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ABSTRACT Accurate segmentation of brain tissues, such as gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF), in magnetic resonance imaging (MRI) images, is helpful for the diagnosis of
neurological disorders, such as schizophrenia, Alzheimer’s disease, and dementia. Studies on MRI-based
brain segmentation have received significant attention in recent years based on the non-invasive imaging and
good soft-tissue contrast provided by MRI. A number of studies have used conventional machine learning
strategies, as well as convolutional neural network approaches. In this paper, we propose a patch-wise
M-net architecture for the automatic segmentation of brain MRI images. In the proposed brain segmentation
method, slices from a brain MRI scan are divided into non-overlapping patches, which are then fed into
an M-net model with corresponding ground-truth patches to train the network, which is composed of two
encoder-decoder processes. Dilated convolutional kernels with different sizes are used in the encoder and
decoder modules to derive abundant semantic features from brain MRI scans. The proposed patch-wise
M-net overcomes the drawbacks of conventional methods and provides greater retention of fine details.
The proposed M-net model was trained and tested on the open-access series of imaging studies dataset.
The performance was measured quantitatively using the Dice similarity coefficient. Experimental results
demonstrate that the proposedmethod achieves average segmentation accuracies of 94.81% for CSF, 95.44%
for GM, and 96.33% for WM, meaning it outperforms state-of-the-art methods.

INDEX TERMS Brain MRI, convolutional neural network, M-net, tissue segmentation.

I. INTRODUCTION
Because neurologists investigate tissue abnormalities, such as
cortical thickening, shrinkage, and ventricle expansion, for
diagnosis using segmentation, accurate segmentation is one
of the crucial factors for the correct diagnosis of neurological
disorders. Therefore, segmentation of brain magnetic reso-
nance imaging (MRI) tissue types, such as gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF), into their
basic cytoarchitectural tissue classes is useful for clinicians
treating neurological disorders, such as epilepsy, schizophre-
nia, Alzheimer’s disease, and dementia [1]. Furthermore, the
automatic segmentation of brain tissue types (WM, GM, and
CSF) is extremely important for neuroscientific studies, such
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as cortical surface extraction [2], [3], atrophy and volume
measurement [4], [5], brain extraction [6], [7], and multiple
sclerosis lesion segmentation [8]. However, manual segmen-
tation by experts is time-consuming, prone to human error,
and impractical for large datasets. Therefore, developing
accurate methods for automated brain-tissue segmentation
has become an active research area. Fig. 1 presents ground-
truth tissue classes for a brain MRI scan. The segmentation
map of the ground truth is categorized into the background,
CSF, GM, andWM regions. The main objective of brain MRI
segmentation is to classify image pixels into well-defined
regions, where a set of pixels shares the same range of intensi-
ties, textures, or neighborhoods. This papermainly focuses on
the segmentation of CSF, GM, andWM regions in brain MRI
scans using a deep learning architecture, namely a patch-wise
M-net.
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FIGURE 1. Tissue classes in a brain MRI original and ground-truth
images: (a) background, (b) CSF, (c) GM, and (d) WM.

There are three main challenges in automated brain tis-
sue segmentation. First, because there are large variations
in brain anatomical structures with phenotypes, such as age,
gender, and disease, it is difficult to generalize one specific
segmentation method for all phenotypic categories. Second,
it is difficult to process cytoarchitectural variations, such as
gyral folds, sulci depths, thin tissue structures, and smooth
boundaries between different tissues. This can result in con-
fusing categorical labeling for distinct tissue classes. This is
even challenging for human experts. Finally, MRI technology
has limitations related to bias effects, signal-to-noise ratios,
and motion artifacts. To overcome these challenges, many
classical machine learning approaches using support vector
machines [9], random forests,[10] neural networks [11], and
population-specific atlases [12] have been developed for the
segmentation of brain MRI scans. These methods require not
only explicit spatial and intensity information but also the
extraction of feature vectors from intensity information for
accurate segmentation performance.

In recent years, deep-learning-based methods have
received significant attention. State-of-the-art deep learning
architectures for image segmentation employ computation-
ally complex 3Dmodels and require large amounts of training
data. However, it is difficult to obtain large amounts of labeled
training data for medical image analysis. Therefore, it is
necessary to develop a method that can provide adequate
performance with a relatively small amount of training data.
The patch-based CNNs [15], also called slide-window-based
CNNs, are useful in such a scenario because the model can
efficiently be trained with a small amount of training data
with multi-scale patches, whose sizes are different depend-
ing on different modalities such as T1- and T2- weighted
images. However, the training and testing processes of the
patch-based CNNs for segmentation take significant com-
putation times because the model needs to run separately
for each multi-sized patch. Jiong et al. [41] recently pro-
posed the skip-connection U-net for WM hyperintensities
segmentation from brain MRI, where an atlas-based method
was also introduced in the pre-processing stage to remove

non-brain tissues (namely skull-stripping), thus improving
the segmentation accuracy. Bernal et al. [40] introduced the
quantitative analysis of patch-based FCNN strategies for
tissue segmentation on brain MRI. Furthermore, the author
discussed various methods by fixing training and test sets,
pre-processing pipeline, training with optimization schemes,
and performance evaluation metrics.

Besides the deep learning-based approaches, several
kinds of research using classical machine learning meth-
ods [42], [43], [47], [48] were recently performed. The fuzzy
C-means framework to improve the temporal consistency of
adults’ brain tissue segmentation was proposed in [42], where
the effectiveness of the results is demonstrated on the Balti-
more longitudinal study of aging (BLSA) benchmark dataset.
Chen et al. [43] proposed a new iterative linearly constrained
minimum variance (LCMV) classification-based method,
which was developed for hyperspectral classification and the
different spatial filters in the classification of the brain tissues
were investigated. Saif et al. [47] used a one-class support
vector machine to segment a single tract from a whole-brain
tractography and tract analysis used in human brain disease
identification. Sun et al. [48] introduced the high-order fea-
ture learning framework for multi-atlas based label fusion,
where high-order features of image patches are extracted and
fused for segmenting ROIs of structural brain MRI. A means-
covariance restricted Boltzmann machine (mcRBM) method
is employed high order features of patches in brain MRI. Fur-
thermore, given the computational resources and dataset size,
the classical machine learning methods [42], [43], [47], [48]
can produce good results because of easy tuning capability for
hyperparameters, the flexibility of adding new features and it
can utilize the prior anatomical structure of the brain provided
by the datasets. Even though these models give better results,
it requires a large amount of computation time. In [48], the
limitation is that high dimensional features and the regular-
ization terms (i.e., group Lasso and fused Lasso) will increase
the computational burden for learning the voting weights.
In addition, these classical methods are known not to work
well on imbalanced and more massive datasets with a large
number of features. Table 1 shows a summary of the related
works for brain structure segmentation using deep learn-
ing. As shown in Table 1, most of the segmentation meth-
ods [13]–[15], [34], [35], [38] adopt the CNN architecture for
the segmentation of brain MR images. Recently, researchers
have explored both 2D and 3D local-neighborhood-based
methods for the segmentation of brain MRI scans [13], [14].
The convolutional neural network (CNN)-based techniques
have achieved excellent performances in various applications,
including handwritten digit recognition, object detection, and
semantic segmentation. A CNN was then applied for the
segmentation of MRI scans. Nie et al. [17] used deep fully
convolutional networks to train a model for multiple image
modalities, such as T1, T2, and FA, and then combine layered
feature maps in a final segmentation map output.

Bao and Chung [34] introduced the new technique for
the segmentation of brain MRI based on multi-scale CNN
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TABLE 1. Summary of related studies on brain structure segmentation
using deep learning and machine learning methods.

(MS-CNN), which gives differentiable features for each sub-
cortical structure and generates a label probability map to
a target image. However, there would be a lack of spatial
constraints in the testing samples due to the irregular back-
ground in the brain images. Wachinger et al. [35] introduced
the Neuroanatomy in T1-WMRI segmentation using the deep
CNN. It is an end-to-end learning-based approach to brain
segmentation that learns an abstract feature representation
and a multi-class classification. Wei et al. [38] proposed a
multi-model, multi-size, and multi-view deep neural network
for the segmentation brain MRI on a slice-by-slice basis.
Besides, it uses deep multi-size U-nets for large patch seg-
mentation and a multi-size backpropagation neural networks
for small patch classification. In addition to the applications
of brain segmentation, deep learning approaches are also
used for the segmentation of other anatomies such as the
prostate, liver, and abdomen. The 3D adversarial pyramid
anisotropic (3D APA-net) convolutional deep neural network
is proposed for the prostate segmentation. The 3D APA-net
architecture consists of 3D ResNet encoder, an anisotropic
convolutional decoder, and multi-pyramid convolutional skip
connections. Chen et al. [49] introduced an automated deep
learning based abdominal multi-organ segmentation frame-
work based on CNN. A multi-slice 2D neural network was
developed to account for the correlative as well as comple-
mentary information between adjacent slices in the intrinsic
3D space while avoiding the heavy computation burden.
Ahmad et al. [50] proposed an automatic liver segmentation
based on the deep belief network (DBN). The DBN model
is trained based on unsupervised pre-training and super-
vised fine-tuning. The unsupervised pre-training relates to
a highly proficient learning technique that stacks restricted
Boltzmann machines (RBMs), which are individually trained
layer by layer. In supervised fine-tuning, all layers, along
with backpropagation neural networks, are fine-tuned to per-
form the classification task. Milletari et al. [21] proposed
using a Hough CNN based on Hough voting to facilitate
fully automatic localization and segmentation of anatomies
of interest. CNNs have some drawbacks in segmentation
applications because, during the segmentation process, recon-
struction should be performed using vectors, meaning one
not only needs to convert a feature map into vectors but also
needs to reconstruct brain images from vectors. Therefore,

the SegNet [18] and U-net [19] architectures have been
widely used for segmentation based on their advantages over
CNNs in terms of reconstruction capabilities. SegNet [18] is
a well-known architecture in computer vision for semantic
segmentation but has rarely been used for brain MRI scan
segmentation. It passes pooling indices to up-sampling lay-
ers, meaning it requires much fewer parameters, leading to
faster training. In existingmethods [13]–[15], [17], [34], [35],
randomly selected portions and/or regions from a slice or
MRI volume are used as patches for training the model. It is
known that the performance of patch-based deep learning
approaches relies on the size of patches [38]. The small size
patches may not contain sufficient information to train the
network architecture, thus resulting in relatively inaccurate
segmentation results. In contrast, a large size of patches is
more likely to contain slices from multiple classes, leading
to the difficulty in patch classification. Motivated these prob-
lems regarding the size of patches in the existing methods,
we propose the segmentation method with uniform-sized
patches, which are fed into the M-net model for training.
The complete information of the slices partitioned with the
uniform size can be used as training data, thus resulting in
robust segmentation performances with local detail informa-
tion. As a result, more accurate segmentation results can be
obtained. Furthermore, U-net [19] uses multi-scale informa-
tion based on skip connections and captures both coarse- and
fine-level information in deconvolutional layers. However,
because it uses trainable up-sampling, U-net must learn many
more parameters and is much slower to train than SegNet,
which does not capture multi-scale information as effectively
as U-net. Adiga et al. [20] proposed an end-to-endmulti-class
deep network called M-net with deep supervision function-
ality. However, the M-net architecture has issues related to
limited memory for high-resolution input images because the
number of feature channels increases over the resolution of
the input images at each stage of down- and up-sampling, thus
resulting in a more number of parameter values to store. Fur-
thermore, the M-net is prone to losing local details because
complete images are used as network inputs. To overcome
these problems, we propose a patch-wise M-net architecture
using multi-scale dilated convolutional kernels to perform
automatic segmentation of brain MRI scans.

Specifically, we use individual non-overlapping patches
extracted from input slices to train an M-net architecture.
This patch-wise splitting of slices improves localization in
MRI images and allows the trained network to focus on
local details in each patch. Furthermore, dilated convolu-
tional kernels with different sizes are used in encoder and
decoder modules to extract abundant semantic features from
brain MRI scans. The proposed method exhibits significant
improvements over conventional methods for brain MRI seg-
mentation in terms of several evaluation metrics. The main
contributions of this paper can be summarized as follows.
• We propose a patch-wise M-net architecture to segment
brain MRI scans. The use of patch-wise splitting of
slices obtained from MRI scans enhances localization
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because the trained network can focus on local details
within each patch.

• The proposed patch-wise M-net architecture can avoid
the problems of reduced resolution for feature maps and
the loss of semantic features.

• Multi-scale dilated convolutional kernels are used to
extract context information at different scales, thereby
improving segmentation accuracy for brain MRI scans.

• We demonstrate that the proposed method achieves
excellent segmentation accuracy in terms of the Dice
similarity coefficient (DSC) and Jaccard index (JI),
resulting in performance comparable to that of conven-
tional methods on publicly available MRI datasets.

The remainder of this paper is organized as follows.
In Section 2, we provide a detailed description of the pro-
posed method. We analyze the performance of the proposed
method on publicly available datasets and discuss experimen-
tal results in Section 3. This paper is concluded in Section 4.

II. PROPOSED METHOD
Before describing the proposed method, it is necessary to
explain how U-net and SegNet work in greater detail because
our proposed method is inspired by M-net, which is a variant
of U-net. SegNet [18] and U-net [19] have been widely used
in segmentation applications. The SegNet [18] architecture
consists of an encoder and decoder. Inputs are down-sampled
using multiple convolutions and max-pooling operations in
the encoder. In the decoder, down-sampled feature maps
are up-sampled using memorized max-pooling indices from
corresponding encoder feature maps and convolution opera-
tions. Each pixel in the decoder output is classified indepen-
dently using a Softmax classifier. SegNet-based segmentation
yields poor performance compared to other existing meth-
ods because SegNet tends to lose neighborhood information
when performing up-sampling using low-resolution feature
maps. The main difference between SegNet and U-net lies
in their up-sampling operations. For U-net, feature maps
from the decoding path are concatenated with corresponding
feature maps from the encoding path during up-sampling.
The incorporation of concatenation improves localization.
Therefore, U-net has been widely used in the segmentation
of biomedical images, where improved localization is crucial
for achieving better performance. Some known drawbacks
of the U-net architecture are that it is unable to learn deep
information and has weak generalization ability. To allevi-
ate these problems effectively, the M-net architecture was
proposed for segmenting brain MRI scans. The M-net [20]
architecture has two side paths (left and right legs) and two
main encoding and decoding paths, which helps it learn better
features. Furthermore, the two side paths aid in learning fine-
grained details from brain MRI scans. However, M-net also
has some limitations when it takes a complete image as an
input. Therefore, this model is prone to missing details in
certain regions of images. To address these problems related
to U-net and M-net for brain MRI scan segmentation, we

FIGURE 2. Block diagram of the proposed method.

propose a segmentationmethod that divides input images into
non-overlapping patches and trains an M-net model using
patches. Patches are beneficial for retaining local information
in images. Furthermore, patches with small sizes are better for
training compared to complete images because less memory
is required for computation. The main challenge in segment-
ing brain structures in MRI scans is a multi-class problem.
In this study, we performed multi-class segmentation to label
every pixel in an MRI scan as one of the four classes: back-
ground, GM, WM, and CSF. To this end, the conventional
M-net architecture [20] was modified such that the final
layer produces a binary map for each of the four classes,
rather than a single binary map representing foreground and
background pixels. Input ground-truth segmentationmaps are
also converted into multi-channel binary segmentation maps
for each class.

Fig. 2 presents a block diagram of the proposed sys-
tem. The dimension of each input axial scan in the OASIS
dataset [33] is 208 × 176 × 176, and each scan consists
of 176 slices. In this study, approximately 48 slices were
extracted from each MRI scan and resized to dimensions
of 256 × 256 × 48 by adding 24 pixels of zeros on the top
and bottom of the image and 40 pixels of zeros on the left
and right of the image. Therefore, each input scan consists
of 48 slices with dimensions of 256 × 256. During the
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FIGURE 3. Schematic representation of the proposed method. Solid green boxes represent the outputs of
convolution-ReLU blocks, and dashed boxes represent copied feature maps. The number of feature maps is denoted on
top of each box.

training stage, slices of each MRI scan and their correspond-
ing ground-truth segmentationmaps are divided into different
patches. The dimensions of an input slice are 256× 256, and
each slice is split into four patches. Therefore, the dimensions
of each partitioned patch are 128 × 128 in the proposed
method. These patches are inputted into the M-net model for
training and predicted segmentation results are obtained for
test data.

The M-net architecture is an end-to-end multi-class deep
network consisting of four parts. Similar to U-net, M-net
consists of two side paths (left and right legs), as well as
encoding and decoding paths. Inputs are down-sampled in
the left-leg path and fed into the corresponding encoder layer.
Similarly, decoding layer outputs are up-sampled to the input
size in the right-leg path. The outputs obtained from the right-
leg layer and the decoder layer are combined to produce a
final output.

Fig. 3 shows a schematic representation of the pro-
posed method. The proposed architecture consists of a
convolutional layer, a rectified linear unit (ReLU), max-
pooling layers, and up-convolutional layers. Each encoding
layer consists of two consecutive blocks of 1 × 1 convo-
lution and ReLU, where each convolution is followed by a
ReLU activation function. The output of the convolution-
ReLU layer is concatenated and down-sampled using 2 × 2
max-pooling operations with a stride of two. After every
down-sampling step, the number of feature maps is dou-
bled, as suggested in [19]. Each decoding layer also con-
sists of two consecutive blocks of 3 × 3 convolutions and
ReLU, where each convolution is followed by a ReLU acti-
vation function. The max-pooling operation is replaced by
an up-convolution operation that helps reconstruct output
images. The final layer is a 1 × 1 convolutional layer with

a softmax activation function that outputs a reconstructed
image.

The skip connections used in the patch-wise M-net are
indicated by dotted arrows in Fig. 3. The skip connec-
tions adjacent to convolutional filters enable the network to
learn useful features [26], and the input-to-encoder (left leg),
encoder-to-decoder, and decoder-to-output (right leg) skip
connections ensure that the network has sufficient informa-
tion to derive fine-grained details from brain MRI scans.
Furthermore, we utilize dilated convolutional kernels with
different sizes for the encoder and decoder modules. It is well
known that smaller convolutional kernels are more sensitive
to small targets compared to large kernels [27]. However,
increasing the size of the receptive field can make use of con-
text information from a larger image region [28] and acceler-
ate model convergence [29]. In the proposed method, we use
1 × 1 convolutional kernels in the encoder module to derive
abundant semantic features from brain MRI scans. In con-
trast, 3× 3 convolutional kernels are used in the decoder. The
semantic features obtained by each convolutional block in the
encoder module are transferred to a corresponding convolu-
tional block with the same resolution in the decoder module.
Dilated convolutions can expand the receptive field without
losing resolution or coverage, meaning they can aggregate
multi-scale contextual information to improve segmentation
accuracy [30, 31].

III. EXPERIMENTAL RESULTS
A. DATASET AND EXPERIMENTAL SETUPS
The proposed method is evaluated on an Open Access Series
of Imaging Studies (OASIS) [33] and Internet Brain Seg-
mentation Repository (IBSR) [37] datasets. Table 2 shows
the details of the OASIS and IBSR datasets. The OASIS
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TABLE 2. Information for oasis and IBSR datasets.

dataset [33] was created by Washington University, which
has an Alzheimer’s disease research center that tracks infor-
mation from both non-demented and demented subjects.
The dataset consists of both longitudinal and cross-sectional
MRI brain images. The longitudinal dataset contains multiple
scans of each subject over a period of time, and the cross-
sectional category contains details for 416 subjects with ages
between 18 and 96 years.

We selected the first 50 subjects (ID OAS1_0001_MR1
to OAS1_0054_MR1) from the OASIS dataset. From the
selected data, the first 30 subjects were used for training,
and the model was tested on the remaining 20 subjects. The
axial, sagittal, and coronal planes of MRI slices are used
for training and testing for the segmentation of brain MRI
in our experiments. The dimension of the axial scan in the
OASIS dataset is 208×176×176 (height× width× slices),
and each axial scan consists of 176 slices in total. For the
experiment, the original axial scan is resized to a dimension
of 256×256×176 by padding 24 pixels of zero to the top and
bottom of the image and 40 pixels of zeros to left and right of
the image. Similarly, the original dimensions of the sagittal
(176× 208× 176) and coronal (176× 176× 208) scans are
resized to dimensions of 256×256×176 and 256×256×208,
respectively. We also performed the experiments on the IBSR
dataset, which comprises of 18 T1-weighted MRI images
of 4 healthy females and 14 healthy males with age ranging
from 7 to 71 years. The MRIs in the IBSR is provided
after pre-processing such as skull-stripping, normalization,
and bias field correction. The ground truth is made with
manual segmentation by experts with tissue labels as 0, 1,
2, and 3 for background, CSF, GM, and WM, respectively.
In our experiments, the first 12 subjects were used for train-
ing, while the model was tested on the remaining six subjects.
The original axial scans (256×128 × 256) in the dataset are
resized to a dimension of 256 × 256 × 256 by zero-padding
with 64 pixels to top and bottom of the image to use the
patches in our proposed method efficiently. In a similar way,
the original dimensions of the sagittal (128× 256× 256) and
coronal (256 × 256 × 128) are also resized to dimensions
of 256× 256× 256 for the experiments.

Our proposedmethod is compared with SegNet [18], U-net
[19], and M-net [20], which are tested with the parameters
shown in Table 3. A total of 50 subjects are used for exper-
iments, where 30 subjects for training and 20 subjects for
testing are used, respectively. The dimension of all planes
in the datasets are resized to 256 × 256 by padding zeros
in the brain MRI. The SegNet [18] passes pooling indices to
the up-sampling layers from the encoder to the decoder. For

U-net [19] and M-net [20], the decoder section mirrors the
encoder with up-sampling layers concatenated with feature
maps from the encoder at the same feature map level. The
final output is computed using 1 × 1 convolution with the
Softmax activation function.

B. RESULT AND DISCUSSION
The network was trained using a batch size of one for a
maximum of 10 epochs. In our experiments, we observed
that the loss function of the network converged to the lowest
value within 10 epochs and tended to exhibit overfitting
above 10 epochs. The models were optimized according to
a categorical cross-entropy loss function using the stochastic
gradient descent optimization method with an initial learning
rate of 0.0001 and a high momentum rate of 0.99. For initial-
izing weights, a normalization technique [22] was adopted.
Experiments were performed using the Keras framework on
an Nvidia 1080Ti GPU.
The axial, sagittal, and coronal planes of MRI slices were

used for the segmentation of brain MRI in our experiments.
For training, we extracted a total of 48 slices starting from the
10th slice with a uniform interval of three slices in all planes,
regardless of the positions of slices. In other words, we con-
sidered both central slices (i.e., slices with more information)
and non-central slices (i.e., slice with less information) for
training.
Fig. 4 and Fig. 5 shows the segmentation results for axial,

coronal, and sagittal planes of the OASIS and IBSR datasets,
respectively. It can be observed in Fig. 4 and Fig. 5 that the
proposed method achieves well-segmented results for GM,
WM, and CSF on both datasets.
To verify the proposed method, the DSC, JI, precision,

recall, and specificity are used to evaluate segmentation qual-
ity. The DSC [23] and JI [24] metrics are the most widely
used metrics for evaluating the performance of segmentation
methods. All evaluation metrics were used to compute the
similarity between two sample sets for segmentation. These
metrics indicate how closely a predicted segmentation map
matches the corresponding ground-truth segmentation map.
The evaluation metrics for brain tissue segmentation are
defined as follows:

DSC =
2.TP

2.TP+ FP+ FN
(1)

JI =
TP

TP+ FP+ FN
(2)

Precision =
TP

TP+ FP
(3)

Recall =
TP

TP+ FN
(4)

Specificity =
TN

TN + FP
(5)

where TP, TN, FP, and FN represent true positives, true
negatives, false positives, and false negatives, respectively.
Furthermore, we analyzed the mean squared error (MSE) for
each method. MSE is an average squared difference between
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TABLE 3. Experimental setups.

FIGURE 4. Illustration of segmentation results obtained for our proposed method for axial, coronal and sagittal (top to
bottom) using OASIS dataset:(a) Original input images, (b) ground truth segmentation map, (c) predicted segmentation
map, (d) predicted GM(binary map), (e) predicted CSF (binary map), and (f) predicted WM (binary map).

a ground-truth segmentation map S and predicted segmenta-
tion map S ′. MSE is defined as

MSE =
1
RC

∑R

i=1

∑C

j=1
(Sij − S ′ij)

2 (6)

where R and C are the height and width of the image, i and j
are pixel indices, respectively. To validate the efficacy of our
proposed patch-wise M-net, we also performed experiments
using the SegNet, U-net, and M-net architectures to bench-
mark their performances on the OASIS dataset. Fig. 6 and
Fig. 7 presents the segmentation results for GM, CSF, and
WM for existing methods and the proposed method. The first
column (a) in Fig. 6 and Fig. 7 presents the original images
fromMRI scans. The second column (b) presents the ground-
truth segmentation maps for the original images. In the third
column (c), the segmentation maps generated using SegNet,

U-net, M-net, and the proposed method are presented (top
to bottom). The fourth column (d), fifth column (e), and
sixth column (f), present binary GM, CSF, and WM maps,
respectively, generated by SegNet, U-net, M-net, and the
proposed method (top to bottom).

As shown in Fig. 6 and Fig. 7, the proposed method pro-
duces the best segmentation results. Compared to the results
of the other segmentation methods, the quality of the seg-
mentation map generated by the proposed method is clearly
superior. One can observe that the segmentation results of the
U-net and SegNet architectures lack fine details compared
to those of the proposed method, as indicated by the red
squares. In particular, SegNet tends to miss many fine details
because it loses neighboring information when performing
up-sampling from low-resolution feature maps. Similarly,
U-net has difficulty capturing detailed textures, particularly
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FIGURE 5. Illustration of segmentation results obtained for our proposed method for axial, coronal and sagittal (top to bottom)
using IBSR dataset:(a) Original input image, (b) ground truth segmentation map, (c) predicted segmentation map, (d) predicted
GM (binary map), (e) predicted CSF (binary map), and (f) predicted WM (binary map).

FIGURE 6. Segmentation results for GM, CSF, and WM for existing methods and the proposed method on the OASIS
dataset: (a) original input image; (b) ground-truth segmentation map; (c) segmentation results generated by SegNet, U-net,
M-net, and the proposed method (top to bottom); (d) GM maps generated by SegNet, U-net, M-net, and the proposed
method (top to bottom); (e) CSF maps generated by SegNet, U-net, M-net, and the proposed method (top to bottom); and
(f) WM maps generated by SegNet, U-net, M-net, and the proposed method (top to bottom).

at the boundaries between WM and GM. The feature maps
obtained by the encoder include low-level features and are
concatenated with the same level of decoder features via skip
connections. Additionally, low-level features are fused with
high-level features from lower levels of decoder, leading to
mismatches between low- and high-level features. The fusion

of these two arguably incompatible sets of features can lead to
inconsistencies throughout learning, thereby adversely affect-
ing the prediction of boundaries between WM and GM. As a
result, potential semantic gaps between concatenated low-
and high-level features can be overserved in the results of
U-net [32]. For M-net, it has been reported that the side paths
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FIGURE 7. Segmentation results for GM, CSF, and WM for existing methods and the proposed method using IBSR
dataset: (a) original input image; (b) ground-truth segmentation map; (c) segmentation results generated by SegNet,
U-net, M-net, and the proposed method (top to bottom); (d) GM maps generated by SegNet, U-net, M-net, and the
proposed method (top to bottom); (e) CSF maps generated by SegNet, U-net, M-net, and the proposed method (top to
bottom); and (f) WM maps generated by SegNet, U-net, M-net, and the proposed method (top to bottom).

aid in capturing additional information compared to U-net,
but M-net still fails to preserve accurate boundaries [20].

To overcome the drawbacks of the conventional meth-
ods discussed above, our proposed method adopts a non-
overlapping patch-wise M-net architecture for brain MRI
scan segmentation. By utilizing non-overlapping patches for
each slice, the predictions for each patch can be performed
separately, and local information can be preserved, resulting
in enhanced segmentation performance with a similar degree
of complexity compared to the original M-net architecture.
Furthermore, the skip connections between pairs of convo-
lutions in the proposed patch-wise M-net architecture aid in
learning better features, and the side skip connections aid in
preserving fine details.

Table 4 compares the proposed method to the conventional
methods. One can observe that the segmentation accuracy of
the proposed method significantly outperforms the conven-
tional methods in terms of DSC, JI, precision, recall, speci-
ficity, and MSE for both the datasets. This can be attributed
to the fact that compared to the conventional methods, the
proposed method uses a more optimal up-sampling method.
Because slices are divided into patches and predictions are
made separately for each patch in the proposed method, fine
local details can be preserved, resulting in better segmen-
tation performance compared to the conventional methods,
which use complete slices as inputs. It is noted that since
the original ground-truth annotations in the IBSR dataset

do not contain sulcal parts of CSF tissue unlike GM [44],
the mean DSC values of CSF show relatively lower seg-
mentation performance as compared to OASIS dataset. The
results on the IBSR dataset with labeled sulcal CSF (SCSF)
voxels as GM tissue to minimize the differences between
segmentation masks and ground-truth labels are reported in
several works [45], [46]. However, for fair comparisons, the
experiments on the original IBSR dataset without additional
annotation were performed for all methods in this paper.

We also investigated the influence of patch size on the
segmentation performance of the proposed method. Experi-
ments were performedwith different patch sizes of 128× 128
and 64×64. The results are listed in Table 5. In Table 5, one
can see that when the patch size is 128 × 128, the proposed
method required only 4.6 min of processing per subject. This
value increases to 6.25 min for 64 ×64 patches. The greater
the number of patches, the more resources required to train
the network successfully and the more parameters that must
be optimized during training. However, smaller patch sizes
result in better performance in terms of the DSC. This is
because smaller patch sizes can produce more training data
for the network. Additionally, local regions can be recon-
structed more precisely. It was determined that the 128×128
patch size represents an acceptable tradeoff between the DSC
and the time required to process a single subject.

To evaluate the effectiveness of non-overlapping patches
for brain MRI scan segmentation, we compared the
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TABLE 4. Performance comparisons between the proposed method and conventional methods using oasis and IBSR datasets.

TABLE 5. Effects of different patch sizes on segmentation performance in terms of the DSC, JI, and runtime performance for processing a test subject.

TABLE 6. Parameter comparisons for automatic segmentation of brain MRI images based on M-net models.

performance of the proposed method to those of a conven-
tional M-net and overlapping patch-wiseM-net. As discussed
previously, complete slices are used for training and testing

inputs in the conventional M-net architecture, whereas par-
titioned patches are used for the overlapping and proposed
non-overlapping patch-wise M-net architectures. Table 6 lists
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FIGURE 8. Segmentation images generated using central and non-central slices.

the experimental setups and results for the three models
under consideration. For the overlapping M-net, overlapping
patches of the same size as those used in the proposed
method (but with a slide of eight pixels) were considered.
Although the classification accuracies show almost identi-
cal results compared to the other methods with 0.96 for
the DSC and 0.91 for the JI, the output predicted images
were not reconstructed accurately. This is because multi-
ple convolution operations were performed over the same
pixel elements. Additionally, the overlapping patch-wise M-
net requires significantly more computation time because
the network must be trained separately for each overlapping
patch. The overlapping patch-wise M-net requires 40 h of
training using the images considered in our experimental
setup, whereas the proposed method only requires 5.8 h of
training.

Fig. 8 illustrates the effectiveness of central and non-
central slices for segmentation using the proposed method.
One can observe that the first and last rows contain non-
central slices, which provide less information compared to the
central slices in the middle two rows. Although non-central
slices contain less information, the proposed method is still
capable of accurately segmenting images when using non-
central slices.

The influence of different multi-scale convolutional ker-
nels and different patch sizes for the segmentation of brain
MRI is investigated. We tested five sets of convolutional

kernels for the encoder, and decoder {(1 × 1, 1×1), (3 × 3,
3× 3), (3× 3, 6× 6), (6×6, 12× 12), (1× 1, 3× 3)}, which
are applied to three different patch sizes: 32 × 32, 64 × 64,
and 128 × 128 on the OASIS dataset. Table 7 shows that
convolutional kernels with smaller (1 × 1, 1 × 1) and larger
(6× 6, 12× 12) sizes achieve relatively lower performances.
It is due to the fact that the features extracted by the smaller
kernel can be highly local-adaptive and may not have more
general characteristics of the image. In contrast, larger kernels
tend to have a lower capability to share information among
neighboring pixels, and a large number of weights requires
significantly higher computational time. In addition, since the
features extracted with the larger kernel size are prone to be
generic and spread across the image, this might fail to capture
smaller, complex features in the image. To overcome these
problems, we use multi-scale kernels with an optimal size
of 1 × 1 convolutional kernel to extract finer feature maps
in the encoder, and 3 × 3 convolutional kernels to provide
larger receptive fields in the decoder, respectively. It can be
observed in Table 7 that the smaller patch sizes (32×32) with
multi-scale kernels ((1× 1, 3×3)) show better performances
in terms of the DSC scores. This is because the smaller patch
size can produce more training data for the network to train.
Moreover, the local regions will be reconstructed more pre-
cisely. Besides, when identical multi-scale kernels are used,
computational times for the patch size 32 × 32 takes three
times more than one of the patch size 128× 128. Therefore,
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TABLE 7. DSC scores with respect to different patch sizes with multi-scale convolutional kernels for oasis dataset.

it is concluded that the multi-scale kernels (1× 1, 3×3) with
128 × 128 patch size shows a decent tradeoff between the
DSC score and computational time in the proposed method.

IV. CONCLUSION
The automatic segmentation of brain MRI scans is important
for the diagnosis of neurological disorders. In this paper,
we presented a patch-wise M-net architecture with multi-
scale dilated convolutional kernels that can achieve better
performance compared to conventional methods. The parti-
tioning with individual uniform-sized patches for a slice can
better reflect local details by predicting the information for
each patch. Besides, the model can be trained better with the
local information in the uniform patch-wise method. High
segmentation accuracy can be obtained by using the uniform-
partitioned patches. Eventually, complete information of the
slices can be used as training data, thus resulting in robust
segmentation performances with detailed local information.
Furthermore, the proposed model has the ability to make
predictions for multi-class segmentation, unlike conventional
methods, which were developed to handle binary segmen-
tation problems. The proposed method performs well under
various imaging conditions and yields good results depending
on image resolution. Our method demonstrates significant
improvement in terms of popular metrics, such as the DSC
and JI, for the segmentation of brain MRI scans into CSF,
GM, and WM regions, exhibiting average DSC and JI values
of 0.95 and 0.90. These values represent improvements of
approximately 3% (DSC), and 6% (JI) compared to the state-
of-the-art methods.
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