffic state evaluation results based on T-MFCC
characteristic.

The evaluation results of jammed flow based on T-MFCC
characteristic are shown in Figure 18 (i) - (l). ncorrect is 49
and nerror is 1 in frame 399-448; ncorrect is 50 and nerror is
0 in frame 449-498; ncorrect is 49 and nerror is 1 in frame
499-548; ncorrect is 49 and nerror is 0 in frame 549-597. So,
ncorrect of jammed flow is 49+50+49+49 = 197, and nerror
of jammed flow is 1+ 0+ 1+ 0 = 2.
In order to better observe the evaluation results of three

different traffic states based on T-MFCC, according to the
statistical results of Figure 18, the evaluation accuracies of
each traffic state are calculated as shown in Table 3.

FIGURE 18. Evaluation results of three different traffic states based on
T-MFCC characteristic.

TABLE 3. Evaluation accuracies of three different traffic states based on
T-MFCC characteristic.

D. TRAFFIC STATE EVALUATION RESULTS BASED
ON PT-MFCC CHARACTERISTIC
1) PT-MFCC CHARACTERISTIC EXTRACTION
On the basis of T-MFCC, the PT-MFCC characteristic is
extracted. In the process of the PT-MFCC characteristic
extraction, it is found that the first five principal components
are the most appropriate attributes for PT-MFCC. Figure 19
shows the fractal dimension visualization graph of PT-MFCC
characteristic under different traffic states, where PTMi
(i = 1, 2, . . . , p) represents the ith dimension attribute of
PT-MFCC characteristic, here, the parameter p is 5. It can be
seen from Figure 19 that in the same dimension, the attribute
values of saturated flow and free flow are close, but different
from those of jammed flow.

The class label of traffic state corresponding to each frame
of PT-MFCC is shown as Figure 20. There are 399 frames of
PT-MFCC in each traffic state, so the total number of frames
of PT-MFCC is 1197.

2) TRAFFIC STATE EVALUATION RESULTS
The first 200 frames of PT-MFCC of each traffic state are
selected as the training sets, and the last 199 frames of
PT-MFCC of each traffic state are selected as the testing
sets. Therefore, the total number of training frames is 600,
and the total number of testing frames is 597. The first 200
frames of PT-MFCC of each traffic state is used to train the
SVM classifier. PSO algorithm is introduced to optimize the
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FIGURE 19. Fractal dimension visualization graph of PT-MFCC
characteristic.

SVM parameters, and the optimal parameter copt and gopt are
shown in Figure 21 (a). The trained SVM classifier is used to
predict the last 199 frames of PT-MFCC of each traffic state,

FIGURE 20. Traffic state corresponding to each frame of PT-MFCC.

FIGURE 21. Traffic state evaluation results based on PT-MFCC
characteristic.

and the comprehensive evaluation accuracy of traffic state
based on PT-MFCC characteristic is 55.276%, as shown in
Figure 21 (b).

Let ncorrect represent the number of correctly identified
testing samples, and nerror represent the number of incorrectly
identified testing samples. Evaluation results of three differ-
ent traffic states based on PT-MFCC characteristic are shown
in Figure 22.

The evaluation results of free flow based on PT-MFCC
characteristic are shown in Figure 22 (a) - (d). ncorrect is 38
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FIGURE 22. Evaluation results of three different traffic states based on
PT-MFCC characteristic.

FIGURE 23. Histogram of traffic state evaluation accuracy based on
different traffic noise characteristics.

and nerror is 12 in frame 1-50; ncorrect is 30 and nerror is 20 in
frame 51-100; ncorrect is 11 and nerror is 39 in frame 101-150;
ncorrect is 4 and nerror is 45 in frame 151-199. So, ncorrect of
free flow is 38+ 30+ 11+ 4 = 83, and nerror of free flow is
12+ 20+ 39+ 45 = 116.

The evaluation results of saturated flow based on
PT-MFCC characteristic are shown in Figure 22 (e) - (h).
ncorrect is 16 and nerror is 34 in frame 200-249; ncorrect is 6 and
nerror is 44 in frame 250-299; ncorrect is 19 and nerror is 31 in
frame 300-349; ncorrect is 7 and nerror is 42 in frame 350-398.
So, ncorrect of saturated flow is 16 + 6 + 19 + 7 = 48, and
nerror of saturated flow is 34+ 44+ 31+ 42 = 151.
The evaluation results of jammed flow based on PT-MFCC

characteristic are shown in Figure 22 (i) - (l). ncorrect is 50 and
nerror is 0 in frame 399-448; ncorrect is 50 and nerror is 0 in
frame 449-498; ncorrect is 50 and nerror is 0 in frame 499-548;
ncorrect is 49 and nerror is 0 in frame 549-597. So, ncorrect of
jammed flow is 50 + 50 + 50 + 49 = 199, and nerror of
jammed flow is 0+ 0+ 0+ 0 = 0.
In order to better observe the evaluation results of three

different traffic states based on PT-MFCC, according to the

TABLE 4. Evaluation accuracies of three different traffic states based on
PT-MFCC characteristic.

TABLE 5. Evaluation accuracies of traffic state based on three different
traffic noise characteristics (%).

statistical results of Figure 22, the evaluation accuracies of
each traffic state are calculated as shown in Table 4. It can be
seen from Figure 19 that in the same dimension, the attribute
values corresponding to the jammed flow are quite different
from those corresponding to the other two states, and the
attribute values corresponding to the jammed flow are almost
the same, meanwhile, the attribute values of saturated flow
and free flow are close. Therefore, the congested flow is with
high accuracy and the other flows with very low accuracy.

E. RESULTS ANALYSIS
The traffic state evaluation accuracies acquired under three
different traffic noise characteristics are summarized as
shown in Table 5.

Compared with the MFCC characteristic, the recognition
rate of free flow corresponding to the T-MFCC character-
istic is reduced by 13.065%, the recognition rate of satu-
rated flow is increased by 16.080%, the recognition rate of
jammed flow is increased by 8.040%, and the comprehen-
sive evaluation accuracy is improved by 3.685%. Compared
with the MFCC characteristic, the recognition rate of free
flow corresponding to PT-MFCC characteristic is reduced by
54.773%, the recognition rate of saturated flow is reduced by
33.668%, the recognition rate of jammed flow is increased
by 9.045%, and the comprehensive evaluation accuracy is
reduced by 26.466%. Compared with PT-MFCC charac-
teristic, the recognition rate of free flow corresponding to
T-MFCC characteristic is increased by 41.708%, the recogni-
tion rate of saturated flow is increased by 49.748%, the recog-
nition rate of jammed flow is reduced by 1.005%, and the
comprehensive evaluation accuracy is improved by 30.151%.
In order to observe the evaluation results of traffic state more
intuitively, data in Table 5 is drawn in the form of histogram,
as shown in Figure 23.

Compared with the traditional MFCC characteristic,
although the recognition rate of free flow based on T-MFCC
characteristic reduces, it still reached more than 80%, in addi-
tion, the recognition rates of saturated flow and jammed flow
both increase greatly, and the comprehensive evaluation accu-
racy also increases. Therefore, the T-MFCC characteristic is
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superior to the MFCC characteristic, and the MFCC charac-
teristic is superior to the PT-MFCC characteristic.

VII. CONCLUSION
Aiming at the problem that MFCC characteristic of traffic
noise in conditions of the same road section and complex
noise environment has weak characterization abilities for traf-
fic state (especially saturated flow), two new characteristic
extraction algorithms of traffic noise are proposed, namely
T-MFCC characteristic extraction algorithm and PT-MFCC
characteristic extraction algorithm. T-MFCC characteristic is
composed of TEO characteristic and MFCC characteristic.
The experimental results show that the T-MFCC charac-
teristic is superior to the MFCC characteristic, especially,
the T-MFCC characteristic has a great contribution to the
improvement of recognition accuracy of saturated flow. Then
PCA is used to reduce the dimension of T-MFCC, so the
PT-MFCC characteristic is acquired. However, according
to the experimental results, the PT-MFCC characteristic
performs much worse than the MFCC characteristic and
the T-MFCC characteristic, that is, there are no redundant
attributes in T-MFCC characteristic, so it is not needed to
utilize the PCA algorithm to reduce the dimensionality of
T-MFCC characteristic. Therefore, T-MFCC characteristic
owns stronger abilities than other two characteristics to char-
acterize traffic state, especially saturated flow.

In the next work, we will study the traffic state evaluation
in conditions of some more complex circumstances, such as
thunder, rain, hail and other noises caused by traffic accidents.
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