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ABSTRACT The current research on multiple information fusion of remote sensing images is mainly aimed
at remote sensing images of specific satellite sensors, and cannot be extended to other types of data source
images. For high-resolution remote sensing images, when its surface coverage changes significantly, most
of the mainstream algorithms are difficult to restore satisfactorily. The algorithm proposed in this paper
combines the sparse representation and the spectral, spatial, and temporal features of remote sensing images
for the first time to solve the above problems. The algorithm proposed in this paper first simulates the
human visual mechanism, and obtains the spatial, spectral, and temporal features of the remote sensing
image through the spatial spectral dictionary learning and the time-varying weight learning model. Secondly,
local constraints are added to the extraction of temporal features to obtain temporal and geographical change
information of heterogeneous remote sensing images. Then, a sparse representation model combining space-
spectrum-time features is proposed to extract features of high-resolution remote sensing images. Finally,
based on theVGG-16 network, this paper proposes a target recognition networkwith deep fully convolutional
network, and uses the extracted feature map as the input of the target recognition network to realize the target
recognition of the remote sensing image. Experimental results show that the method proposed in this paper
can improve the accuracy of target recognition and improve the accuracy of recognition.

INDEX TERMS Multiple information, fusion, image, feature extraction, recognition.

I. INTRODUCTION
High-resolution remote sensing image target recognition is
an important part of information extraction and processing
of high-resolution ground observation system and automatic
recognition system [1]–[3]. With the massive increase in the
volume of high-resolution remote sensing data, the gradual
diversification of data representation forms, and the com-
plexity of remote sensing image scenes, artificially designed
features have been unable to meet the precise classifica-
tion and recognition tasks of high-resolution remote sensing
images [4], [5]. How to make full use of the superiority of
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high spatial resolution and improve the recognition accuracy
and target extraction reliability are of great significance.

Target detection in remote sensing images is of great
significance in both military and civilian fields [6], [7].
However, due to the difference in the appearance of the
target and the interference of the complex background and
noise in the remote sensing image, in the remote sensing
image with high spatial resolution, target detection is usu-
ally difficult. In order to detect targets in remote sensing
images, many studies have been conducted [8]–[10]. All these
work are focused on two issues, which are the character-
istics to choose the target and how to efficiently select the
region. Munoz-Mari et al. [11] used target contours, Zernike
moments, and wavelet features, combined with support vec-
tor machines to detect aircraft targets from remotely sensed
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images. Xie et al. [12] usedGabor filtering and support vector
machines to perform remote sensing image target detection.
Li et al. [13] designed a fully automatic target detection
system based on wavelet transform. Zhou et al. [14] used
key points and spatially sparsely coded word bag models
to detect targets. In addition, LBP [15] and HOG [16] are
also commonly used features for target detection. However,
the above methods have only achieved relatively good results
in specific application scenarios. In some more complex
scenarios, the effects achieved by these methods are limited.
Because these characteristics are highly dependent on profes-
sional knowledge, they are often not enough to fully describe
the goal, and the more essential characteristics of the goal
cannot be obtained. In order to achieve a better recognition
effect, Zhang et al. [17] identified planar roads from multi-
spectral images fused with panchromatic bands, and used
edges for auxiliary post-processing to remove non-road fea-
tures connected to roads, and finally obtained a more accurate
road network. Reza et al. [18] combined the extracted lin-
ear and planar target types, and extracted information such
as road networks, agricultural plots, and residential areas
from the fused high-resolution multi-source remote sensing
image data. Shi et al. [19] proposed a method based on
multi-feature learning, combining the linear and nonlinear
features of hyperspectral remote sensing images to explore
the linear and nonlinear boundaries between different features
of remote sensing images. Shaaban et al. [20] proposed a
multi-core learning method based on Bayesian theory, which
can efficiently fuse hundreds or thousands of nuclear features.
However, ignoring the spectral and spatial characteristics of
the pixels at the recognition boundary also limits the further
improvement of target recognition accuracy.

With the success of deep learning models in the field of
computer vision, they have been gradually applied to the
field of remote sensing. There are many related researches in
remote sensing image scene recognition, target recognition
and super-resolution reconstruction. Deep belief network is a
good unsupervised feature learning model, and has achieved
good results in speech recognition, image data set processing,
etc. [21]–[23]. Saba et al. [24] proposed to use DBN to
detect roads in high-resolution aerial remote sensing images,
proving that the DBN model can extract image features.
In order to solve the problem of complex data structure and
limited number of training samples, Ghasemzadeh et al. [25]
proposed a new feature extraction and recognition method
for hyperspectral image interpretation. In the latest research,
Zhang et al. [26] adopted a diversifiedDBNmodel, combined
with two training processes of unsupervised pre-training and
supervised fine-tuning to solve the problem of a small number
of labeled samples, and then used diversification to deal
with DBN hidden parameters. Compared with the original
DBN model and other methods, the reflection and non-
response situations have achieved higher recognition accu-
racy. Automatic encoders are also widely used in the field
of remote sensing, and are mainly based on semi-supervised
or unsupervised feature learning. SAE is widely used in

hyperspectral images [27], [28]. It can reduce the dimension
of hyperspectral remote sensing images, and can retain more
original image information than dimensionality reduction
methods such as principal component analysis, independent
principal component analysis, and minimum noise separation
transformation. Tao et al. [29] used the feature mapping
function of the sparse stacked auto encoder to adaptively
learn the feature representation from the labeled data. After
that, the established sparse spectral features and multi-scale
spatial features are identified using linear support vector
machines. Experiments show that the learned spectral spatial
feature representation is more discriminative and versatile.
Yildirim et al. [30] built a deep network model based on
an auto encoder, and used unsupervised greedy layer-by-
layer training to train each layer to obtain a more robust
feature expression, which effectively improved the accuracy
of surface coverage recognition. Hamouda et al. [31] con-
structed a large-scale image processing recognition frame-
work based on stacked auto encoders. The model parameters
were adjusted and optimized according to the test sample,
and the recognition accuracy was higher than that of random
forest, support vector machine, and artificial neural network,
which verified the advantages of SAE in land cover recogni-
tion. Liu et al. [32] established a stacked self-encoder identi-
fication method combining spectral and spatial information,
demonstrating the great potential of deep learning in the accu-
rate identification of hyperspectral data. ComparedwithDBN
and SAE, convolutional neural network is a more efficient
deep learning method, and has become a research hotspot
in many scientific fields, especially in the field of pattern
recognition and image processing. Bera et al. [33] applied
deep convolutional neural networks to feature recognition
of hyperspectral data. By reconstructing the spectral feature
image and selecting a convolution filter of reasonable size,
the spectral features of different land cover were extracted.
When this method is applied to hyperspectral data in different
situations, excellent recognition performance is obtained by
adjusting parameters. Chang et al. [34] used convolutional
neural networks to encode the spectral and spatial informa-
tion of hyperspectral images. A multi-layer perceptron is
used to perform the recognition task. The results on multiple
experimental data sets show the potential of this method in
hyperspectral image recognition. Huang et al. [35] studied
how to transfer learning from the CNN features that have been
successfully trained to scene recognition of high-resolution
remote sensing images. CNN features are extracted through
different layers of the network to generate image feature
scenes. Experimental results on public scene data sets show
that the features extracted by this method can obtain better
performance. Peng et al. [36] used convolutional networks
to identify high-resolution remote sensing images, which
reduced the complexity of feature extraction and recognition,
and improved recognition accuracy. To solve the problem
of optical remote sensing image recognition, Zou et al. [37]
use the optimized convolutional neural network to recognize
the target on the 0.6m resolution remote sensing image.
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Experiments show that the CNN model can achieve a higher
accurate recognition rate of target features. In response to the
problem of overfitting caused by the limited number of syn-
thetic aperture radar training sets, Dong et al. [38] proposed
a fully convolutional network that reduces the number of free
parameters. The network only contains a sparse connection
layer and does not use a fully connected layer. The test
recognition accuracy on the benchmark data set can reach an
average accuracy of 99%, which is significantly better than
traditional target recognition methods.

The convolutional neural network directly takes the image
as its input, without the need for complex pre-processing of
the image. Compared with a standard backpropagation neural
network of the same size, the number of connection param-
eters is smaller and training is easier. And the convolutional
neural network has certain invariance to translation, distor-
tion, and scaling. Therefore, based on the idea of multiple
information fusion, this paper combines the sparse repre-
sentation and the spectral, spatial, and temporal features of
remote sensing images, and proposes an image extraction and
recognition network based on multiple information fusion.
First, it simulates the human visual mechanism, and obtains
the spatial, spectral, and temporal features of remote sens-
ing images through the spatial spectral dictionary learning
and time-varying weight learning models. Secondly, local
constraints are added to the extraction of temporal features
to obtain temporal and geographical change information of
heterogeneous remote sensing images. Then, a sparse repre-
sentation model combining space-spectrum-time features is
proposed to extract features of high-resolution remote sensing
images. Finally, based on the VGG-16 network, this paper
proposes a deep fully convolutional network to realize the
target recognition of remote sensing images. Experimental
results show that the network proposed in this paper has a
good effect on efficiency and accuracy.

Specifically, the technical contributions of our paper can
be concluded as follows:

This paper proposes an image extraction and recognition
network based on multiple information fusion. The network
can improve the image restoration effect when the surface
coverage changes greatly. At the same time, the problem that
the fully connected layer in the traditional convolutional neu-
ral network compresses the feature image into one dimension
and loses the spatial information is solved.

The rest of our paper was organized as follows. Related
work was introduced in Section II. Section III described the
structure of the convolutional neural network algorithm pro-
posed in this paper. Experimental results and analysis were
discussed in detail in Section IV. Finally, SectionV concluded
the whole paper.

II. RELATED WORKS
A. OVERVIEW OF HIGH-RESOLUTION REMOTE SENSING
IMAGE RECOGNITION
Remote sensing image recognition refers to a comprehensive
analysis of the spectral and spatial characteristics of various

features in the image, based on some means to select the
features that can express the features, and finally divides
the features into different feature categories through a cer-
tain recognition algorithm or according to. Figure 1 shows
the basic framework of the high-resolution remote sens-
ing image recognition method. First, preprocess the high-
resolution remote sensing image. Then extract and select
various features such as space and texture according to the
characteristics of the feature to be recognized, and use it as the
input of the recognizer to train the recognizer and complete
the prediction of the image. In object-oriented high-resolution
remote sensing image recognition, image segmentation is
required after preprocessing the original image, and then
feature extraction and recognition are performed. In prac-
tical applications, considering abnormal points and spatial
smoothness in the recognition results, maximum/minimum
analysis, clustering processing, and clustering processing are
often used for post-recognition processing to further improve
the recognition accuracy [39].

FIGURE 1. Flow chart of target recognition for high-resolution remote
sensing images.

Remote sensing imaging is essentially a radiation trans-
formation process from a three-dimensional space scene to
a two-dimensional image plane. In the process of data col-
lection, affected by the external weather conditions and the
internal noise of the sensor, it causes a certain degree of
geometric distortion and spectral distortion to the acquired
high-resolution image. Therefore, pre-processing such as
radiation correction, atmospheric correction, and geometric
correction is required before image recognition.

Traditional remote sensing image recognition includes two
key steps: recognition feature selection and recognition algo-
rithm. Selecting appropriate feature variables is a key link
to improve the accuracy of remote sensing image recogni-
tion. Commonly used identification features include spectral

121488 VOLUME 8, 2020



Y. Liu et al.: High-Resolution Remote Sensing Image Information Extraction

features, spatial features, temporal features, and polarization
features. In the recognition process, a variety of features
are usually selected to improve target recognition. The pre-
processing, feature extraction and selection of images are
summarized as feature expression, and the quality of feature
expression is crucial to the performance of the recognizer.

Unlike traditional remote sensing image recognition,
remote learning image recognition based on deep learning
can integrate feature expression and recognition into one,
and directly realize end-to-end learning and prediction. Deep
learning takes the original image as input, and learns a highly
nonlinear representation and a complex function representa-
tion from the original input through its deep neural network
structure. Then, the recognizer connected through the net-
work completes the recognition.

B. TWO REMOTE SENSING IMAGE RECOGNITION
METHODS BASED ON DEEP LEARNING
As a kind of deep network, the convolutional neural network
is a multi-layer network structure, and its feature extraction
parameters are associated with the output. Unlike other deep
networks, convolutional neural networks can directly and
automatically extract spatial information in images [40].

1) IMAGE BLOCK RECOGNITION
In the early days of deep learning, the end of the convolutional
neural network uses a fully connected layer, so that the test
samples and training must maintain the same size.

Therefore, the image block recognition method is usually
used to recognize the image. In order to identify a pixel,
an image block around the pixel is used as the input of
the network for training and prediction. Suppose the size
of the image to be recognized is M×N, and the size of the
image block is B×B. In order to recognize the pixels around
the image, the image to be recognized needs to be filled.
Normally, B is an odd number, and the number of width and
height filled pixels of the image to be recognized is (B−1)/2.
The process of image block recognition method is shown
in Figure 2.

2) IMAGE SEMANTIC SEGMENTATION
Image semantic segmentation refers to grouping each pixel
in the image according to the different semantic meanings
expressed in the image. It can be seen from Figure 3 that
the biggest difference with image block recognition is that
the size of the image to be recognized and the image of
the recognition result remain the same before and after the
semantic segmentation of the image. In addition, the sliding
step of the semantic segmentation of the image is the size of
the image block, which can avoid the problem of repeated
calculation of the pixels in the image block recognition.

C. EVALUATION INDEX OF REMOTE SENSING IMAGE
TARGET DETECTION PERFORMANCE
In order to compare the performance of various target detec-
tion algorithms and avoid the subjective judgment algorithm,

FIGURE 2. Classification and recognition of image blocks.

FIGURE 3. Image semantic segmentation.

it is necessary to quantitatively evaluate the detection perfor-
mance of each algorithm and give a comprehensive evaluation
result.

1) RECALL RATE AND PRECISION RATE
Recall and precision are the most commonly used and basic
evaluation indicators in the target detection process. Assum-
ing that the prediction category is a positive sample and the
prediction is correct, it is recorded as TP, and the prediction
error is recorded as FP. The prediction category is negative
sample and the prediction is correct as TN, and the predic-
tion error as FN. Then the recall rate and precision rate are
recorded as:

Pr ecision =
TP

TP+ FP
(1)

Recall =
TP

TP+ FN
(2)

2) KAPPA COEFFICIENT
When the uncertainty factor of the high-resolution remote
sensing image recognition result is relatively large, the Kappa
coefficient can avoid the excessive dependence of the overall
accuracy on the number of target feature categories and the
number of samples, and more realistically reflect the perfor-
mance of the recognition algorithm.
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The Kappa coefficient considers the influence of uncer-
tainty on the recognition result, and the calculation formula
is as follows:

Kappa =

N
r∑
i=1

xii −
r∑
i=1

(xi+x+i)

N 2 −
r∑
i=1

(xi+x+i)
(3)

Among them, the variable r is the number of all categories.
The variable xii is the number of pixels in row i and column i
of the confusion matrix. The variable xi+ and the variable x+i
are the number of all cells in the row i and the column i,
respectively. The variable N is the number of all cells used
for evaluation.

III. IMAGE FEATURE EXTRACTION AND RECOGNITION
NETWORK BASED ON MULTIPLE INFORMATION FUSION
Spectral, spatial, and temporal features are often used for
remote sensing image analysis. With the development of
remote sensing sensor technology, there is an urgent need
to develop corresponding data fusion methods, combining
different optical remote sensing images with spectral, spa-
tial, and temporal features. Based on this, we first proposed
a remote sensing image feature extraction network based
on sparse representation. The network can simultaneously
realize different tasks such as space-time data fusion, space-
spectrum data fusion, spectrum-time data fusion, space-
spectrum-time data fusion and so on. Secondly, in view of
the problem that the fully connected layer in the traditional
convolutional neural network compresses the feature image
into one dimension and loses the spatial information, this
paper proposes a modified deep fully convolutional network
based on the VGG-16 network to realize the remote sensing
image target recognition.

A. SPATIAL SPECTRUM FEATURE LEARNING AND
TIME-VARYING FEATURE LEARNING
Suppose there are two kinds of feature data sets X =

{x1, x2, . . . , xN1} and Y = {y1, y1, . . . , yN2} from different
sensors x and y. Among them, the variable B1 and the variable
B2 respectively represent the corresponding spectral channel
dimensions. The variableN1 and the variableN2 represent the
number of pixels.

The heterogeneous image feature data X and Y can be
transformed into vectors X ∈ RB1×N1 and Y ∈ RB2×N2 .
We use X (i, j) ∈ Rp

2
×B1 to express a p × p × B1 sized cube

image at centered (i, j). Each element of the variable X (i, j)
can be expressed as X (i, j)[n, l]. The variables respectively
represent the spatial position and spectral channel of the pixel.
Usually variable X (i, j) ∈ Rp

2
×B1 can be transformed into the

corresponding vector x(i, j) ∈ Rp
2
×B1 .

x(i, j) = R(i, j)X (4)

Among them, the variable R(i, j) ∈ Rp
2
×B1×N1×B1 is the

image block extraction matrix.

Research on the human visual system shows that the recep-
tive field of human eye cells sparsely selects a subset of
structural primitives from over-complete coding set to encode
natural images. Through the above findings, we can decom-
pose high-dimensional remote sensing images X (i, j) into a
few components.

X (i, j)[n, l] =
∑
m

amdm[n, l] (5)

Among them, the set dm[n, l] ∈ Rp
2
×B1 is the basic set. The

variable am is its correlation coefficient.
In the process of remote sensing image processing, the dic-

tionary dm ∈ Rp
2
×B1 of the original remote sensing image

can be decomposed into corresponding products of spectral
and spatial elements. In the experiment, the corresponding
spectral and spatial training features are selected based on
the image resolution. In this paper, the corresponding spectral
primitives are trained with remote sensing images with high
spectral resolution, and the corresponding spatial primitives
are trained with remote sensing images with high spatial
resolution.

dm[n, l] = φs[n]θd [l] (6)

Among them, variable {φs}
p2

1 and variable {θd }
B1
1 represent

standard orthogonal basis, and describe the corresponding
spatial and spectral characteristic distribution. Spectral and
spatial primitives can be trained separately and combined into
a joint function dm ∈ Rp

2
×B1 .

We express the corresponding spectral and spatial basis
functions by using set 8s = {φ1, φ2, . . . , φp2} and set 2d =

{θ1, θ2, . . . , θB1}. In the sparse representation model, we use
variables8s and variables2d to represent spatial and spectral
dictionaries, respectively. The corresponding space spectrum
joint basis vector can be expressed as φs ⊗ θd . The process
of solving spatial primitives is slightly different from that of
spectral primitives. In the spectral domain, we can transform
the corresponding hyperspectral remote sensing image X into
B1 × N1. Then learn the corresponding spectrum dictionary.
In the spatial domain, we first use principal component anal-
ysis to map the spectral features of the corresponding image
block to the spatial domain, and select the first principal
component feature to train the spatial dictionary. In practical
applications, we usually transform variables dm ∈ Rp

2
×B1

into Dm ∈ Rp
2
×B1 . Finally, we use the Kronecker product

to obtain a joint space spectrum dictionary.

D = 8s ⊗2d (7)

Set Xt1 ∈ RB1×N1 and set Xt2 ∈ RB1×N1 represent two
sets of data from the same sensor x at different times t1 and
t2. We use set Xt1 (�ij) to represent the set of image blocks
Xt2 (i, j) that adjoin each other at time t1, where variable �ij
represents the set of image blocks Xt2 (i, j) that adjoin each
other at the center point (i, j). The variable�ijk represents the
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k-th image block in the variable �ij.

Xt2 (i, j) =
∑

�ijk∈�ij

wijkXt1 (�ijk ) (8)

In practical applications, usually each remote sensing
image block has a great similarity with its neighboring image
blocks. Inspired by this, we added local constraints on the
basis of the sparse constraints of formula (9). The introduc-
tion of local constraints emphasizes that local constraints
are more important than sparse constraints, which is consis-
tent with the conclusion of locality constraint linear coding
(LLC) [41].

Combining local constraints, we can express the time-
varying characteristics of remote sensing images as:

min ||Xt2 (i, j)− Xt1 (�ijk )Wij||
2
+ λ||Dis tan ceijWij||

2

s.t.Wij = 1 (9)

Among them, the variableWij is the weight of the temporal
change corresponding to the image block Xt2 (i, j). The vari-
ableDis tan ceij is the Euclidean distance between the two sets
of remote sensing image blocks.

B. REMOTE SENSING IMAGE FEATURE EXTRACTION
NETWORK COMBINING SPACE-TIME SPECTRUM
FEATURES
Usually, the image Zt1 at time t1 is used to represent the
original hyperspectral-high spatial resolution remote sens-
ing image Xt1 corresponding to the hyperspectral resolution
remote sensing image Yt1 and the high spatial resolution
remote sensing image. In this article, we use high spec-
tral resolution image Xt1 and high spatial resolution image
Yt1 as examples. The remote sensing image of each sen-
sor source can be expressed as a joint dictionary of space
spectrum as:

Xt1 = Zt1H + nx = DAt1H + nx (10)

Yt1 = GZt1 + ny = D̃At1 + ny (11)

Among them, the equation D̃ = GD represents a dictionary
of transformed low-spectral resolution. The variable G is the
corresponding change matrix. The variable H is the corre-
sponding spatial deburring and down sampling operator of
the remote sensing image. Matrix nx and matrix ny represent
corresponding optimization errors. We add sparse constraints
on the basis of formula (10) and formula (11) to solve the
sparse coefficient matrix At2 at time t2.

At2 = argmin ||Yt2−D̃At2 ||
2
F + ||Xt2−DAt2H ||

2
F + λ||At2 ||

(12)

Among them, the symbol || · ||2F represents Fresenius
norm. We propose a new sparse representation model com-
bining space-time spectral features to maintain the spa-
tial consistency between adjacent image blocks and the

time-varying features between image blocks at different
times.

At2 = argmin ||Yt2 − D̃At2 ||
2
F + ||Xt2 − DAt2H ||

2
F

+λ1
∑
ij

||DAt2 (i, j)− Z̃t2Wij(�ij)||22 + λ2||At2 ||

s.t. at2 (i, j) ≥ 0 (13)

Among them, equation Z̃t2 (�ij) = DÃt2 (i, j) represents the
remote sensing image block with high spectral resolution and
high spatial resolution at (i, j) constructed in each iteration.
Using remote sensing image blocks adjacent remote sensing
image block sets Z̃t2 (�ij), formula (13) can be expressed as

At2 = argmin ||Yt2 − D̃At2 ||
2
F + ||Xt2 − DAt2H ||

2
F

+λ1
∑
ij

||DAt2 (i, j)− Ut2 ||
2
2 + λ2||At2 ||

s.t. at2 (i, j) ≥ 0 (14)

Ut2={Z̃t2(�i1,j1 )Wi1,j1 , Z̃t2(�i2,j2)Wi2,j2 , . . . , Z̃t2(�in,jn )Wik ,jk }

(15)

We use Figure 4 to represent the sparse representation of
remote sensing image feature extraction network structure
combined with space-time spectral features. First, we use
spectral and spatial feature extraction models to obtain fea-
ture primitives with high spectral resolution and high spa-
tial resolution. Then, the time series feature change weight
learning model is used to combine the spatial spectrum basis
function and the time change feature. Finally, a sparse rep-
resentation remote sensing image feature extraction network
combined with space-time spectral features is proposed to
explore the relationship between spatial spectral features and
time-varying features and find the most useful features to
serve the target recognition of remote sensing images.

FIGURE 4. Sparse representation fusion model combining multiple
feature information.

C. HIGH-RESOLUTION REMOTE SENSING IMAGE TARGET
RECOGNITION NETWORK
The traditional high-resolution remote sensing image recog-
nition method has the problems that features cannot be auto-
matically extracted and it is difficult to process big data.
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The remote sensing image recognition method based on deep
learning can automatically learn image features and achieve
good recognition results. To this end, in this paper, first of all,
through the remote sensing image feature extraction network
structure, the sample feature set is obtained. Then accord-
ing to the characteristics of the sample data, the network
is improved on the basis of VGG-16 to better adapt to the
recognition task of high-resolution remote sensing images.
Finally, this paper further improves the recognition prediction
method of the convolutional neural network, using image
block recognition with a sliding step size greater than 1 and
bilinear up sampling to make the recognition speed faster and
the recognition accuracy higher.

In order to learn as much information as possible from
a large number of remote sensing images, this paper builds
a model with powerful learning ability based on VGG-16.
In order to improve the efficiency of traditional image block
recognition, this paper sets the sliding step size in image block
recognition to greater than 1 to obtain the down-sampled
probability recognition image. Finally, bilinear up sampling
is used to obtain a recognition result map consistent with the
original image resolution. The network structure is shown in
Figure 5.

FIGURE 5. The proposed feature extraction and target recognition
network structure.

First, first extract the network structure through the fea-
ture extraction of the remote sensing image to obtain the
feature map of the sample. At the same time, iterative SLIC

technology is used to generate a set of candidate regions.
Then, each candidate region uses a ROI pooling layer to
get a fixed-size feature vector from the feature map, and
each feature vector will go through several consecutive fully
connected layers. Finally, two outputs are obtained, which
are the category probability of the candidate region and the
optimization of the coordinates of the candidate region. From
these two outputs, the final recognition result for the input
image can be obtained.

1) CANDIDATE AREA GENERATION
Sliding windows are widely used for target detection in tra-
ditional methods. The sliding window needs to traverse the
entire image, which is a time-consumingmechanism. In addi-
tion, in order to cover multi-scale targets, multiple sliding
windows of different sizes are required, which increases the
number of candidate regions by several times.

SLIC [42], that is, simple linear iterative clustering, is an
image segmentation algorithm with simple ideas and conve-
nient implementation. It converts the image from RGB color
space to CIE-lab color space and 5-dimensional feature vector
in XY coordinates. Then the distance metric is constructed
on the 5-dimensional feature vector, and the process of local
clustering of image pixels is performed. The SLIC algorithm
can generate relatively compact and uniform super pixels, and
has advantages in terms of calculation speed, object contour
retention, and super pixel shape.

2) ROI POOLING
Feature extraction using convolutional networks is a com-
putationally intensive and time-consuming operation. In this
paper, after using SLIC to generate regions, we obtained
about 2000 candidate regions. For each generated region,
CNN was used to extract features for subsequent identifi-
cation and recognition, which made the calculation amount
very huge, and there were many repeated calculations. There-
fore, this paper uses ROI pooling, which only extracts the
convolution feature once for the image to be recognized,
avoiding a lot of repeated calculations and greatly improving
the efficiency of target recognition.

3) BILINEAR UP SAMPLING
In order to improve the efficiency of image recognition,
the step size of the sliding window is set to be greater than 1 in
the experiment, resulting in the result of the down sampling
of the original image. In order to restore the recognition
result to the original image resolution, up-sampling is needed,
that is, by using the existing image data points to bring
into the resampling function and sum. Figure 6 is realized by
the recognition method combined with up sampling. When
the sampling sliding step is 2, the probability map of down
sampling is obtained by image block recognition. The dimen-
sion of the probability map is the number of categories. Then,
the probability map of each category is up-sampled and the
category corresponding to the maximum probability value of
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FIGURE 6. Classification and recognition method combined with up
sampling.

each pixel position is taken to obtain the final recognition
result.

Commonly used interpolationmethods include three types:
nearest neighbor interpolation, bilinear interpolation, and
cubic convolution. The nearest neighbor pixel method has a
small amount of calculation, but it is easy to cause discontin-
uous gray values on the image after interpolation, which may
appear jagged. The bilinear interpolation method is compu-
tationally complex and can achieve satisfactory results. The
cubic convolution method has the best interpolation effect,
but the calculation amount is also the largest. Among them,
the bilinear interpolation method does not need to be learned,
the interpolation effect is good, and the calculation speed
is fast, which has become a more commonly used method.
Therefore, this paper selects bilinear resampling kernel.

4) CNN MODEL STRUCTURE AND TRAINING
Considering the size and complexity of the feature map con-
structed in the feature extraction network, this paper removes
the last connected pooling layer and three layer convolutional
layers in the VGG-16 network structure to prevent the sample
data from being down sampled to negative values and exces-
sive deep networks learn overexpression of simpler features.

The last few layers of VGG-16 are fully connected lay-
ers, which will squash the original two-dimensional matrix
into one dimension, resulting in the loss of spatial informa-
tion. The spatial feature information plays an important role
in the task of remote sensing image recognition. In addi-
tion, VGG-16 uses more parameters and uses more memory.
To this end, this paper connects two convolutional layers
at the end of the network, while reducing the number of
neurons. Finally, to reduce overfitting of convolutional neural
networks, a dropout layer is added after each pooling layer
and convolutional layer. The final network structure is shown
in Figure 7.

5) TARGET RECOGNITION AND RESULT OUTPUT
After the target candidate region is generated, the image
to be recognized is sent to the trained network model

FIGURE 7. Target recognition network structure based on improved
VGG-16.

for feature extraction and recognition. After that, standard
non-maximum suppression is used to fuse multiple overlap-
ping detections of the same target, and the final result is
obtained.

D. LOSS FUNCTION AND OPTIMIZATION METHOD
The loss function is used to evaluate the error between the
predicted value and the label value of the network, and then
evaluate whether the network is suitable. This paper builds
an overall cost error function with the sample’s true labeling
results. The formula is as follows:

J (w, b) = [
1
m

m∑
i=1

||hw,b(x i)− yi||2]+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(wlji)
2

(16)

Among them, variable J (w, b) is the mean square error.
The second item is regularization. Regularization can reduce
the proportion of weights and avoid overfitting. The function
hw,b(x i) is a nonlinear hypothesis model. In the recognition
problem, y = 0 or 1 is used to represent two types of tags.
In order to solve the minimum value of the non-convex func-
tion J (w, b), this paper uses the truncated positive distribution
to generate a relatively small random number, and assigns a
random initialization value of parameter wlji and parameter
bli close to 0, which is used to avoid too much weight in the
network largely led to saturation. Then use the Adam gradient
descent optimization algorithm for the objective function.

Adam is a method of adapting different parameters to
different learning rates. It can dynamically adjust the learn-
ing rate of each parameter in the network through the first
and second moment estimation of the gradient. After offset
correction, the learning rate has a certain range and relatively
stable parameters. The attenuation method of this method
is similar to momentum, and the calculation formula is as
follows:

mτ = u∗mτ−1 + (1− u)gτ (θ ) (17)
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nτ = v∗nτ−1 + (1− v)g2τ (θ ) (18)

In the above formula, the variable gτ (θ ) is the gradient.
The variable mτ and the variable nτ are the first moment
estimation and the second moment estimation of the gradient,
respectively. The variable mτ and the variable nτ tend to the
vector of 0, especially when the decay rates u and v are close
to 1. In order to improve this problem, the deviation of the
variable mτ and the variable nτ is corrected:

m̃τ =
mτ

1− uτ
(19)

ñτ =
nτ

1− vτ
(20)

1J (θτ ) = −
m̃τ

√
ñτ + ε

ξ (21)

Among them, variable µ, variable v, and variable ε are
constant terms. Their size settings are as follows: µ = 0.9,
v = 0.999, ε = 10e−8. The variable ε is used to ensure
that the denominator is not zero. As can be seen from the
above formula, Adam dynamically adjusts the learning rate
and forms a certain range of constraints while not increasing
the additional memory usage.

The key to update the two parameters of weight and offset
is to calculate the gradient of the two, and use the backward
propagation algorithm to calculate the gradient. First, use the
forward propagation calculation formula to get the activation
value of the input layer L2, L3 until the output layer Lnl ,
for each output unit of the nτ , the calculation formula of the
residual is as follows:

δli =
∂J (w, b; x, y)

∂znli
=
∂(yi − a

ni
i )f
′(znli )

∂znli
(22)

Among them, the variable nl represents the number of
layers of the network. The variable wlij is the weight of the
connection between the unit of layer l and the unit of layer
l +1 of layer i. The variable ali represents the activation
value (output value) of the unit of the l layer. The variable
zli represents the input of the unit of layer l and includes the
weighted sum of the offset units. The variable zli calculation
formula is as follows:

zli =
n∑
j=1

wl−1ij xj + b
l−1
i (23)

ali = f (zli) (24)

Among them, symbol f (·) means activation function. The
activation function used in this paper is the unsaturated lin-
ear unit relu function to accelerate the network convergence
speed. The deep convolutional neural network uses relu to
calculate the residual items of the l layer and the i node for
each layer of l = nl − 1, nl − 2, . . . , 2 as:

δli = (
sl+1∑
j=1

wlijδ
l+1
j )f ′(zli) (25)

Finally, calculate the required partial derivative according
to the following method:

∂J (w, b; x, y)

∂wlij
= aliδ

l+1
i (26)

∂J (w, b; x, y)

∂bli
= δl+1i (27)

IV. EXPERIMENTS AND RESULTS
A. IMAGE DATA SET
In order to evaluate the recognition performance of the pro-
posed network, we used two public datasets as experimental
datasets. The UCMerced-Landuse dataset contains 21 high-
resolution remote sensing image target categories. The HR
dataset contains 19 remote sensing categories. The dataset
was collected from Google Earth, and each category contains
50 high-resolution color images. For the accuracy of the
experimental data, we split the training set and the test set
according to the experimental rules of the data set. The ratio
of training set to test set in the UCMerced-Landuse dataset is
80/20. The ratio of training set to test set in the RS dataset is
50/50.

B. PARAMETER SETTINGS
Parameter adjustment is a major difficulty in training con-
volutional neural networks. In order to reduce the training
difficulty, the experiment only adjusts the most difficult and
most important hyper parameter learning rate, and other
parameters use the default values in most networks. The
specific settings are: random inactivation coefficient is 0.8,
regularization coefficient is 0.0001. The convolution kernels
are all 3 × 3 in size, the batch size is 64, and the number of
trainings is 10000. In order to set an appropriate learning rate,
the strategy adopted in this paper is to set the initial learning
rate to a very small value, and gradually increase the learning
rate by observing the decreasing speed of the loss value curve,
and the final learning rate is set to 0.0001.

Figure 8 shows the test accuracy, loss, and the weight and
bias parameter changes in the network when training using
the data set. It can be seen that in the first 1000 batches,
the training accuracy, and loss of the training model rise
and fall respectively faster, the accuracy reaches about 0.991,
and the loss decreases to about 0.1%. Afterwards, the train-
ing accuracy and the loss both changed relatively slowly,
and there was a small oscillation. The trained model is
used for testing in the test set, and the test accuracy rate
reaches 0.985.

C. THE EFFECT OF FUSION OF SPECTRAL FEATURES,
SPATIAL FEATURES AND TEMPORAL FEATURES OF
REMOTE SENSING IMAGES
In order to verify the effect of the proposed algorithm on
the fusion of spectral features, spatial features and temporal
features of remote sensing images, the experiments in this
section are mainly divided into the following three parts.
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FIGURE 8. Accuracy and loss function values of training and test sets.

1) SPACE-SPECTRUM FEATURE FUSION
During the experiment, we first used a Gaussian blur function
with an 8 × 8 standard deviation of 3 to blur the original
image. Then, down sample every 4 pixels in the horizontal
and vertical directions.

In the experiment, we adopted PSNR, CC, SSIM, ERGAS,
SAM and Q-avg index, which measure the algorithm
proposed in this paper can achieve mainstream remote sens-
ing image fusion effect. Figures 9 and 10 compare quali-
tatively and quantitatively the indicators and compare the
proposed method with five mainstream spatial spectral fusion
methods: GSA [43], SFIM [44], GLP [45], ECCV-14 [46],
and MAPSMM [47]. Experimental results show that all

FIGURE 9. Space-spectrum quantitative evaluation experiment.

FIGURE 10. Space-spectral fusion image restoration results.

comparison algorithms can maintain the spectral and spatial
characteristics of the remote sensing image.

All six comparison algorithms can obtain part of the
spatial and spectral information from the remote sensing
image, and then use the obtained spatial spectrum fea-
tures to reconstruct the hyperspectral-high spatial resolution
remote sensing image. Compared with the other five algo-
rithms, the algorithm proposed in this paper has the smallest
error and the highest similarity between the reconstructed
image and the original image. The reconstruction effect of
SFIM and ECCV-14 algorithm is second only to the algo-
rithm proposed in this paper, but it surpasses the other three
algorithms. It can be seen from Table 1 that the algorithm
proposed in this paper also has the least use time.

TABLE 1. Calculation time of space-spectrum experiments.

2) SPACE-TIME FEATURE FUSION
The main purpose of this set of experiments is to demonstrate
the fusion effect of the algorithm proposed in this paper on
the data of space-time feature changes. Figure 11 shows the
scatterplot between the real value and the predicted value.
It can be clearly seen from Figure 11 that the algorithm
proposed in this paper can obtain approximately indistin-
guishable experimental results compared to the remaining
three algorithms.

3) SPACE-SPECTRUM-TIME FEATURE FUSION EXPERIMENT
Figures 12 and 13 show the accuracy of the remote sensing
image with high spatial-high spectral-high temporal reso-
lution predicted by the algorithm proposed in this paper.
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FIGURE 11. Scattering between the predicted and true values of
space-time fusion.

FIGURE 12. Space-time quantitative evaluation experiment.

It can be seen from the experimental results that the restored
images obtained by other algorithms are fuzzy, and the remote
sensing images restored by the algorithm proposed in this
paper are the closest to the real images. This also indirectly
shows that the algorithm proposed in this paper can deal well
with the time variation of surface coverage.

Through the qualitative description indicators, the algo-
rithm proposed in this paper can maximize the spatial struc-
ture information and retain the spectral information. The
scatter plot between the true and predicted values in the near
infrared band shows that the satellite image restored by the
algorithm proposed in this paper is closest to the original
image as shown in Figure 14.

FIGURE 13. Reconstructed image of a remotely sensed image with high
spatial-high spectral-high temporal resolution.

FIGURE 14. Scattering between the predicted and true values of the
space-spectrum-time fusion experiment.

Compared with the previous space-time feature fusion
results, the experimental results using the space-time spectral
features can retain more detailed information on the types of
features covered. The quantitative description of the experi-
mental results in Table 2 shows that the algorithm proposed in
this paper can fuse the spectral, spatial, and temporal features
of the remote sensing imagewell, and obtain the fusion results
of the remote sensing datawithout error. Although in practical

TABLE 2. Space-spectrum-time quantitative evaluation experiment.
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applications, the pixel prediction value is not only affected by
the space-time spectral characteristics of the remote sensing
image, but also by the redundant features of the image and
the quality of the image imaging, but the algorithm proposed
in this paper shows its application potential in multi-source
data fusion of remote sensing images.

D. ALGORITHM RECOGNITION PERFORMANCE
Use the test data set to evaluate and analyze the results of
deep learning building algorithm detection. For the same
algorithm, setting different detection thresholds will result in
different detection recall rates and accuracy rates. Therefore,
set a detection confidence score threshold. When the score
of a certain detection frame greater or equal to score thresh-
old, this detection frame will be retained as the final target
recognition result in the image. When score is less than score
threshold, the corresponding detection frame will be filtered
out.

Therefore, for the algorithm proposed in this paper, we set
different confidence score thresholds and count the detection
results of false detections, so as to obtain different detection
recall rates and accuracy rates, and corresponding Fp values.
And use this to get the optimal detection threshold of the
algorithm, the result is shown in Figure 15. Here, under the
same detection conditions and environment, different cate-
gories of confidence thresholds have obtained corresponding
Fp values. As can be seen from Figure 15, as the score
threshold continues to decrease from 0.9 to 0.1, the algo-
rithm’s detection recall rate is getting higher and higher, that
is, the total number of detected targets is increasing. The
recall rate continued to rise from 0.897 to 0.939. However,
due to the stability of the algorithm, the accuracy rate has
been maintained at a fairly high level, and there has been no
significant decline with the increase of the recall rate, and it
has continued to maintain a height of about 0.985. Therefore,
due to the increase in the recall rate, the value of Fp also
increased from 0.942 to 0.961. Therefore, in combination
with the specific situation and the statistics of the experimen-
tal results, the experiment sets score threshold is 0.1, so as
to obtain reliable and excellent detection results as much as
possible.

In order to illustrate the accuracy and robustness of the
target recognition algorithm used in this paper, we compare
the algorithm of this paper with DBN, SAE, reference [36],
reference [37], and reference [38]. Respectively compare the
recall rate, accuracy rate, Fp, overall recognition accuracy
and Kappa coefficient between the detection results of each
algorithm, as shown in Figure 16.

As shown in Figure 16, the recognition result of the net-
work structure proposed in this paper is the highest among
all comparison algorithms, which fully illustrates the superi-
ority of this method for target recognition of high-resolution
remote sensing images. At the same time, the method of
this paper is also ahead of other comparison methods in
terms of recall rate and accuracy, reaching 0.939 and 0.985,
respectively. Although the algorithms are used based on

FIGURE 15. Detection results with different thresholds.

FIGURE 16. Performance comparison of different algorithms.

reference [37] and reference [38], the accuracy is almost close
to the accuracy of the method in this paper. But the recall rate
and Kappa coefficient are completely behind the method of
this article. In addition, from the data in Figure 16, we can also
find that the network structure proposed in this paper is better
than the DBN network and SAE network in terms of recall
rate. This is because the input of the DBN is one-dimensional
information, ignoring the two-dimensional structure informa-
tion of the image, and the image features of high-dimensional
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data cannot be directly extracted. However, SAE only uses the
spectral characteristics of the image and ignores the spatial
information. The algorithm in this paper extracts multiple
features of the image and merges them to better utilize the
correlation between the features. And the target recognition
part of the network in this paper adopts amulti-level structure.
This structure can reduce the parameters of multiple features
extracted from the previous features, thereby achieving high-
efficiency recognition of the target in the image.

E. OPERATING EFFICIENCY
The algorithms of this paper, DBN, SAE, reference [36],
reference [37] and reference [38] use the same learning rate,
and batch size and optimization function to perform time
efficiency analysis on the data set.

Table 3 shows the time required for one iteration of the six
algorithms, that is, the time it takes to traverse a training set
when training the network. The time-consuming relationship
of the six models is: SAE > DBN > Reference [38] >
Reference [36] > Reference [37] > the algorithm in this
paper. By analyzing the structure of the four models, it is
not difficult to know that the convolution part of VGG-16 is
used in the model structure of the algorithm, reference [36],
reference [37] and reference [38], so these four models the
training speed is faster. There are many parameters in the
network structure of DBN and SAE, which results in a long
training time of the network.

TABLE 3. Comparison of training time performance of different
algorithms.

To further analyze the influence of the model structure on
the training accuracy, the experiment trained 200 epochs on
the six network models, and recorded the training accuracy,
training loss and test accuracy, and test loss change curves of
eachmodel. The results are shown in Figure 17. After training
for 200 epochs, the training accuracy of the algorithms in
this paper, DBN, SAE, reference [36], reference [37], and
reference [38] are 0.985, 0.862, 0.895, 0.923, 0.937, and
0.962, respectively. And the test accuracy of the correspond-
ing algorithm is 0.979, 0.862, 0.881, 0.926, 0.931, and 0.938
respectively.

In the first 50 epochs of model training, the algorithms in
this paper and references [36], [37], and [38] have a faster loss
of accuracy. The loss of DBN and SAE is slower. Throughout
the training process, the decline trend of the loss functions of
the six algorithms was roughly the same. However, the loss
functions of the other five algorithms have experienced more

FIGURE 17. Variation curves of training accuracy, training loss and test
accuracy, test loss of each model.

fluctuations, especially the jitter of the DBN network far
exceeds the other four models. But as the model training
increases, this beating tends to be stable.

V. CONCLUSION
Traditional image recognition algorithms are not ideal in
remote sensing image recognition, mainly because of the lim-
itation of algorithm structure, insufficient representation abil-
ity for complex data, and lack of generalization ability. Taking
deep feature learning as the main line and high-resolution
remote sensing image classification as the research object,
this paper gives full play to the advantages of deep convo-
lutional neural network in information extraction and feature
expression, and proposes an image extraction and recogni-
tion network based on multiple information fusion. Firstly,
the spatial, spectral and temporal characteristics of remote
sensing images are obtained by spatial spectral dictionary
learning and temporal weight learning model. Secondly, local
constraints are added in the time feature extraction process to
obtain the temporal and geographic variation information of
heterogeneous remote sensing images. Then, a sparse repre-
sentation model combining space-spectrum-time features is
proposed to extract features of high-resolution remote sens-
ing images. Finally, a deep convolutional network based on
VGG-16 network is proposed to realize target recognition
in remote sensing image. Experimental results show that the
proposed network has good efficiency and accuracy. The
remote sensing image recognition algorithm proposed in this
paper has good fault tolerance and self-learning ability, which
makes it suitable for complex remote sensing image process-
ing and has great research value in practical application.
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