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ABSTRACT In cluster analysis, the goal has always been to extemporize the best possible means of
automatically determining the number of clusters. However, because of lack of prior domain knowledge and
uncertainty associated with data objects characteristics, it is challenging to choose an appropriate number of
clusters, especially when dealing with data objects of high dimensions, varying data sizes, and density. In the
last few decades, different researchers have proposed and developed several nature-inspired metaheuristic
algorithms to solve data clustering problems. Many studies have shown that the firefly algorithm is a very
robust, efficient and effective nature-inspired swarm intelligence global search technique, which has been
successfully applied to solve diverse NP-hard optimization problems. However, the diversification search
process employed by the firefly algorithm can lead to reduced speed and convergence rate for large-scale
optimization problems. Thus this study investigates the application of four hybrid firefly algorithms to the
task of automatic clustering of high density and large-scaled unlabelled datasets. In contrast to most of the
existing classical heuristic-based data clustering analyses techniques, the proposed hybrid algorithms do not
require any prior knowledge of the data objects to be classified. Instead, the hybrid methods automatically
determine the optimal number of clusters empirically and during the program execution. Two well-known
clustering validity indices, namely the Compact-Separated and Davis-Bouldin indices, are employed to
evaluate the superiority of the implemented firefly hybrid algorithms. Furthermore, twelve standard ground
truth clustering datasets from the UCI Machine Learning Repository are used to evaluate the robustness and
effectiveness of the algorithms against those of the classical swarm optimization algorithms and other related
clustering results from the literature. The experimental results show that the new clustering methods depict
high superiority in comparison with existing standalone and other hybrid metaheuristic techniques in terms
of clustering validity measures.

INDEX TERMS Automatic clustering, firefly algorithm, firefly-based hybrid algorithms, clustering validity
index.

I. INTRODUCTION
Data clustering is an important unsupervised classification
technique, which involves the process of grouping data
so that similar items are grouped into clusters based on
some similarity metric [1]–[4]. Clustering is often used
for a variety of fascinating real-world applications such as
in marketing, biology, image analysis, libraries, insurance,
data mining, medicine, statistical data analysis, community
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detection, and other fields of science and enginee-
ring [5]–[7]. Although cluster analysis was first used in
two social sciences domains, namely, anthropology and psy-
chology [8], furthermore, it was also used for trait theory
classification in personality psychology by Cattell in early
1943 [8], [9]. The method of data clustering has since spread
with significant relevance in application to other new research
areas such as data science and machine learning. It is equally
noteworthy to mention here that clustering data into meaning-
ful groups is an important task of both artificial intelligence
and data mining. In general term, clustering is considered
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to be an unsupervised classification of data, of which the
results of the analysis greatly depend on the superiority
and effectiveness of the clustering algorithms or methods
employed.

In the past few decades, several heuristic-based algorithms
have been proposed to solve clustering problems. Each of
these algorithms is designed and implemented based on the
two main classifications of clustering methods, namely, hier-
archical and partitioning clustering algorithms [10], [11].
Hierarchical clustering algorithms generate a tree-like hier-
archical structure which represents a nested grouping of
data points. The most popular of these algorithms are the
single-link and complete-link algorithms [12]. In the other
hand, partitioning clustering algorithms distribute data points
into non-overlapping clusters such that each data points
belongs to only one cluster. In other words, the partitioning
clustering algorithms produce single data partitions instead of
constructing a tree-like structure, as it is the case for hierar-
chical clustering algorithms [13]. One major challenge with
these algorithms is how to select an appropriate number of
output clusters. The k-means algorithm seems to be the most
popular among these algorithms. However, the success of the
algorithms mentioned above in solving clustering analyses
problems highly rely on having predetermined information
about the data objects and the initial solution, which in
most case can easily lead the algorithms into getting trapped
around local optima [8]. These are serious drawbacks that
have led data mining researchers to improvise and come
up with other effective means of overcoming these defects
among which includes the use of several evolutionary and
swarm intelligence algorithms to deal with more complex and
high dimensional data clustering problems.

Some of the evolutionary algorithms that have been
employed to handle data clustering problem are genetic
algorithm (GA) and differential evolution (DE), while sev-
eral swarm intelligence techniques such as particle swarm
optimization (PSO), ant colony optimization (ACO), firefly
algorithm (FA), invasive weed optimization (IWO), artificial
bee colony optimization (ABC), and teaching learning-based
optimization (TLBO) have as well been effectively applied
to solve clustering problems [14], [15]. For examples, Zabihi
and Nasiri [16] proposed the use of a history-driven artifi-
cial bee colony algorithm to solve data clustering problem,
for which a memory mechanism that is based on a binary
space partitioning was incorporated into the ABC algorithm
to improve its clustering performance. Merwe and Engel-
brecht were the first to propose the use of PSO to solve
clustering problems [17]. Similarly, Zhao et al. [18], worked
on improving the performance of the k-mean algorithm by
hybridizing it with PSO to avoid the algorithm’s performance
from directly being affected by the original cluster centers.
Liu et al. [15] develop a genetic algorithm-based automatic
clustering method that was able to find good quality clus-
tering solutions for an unknown cluster. Niknam et al. [19]
proposed an efficient hybrid evolutionary algorithm that com-
bined ACO and simulated annealing (SA) algorithms to solve

clustering analysis problem. The simulation results of the
ACO-SA showed that the hybrid algorithm outperformed
the basic SA, ACO and k-means respectively for partitional
clustering problem. Satapathy and Naik [20] developed a
TLBO algorithm that was used to find the centroids of a
user-specified number of clusters. In another related study,
Sahoo and Kumar [21] proposed two different modifications
for the TLBO method to enhance its performance in clus-
tering domain, in which instead of random initialization a
predefined method previously used to exploit initial clus-
ter centers was exploited. Zhao and Zhou [22] proposed
an improved kernel possibilistic fuzzy c-means algorithm
based on IWO algorithm for clustering analysis problem,
while Liu et al. [23] employed multi-objective IWO algo-
rithm to solve clustering problem. In the study carried out by
Wang et al. [24], a flower pollination algorithm (FPA) with
bee pollinators was proposed to solve cluster problem, while
Agarwal and Mehta [25] studied application an enhanced
flower pollination algorithm to solve data clustering prob-
lem. In recent times different authors have also considered.
Senthilnath et al. [26] conducted a performance evaluation
study on the use of standard FA to solve clustering problem
and its results compared with that of the PSO, ABA, and
other classical based clustering algorithms from the literature.
Furthermore, a similar study on the performance analysis of
the firefly algorithm for data clustering was also considered
in [27] by Banati and Bajaj. At the same time, in 2012,
Abshouri and Bakhtiary [28] proposed a new hybrid FA that
combines FA and K-Harmonic Means algorithm to solve data
clustering problem.

However, most of the clustering problem where the algo-
rithms mentioned above have been tested and proved to yield
superior quality solutions required the algorithms to be sup-
plied with specific prior knowledge of the data objects char-
acteristics and features. For example, specifying the number
of clusters and other related dataset attributes. Unfortunately,
in many real-life datasets, the number of clusters is not
always known a priori, especially for large data objects.
More so, determining automatically the exact number of
clusters that would provide the appropriate clustering anal-
ysis under this condition can be extremely challenging [15].
Therefore, the specific objective of this paper is to develop
an improved FA based clustering method that would auto-
matically provide the proper clustering partition without
any prior knowledge of the characteristics of the dataset.
Also, the study proposes the implementation of four hybrid
FA algorithms to solve a wide range of clustering analyses
problems automatically. The newly developed hybrid algo-
rithms include firefly algorithm particle swarm optimization
(FAPSO), firefly algorithm artificial bee colony (FAABC),
firefly algorithm invasive weed optimization (FAIWO),
and firefly algorithm teaching-learning-based optimization
(FATLBO). For the improved FA algorithm, a mutation selec-
tion operator is incorporated into the standard FA algorithm
to maintain the balance between selection pressure and popu-
lation diversity of the algorithm. Two cluster analysis validity
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indices, namely Davies–Bouldin (DB) [35] and Compact-
Separated (CS) [36] are employed as a measure of determin-
ing the validity of clustering solutions. Experimental results
on real-life datasets are illustrated to validate the superior
performances of the proposed improved and hybrid FA algo-
rithms over other existing clustering methods.

The outline of this paper is as follows. Section II presents
a more detailed and comprehensive literature review on state-
of-the-art clustering algorithms. Section III elaborates on
the methodology of FA algorithmic design concept and the
details of the proposed FA-based hybrid algorithms design
for solving data clustering problems, afterword’s some of
the preliminary mathematical concepts relating to clustering
analysis is discussed. Section IV describe a series of numeri-
cal and comparison experiments. Finally, concluding remarks
and future research directions are provided in Section V.

II. RELATED WORK
Firefly algorithm due to its robustness, efficiency, ability
to handle problems in different fields, including NP-hard,
versatility, and other great benefits, has been successfully
applied to solve problems in various domains. A compre-
hensive review of FA that discusses the diverse areas where
the algorithm has been successfully used to a broad spectrum
of real-world applications with satisfactory results was done
by Fister et al. in 2014 [41]. In both works of literature,
the authors went further to suggest future directions to the
algorithm. FA although has been studied and traced to have
good track records in diverse domains; however, its imple-
mentation in data clustering and automatic data clustering
scopes is still very much shallow. Very few works have been
done in the application of the firefly algorithm to data cluster-
ing, and quite a more difficult challenge in finding previous
studies in its application to automatic data clustering.

A performance study on the firefly algorithm (FA) for data
clustering was carried out by Senthilnath et al. in [26]. They
acknowledged the strengths of FA and applied classification
error percentage (CEP) to generate optimal cluster centroids.
The standard FA was implemented for data clustering by
focusing more on the attractiveness, light absorption, pop-
ulation size, and distance, and CEP was applied to check
the method that generates the optimal number of clusters.
Further, FA was compared with ABC, PSO, and nine other
clustering methods. Results showed that the classification
efficiency of FA compared to others is more superior in terms
of reliability, efficiency, excellent global performance, and
robustness.

Hassanzadeh and Meybodi presented a hybrid approach
based on FA and k-means for data clustering [42]. The
proposed model called K-FA was implemented such that,
FA was used to find cluster centroids to a user-specified
number of clusters, then the FA was extended using the
k-means algorithm. The extension with the k-means algo-
rithm was done in order to aid the refining of the cluster
centroids detected by FA. Also, global optima were used to
improve the standard FA. Experimental results showed that

FIGURE 1. A compartmentalized flowchart of the hybrid firefly algorithms.

K-FA outperformed three other clustering algorithms in terms
of better efficiency, and a decrease in intra-cluster dis-
tances which allowed the k-means method to have a proper
initialization.

Banati and Bajaj conducted a viability performance anal-
ysis of FA for data clustering in [27]. The proposed method,
called FClust, which is centroid-based, adopted the flashing
behaviour of fireflies with the objective function of the clus-
tering problem to obtain the optimal solution. The perfor-
mance of FClust was evaluated using two statistical criteria,
namely, trace within criteria (TWR) and variance ratio criteria
(VRC) [43]. For simulation results comparison of FClust with
standard PSO and DE showed that the FClust achieved the
best mean fitness and standard deviation values on the VRC
measure. Further, the quality of solutions obtained by FClust
was also evaluated using the number of function evaluations
via the run length distribution (RLD) approach [44]. RLD for
FClust showed that it achieved the best function evaluation
value and a faster convergence rate.
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TABLE 1. A summary of metaheuristic algorithms that have been applied to automatic clustering problems.
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TABLE 1. (Continued.) A summary of metaheuristic algorithms that have been applied to automatic clustering problems.
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FIGURE 2. Flowchart of the hybrid firefly algorithms.
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FIGURE 3. Average computational time consumed by the four hybrid firefly algorithms on CS measure for all the datasets for 40 replications.

FIGURE 4. Average computational time consumed by the four hybrid firefly algorithms on DB measure for all the datasets
for 40 replications.

In 2015, Kaushik and Arora integrated FA with an
improved genetic algorithm [45], called FGA. The proposed
model selects its initial population from a pool of population

which is based on firefly algorithms, i.e. the initial population
is generated from the global best solutions of the firefly
algorithm. FAGoperates in twoways. First, the classical FA is
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FIGURE 5. Clustering results of hybrid FAABC of some datasets on CS-index.

applied to sets of a randomly selected initial population which
generates chromosomes of a set, and secondly, the chromo-
somes are then positioned in the mating pool from where
they partake in the mutation and crossover operations of the
genetic algorithm. Also, at the initialization stage of FGA,
it results in global optimization, which prevents the solutions
from getting trapped within the local optima. The test results,
when compared to the basic genetic algorithm and firefly
algorithm, showed that FGA had better inter-cluster and intra-
cluster distances, and better satisfactory results.

Nayak et al. [47] implemented an improved FA with
a fuzzy c-means algorithm called FAFCM and improved
FAFCM for real-world clustering datasets. The improved
FA addressed the shortfalls of the fuzzy c-means method,
of local optima entrapment and high sensitivity to initializa-
tion. FAFCM was incorporated in two stages, firstly, a stan-
dard firefly algorithm with fuzzy c-means clustering, and
secondly, an improved firefly algorithm with fuzzy c-means
clustering. The first handled the limitations of the fuzzy
c-means algorithm by minimizing the objective function.
In contrast, the second phase refined the cluster centers that
were identified from the first phase, and it also helped in
further minimization of the objective function. FAFCM was

compared with three other clustering algorithms, and the
results showed that FAFCM had consistent results over the
test datasets, a faster convergence speed, as well as a min-
imized objective function. However, the number of clusters
was predefined before centroid assignment by FAFCM.

An efficient hybrid method based on a modified FA and a
dynamic k-means algorithm for data clustering were devel-
oped by Sundararajan and Karthikeyan in [48]. The proposed
algorithm is called a hybrid modified firefly and dynamic
k-means algorithm. The dynamic k-means algorithm was
incorporated so that it can adequately find the optimal number
of clusters during execution time, as well as to improve the
cluster quality and optimality. Themodel works in such a way
that; it determines new centroids by adding one to the cluster
counter in each iteration until the required cluster quality is
attained since the model works well for a predefined number
of clusters. Experimental results showed that the proposed
model found better clusters quality in less time with increased
optimality, against the compared algorithm.

Ezugwu [40] presented an extensive survey study of
major nature-inspired metaheuristic algorithms that have
been applied to solve automatic data clustering problems.
Furthermore, the author carried out a comparative study
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FIGURE 6. Clustering results of hybrid FAABC of some datasets on DB-index.

of several modified well-known global metaheuristic algo-
rithms to solve automatic clustering problems, of which
three hybrid swarm intelligence and evolutionary algorithms,
namely, particle swarm differential evolution algorithm, fire-
fly differential evolution algorithm and invasive weed opti-
mization differential evolution algorithm, were employed
to deal with the task of automatic clustering. The experi-
mental results revealed that the firefly algorithm was more
appropriate for better clustering of both low and high
dimensional data objects than were other state-of-the-art
algorithms.

All the different literature and comparative analyses
results do point to the fact that the FA is a very efficient
and robust metaheuristic algorithm for solving real-world
problems. More so, the findings from Ezugwu [40] and
Agbaje et al. [49] on the promising performance of the FA
for automatic clustering compelled us to go into this research
to investigate further the superior performances of both the
improved nutation based firefly algorithm and its hybrid vari-
ants for automatic data clustering.

After extensive analysis that was carried out, we have com-
piled the following possible clustering methods, application
areas, and clustering validity index types for the respective

identified automatic metaheuristic techniques, which is pre-
sented in Table 1 above.

III. THE FIREFLY ALGORITHM
Firefly Algorithm is a nature-inspired optimization algorithm
that was developed by Xin-She Yang in the late 2007 and
early 2008 [29], [30]. The FA algorithmic design concept
was inspired by the dynamic illumination of the light attribute
from the fireflies, which are commonly found inmost tropical
and temperate regions. There are approximately 2000 species
of fireflies, of which many of them produce short, rhythmic
flashes of illuminations at regular intervals. The flashlights
produced by these insects often act as communication sig-
nals that are used to entice other fireflies and also to send
warnings to potential prey [31]. As a novel swarm intelligence
population-based metaheuristic algorithm, FA has been used
for solving different nonlinear engineering design optimiza-
tion problems, as reported in [32]. Furthermore, studies have
also shown that FA is very promising in terms of solving the
most difficult NP-hard numerical optimization problems in
both continuous and discrete spaces [33]. The mathematical
modelling and representation of the standard FA algorithm
are represented in equations (1) to (5). In equation (1),
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FIGURE 7. Clustering results of hybrid FAIWO of some datasets on CS-index.

the light intensity I of a firefly flashlight is said to be inversely
proportional to the square of its distance denoted by r . This
implies that the light intensity of the individual firefly dimin-
ishes with an increase in distance. However, this is because
as the distance increases, the flashlight is released into the
atmosphere [33].

I ∝ 1
/
r2 (1)

Aligning the problem landscape to the FA algorithm
design, the optimization model can be formulated in such a
manner that the firefly flashlight is proportional to the fitness
function value to be optimized. The following design princi-
ples were used to formulated basic FA [31]: it was assumed
that all firefly species are identical in sex, the attractiveness of
every firefly is directly proportional to the quality of its light
intensity produced, the intensity of flashlight produced by any
firefly is determined by the fitness function landscape that is
to be optimized. In the FA algorithm design, light intensity
and attractiveness are considered to play a vital role in the
algorithm implementation and performance. Usually, in the
case of maximization problems, the light intensity, produced
at a specified point (y) is directly proportional to the fitness

value of the fitness function, that is I (y) ∝ F(y). As shown
in eq. (2), the light intensity changes with respect to distance
and intensity of light emitted into the atmosphere.

I (r) = I0e−γ r
2

(2)

where I0 denotes initial light intensity at r = 0, γ is the light
absorption coefficient, while r is the distance. From eq. (2),
by combining the effect of the inverse square law and absorp-
tion, the singularity at r = 0 is circumvented in the expression
1
/
r2 [30], [33]. Based on eq. (3), the attractiveness of a firefly

(β) is proportional to the light intensity of the firefly.

β = β0e−γ r
2

(3)

where β0 refers to the attractiveness at r = 0.
The distance measure between any two fireflies xi and xj is

determined in terms of Euclidean distance:

rij =‖ xi − xj ‖=

√√√√ d∑
k=1

(
xi,k − xj,k

)2 (4)

where d is the problem dimension. The movement of firefly
from one point i to another point j is formulated as shown
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FIGURE 8. Clustering results of hybrid FAIWO of some datasets on DB-index.

in eq. (5):

xi = xi + β0e
−γ r2ij

(
xj − xi

)
+ αεi (5)

where α ∈ [0, 1] , γ ∈ [0,∞) . The parameter εi is a random
number obtained from a Gaussian distribution. εi can be
replaced with rand − 0.5, where rand ∈ [0, 1]. The third
term (αεi) in eq. (5) shows firefly movement from one point
to another, with regards to their attractiveness.

In this paper, to improve the exploration and exploita-
tion capability of the FA, so that the algorithm can han-
dle clustering tasks of high dimensionality more efficiently,
the concept of mutation strategy is introduced into the
FA searching process. Ideally, modified FAmutation strategy
explores and exploits the search space by leveraging more
desirable features from attractive fireflies and adding such
functionality to enhance the attractiveness of the less bright
fireflies. The extent of the enhancement feature modification
that is required for any identified firefly with weak light
brightness is determined by calculating the mutation prob-
ability (MP) of that firefly. Therefore, it is expected that
those fireflies with excellent brightness will have lower MP,
while those fireflies with low light intensity will have higher
MP. In general, the concept of using MP is that there is a

high probability of improving low-quality solutions and a low
likelihood of reducing good quality solutions. The mutation
operator probability used to introduce additional diversity
among the firefly swarm is commutated as follows.

MP = f (xnew)− f (xold ) (6)

where f (xnew) is the new firefly fitness and f (xold ) is the
fitness of the first firefly. The main steps of the mutated
FA are summarised as illustrated in Algorithm listing 1.

A. FIREFLY-BASED HYBRIDS AND CLUSTERING
PROBLEM DESCRIPTION
The proposed hybridization methods described in this paper
focuses on exploiting the various advantage of both the FA
and other representative algorithms, namely, PSO, ABC,
IWO, and TLBO algorithms. It is equally interesting to note
that all the algorithms mentioned above work well for a
wide range of global optimization problems. In this study,
we propose a set of new hybrid firefly-based algorithms by
combining some of the advantages of all the above men-
tioned individual algorithms. The proposed hybrid algorithms
combine the attraction mechanism of FA with the effective
fraternization capabilities of PSO, ABC, IWO, and TLBO to
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Algorithm 1 Improved Firefly Algorithm
Define initial values of firefly parameters: βo, α, n and γ
Define Fitness function f (x), x = (x1, x2 . . . xD)t
Initialize n positions of firefly (i = 1, 2, 3, . . . .n)
Evaluate f (x) to determine light intensity Li of firely xi
while (t <MaxGeneration)
for i = 1: n
for j = 1:n
if (Li < Lj)

Move firefly i towards firefly j according to eq. (5);
end
CalculateMP = f (xnew)− f (xold )
Performmutation ()

end
Calculate attractiveness variance with distance r using

exp(−γ r);
Calculate new fitness values for all fireflies;
Accept new solution with best fitness;

end
Update firefly light intensity Li;
Update iteration counter t = t + 1;
Reduce α by a factor;

end

maintain a good balance between exploration and exploita-
tion of the problem search space. Also, the combination is
done so as also to increase the solution accuracy, speed of
convergence and the diversity of the population. We imple-
mented four hybrid algorithms, namely, FAPSO, FAABC,
FAIWO, and FATLBO, to solve data clustering problems. It is
noteworthy to mention that the improved FA and other four
metaheuristics are executed in parallel to specifically promote
information sharing among the swarm population and thus
enhance searching efficiency [37].

The implementation strategy employed by the four new
hybrid algorithms begins its search process by using FA as the
global optimization search algorithm, because of its strong
exploration ability and then subsequently introducing the
other four single algorithms separately and then using them
as a local search optimization algorithm to enhance the inten-
sification capability of the new hybrid methods. The local
search mechanism is suggestively important in the design of
the new hybrid algorithm, especially when the search process
descends the paths of the local optimal solutions, it will
prevent the algorithms from entrapment into local minima.
Therefore, the advantage, as mentioned above, is leveraged
to improve both the exploitation and exploration ability of
the proposed FA-based hybrid algorithms. Furthermore, one
of the main enhancement quality of such hybridization and
regrouping mechanism of the new algorithms is to ensure
that the search for candidate solutions is concentrated only
on the promising region of the solution search spaces. This
mechanism is significant, as it aids the proposed method
not to search for a candidate solution within less promising

regions of the search space. A similar technique was imple-
mented in [37], where FA was combined with the differential
evolution algorithm.

The effectiveness and efficiency of the proposed FA-based
hybrid methods are evaluated using the CS and DB validity
indices discussed in section III of this paper. These two
validity indices also help to determine the appropriate optimal
number of clusters and find the best partitioning for the
detected clusters. For the first phase of the hybrid algorithm
implementation, the FA-based hybrid algorithms start their
search optimization processes with the generation of initial-
ization population of fireflies. After that, the fitness function
of each candidate solution found by the FA is computed
and determined using the two clustering validity measures.
Iteratively, these new solutions with the best fitness values are
updated using the operators of FA. In the second optimization
phase, the same process is iteratively repeated using now the
operators of PSO, ABC, IWO, and TLBO algorithms, respec-
tively to re-optimize the solutions obtained in the first phase.
Note that the two phases of optimization techniques form
the first cycle of the evaluation phase for FAPSO, FAABC,
FAIWO, and FATLBO implementation. It is interesting to
mention here that the four FA-based hybrids use the best
solution generated by the FA search results in the first phase
as its initial search population. As for the evaluation process,
the previous local best and global best within the new popu-
lation are compared, and the candidate solution with the best
fitness values is updated accordingly. As stated earlier, the
CS and DB indices are used by the four methods to compute
the final fitness function of each solution, which the FA-based
hybrids use to determine the best candidate solution andmake
the necessary updates. Finally, the best solution is deter-
mined based on which solution has the smallest CS-index
value or DB-index value. The entire process of the FA-based
hybrid algorithms is repeated until the termination criteria are
reached. The Algorithm listing 2 shows the steps mentioned
above for the FA-hybrids algorithms. Figure 1 illustrates the
compartmentalized flowchart of the proposed method, while
Figure 2 illustrates the implementation flowchart of the gen-
eralized hybrid methods. In general, the figure also represents
the clustering processes of the four hybrid algorithms imple-
mentations. However, it is noteworthy to mention that part
of the main contribution of the current paper is the proposal
of a critical performance study and evaluation of several
hybrid firefly algorithms for the task of automatic clustering.
No record of a similar research focus in the literature exist as
of the time of writing this paper.

As aforementioned earlier, the hybrid algorithm imple-
mentation methods comprise of two stages. The first stage
engages the modified FA algorithm by randomly generating
initial swarm, where the number of fireflies equal to the
number of clusters and the swarm population is uniformly
distributed across the dimension of the dataset, which in this
case is the clustering problem search space. After the swarm
initialization, the next task is the evaluation of the best swarm
according to the fitness function determined by the DB and
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Algorithm 2 Pseudocode for the Four FA-Based Hybrid Algorithms
Input: Data points X = {x1, x1, . . . , xn}
Output: Optimal cluster centres D = {d1, d1, . . . , dC }
Begin
Generate initialize population with K random cluster centres
Determine the objective function using CS and DB validity indices
For i = 1 to n

Evaluate cost function using Euclidean distance metrics to get the best individual
If current value of population (i) .Cost <= BestSolution.Cost
Update the current population (i) as the best solution;

End If
End For

While maximum iteration is not reached do
For i = 1 to n
For j = 1 to n

If pop (j) < population (i) .Cost
Move population (i) towards population (j) using FA operators
If newsolution.Cost <= newpopulation (i) .Cost

newpopulation (i) becomes the new solution;
If newpopulation (i) .Cost <= bestSolution.Cost
Update newpopulation (i) as the new solution;
End If

End If
End If

Apply PSO updating formula (see [40]) on the current newpopulation (i)
Apply ABC updating formula (see [50]) on the current newpopulation (i)
Apply IWO updating formula (see [40]) on the current newpopulation (i)
Apply TLBO updating formula (see [51]) on the current newpopulation (i)
Update the global best solution in the whole population
Evaluate the fitness value of each individual candidate solution
Update the new value as the global best

End For
End For

End While
End

CS validity indices [40]. Note that the best swarm position,
for example, represents the data point that achieves the min-
imum distance to the swarm from its previous searches. The
PSO, ABC, IWO, and TLBO operate on the new set of the
solution generated by the FA updating equation given in (5).
The parameters of the respective logarithms are used to deter-
mine next movement patterns of their optimization strategies
as also explained earlier. Iteratively the various position of
the new populations is updated until the case of a satisfactory
termination condition is met, and the algorithm simulation
process is terminated.

B. CLUSTERING PROBLEM DESCRIPTION
In this performance study, we propose a series of hybrid
firefly algorithm to solve automatic data clustering problems.
As described in [34] to handle automatic data clustering prob-
lems, we adopt the same approach for the implementation of
the variants of the hybrid firefly algorithms. Given that a set
of datasetF is defined asF = {f1, f2, . . . , fn}which is divided

into non-overlapping groups of cluster G = {g1, g2, . . . , gn},
such that the dimension wi(i = 1, 2, . . . , n) is p. For each
of the cluster G = {g1, g2, . . . , gn}, there is a centroid di =
(i = 1, 2, . . . ,C) represented for each of the clusters, that is,
D = (d1, d2, . . . , dC ) are the centres of G =

{g1, g2, . . . , gC }. For a p-dimensional data vector, the follow-
ing conditions must take place:

Vi ∩ Vj = ∅ where i, j = 1, 2, . . . ,C and i 6= j (7)

V1 ∪ V2 ∪ . . . ∪ VC = F (8)

Vi ⊆ F and Vi 6= 0, i = 1, 2, . . . ,C (9)

At the initialization phase of each of the hybrid algo-
rithms, the population (swarm) size K is defined as
W = (w1,w2, . . . ,wK ) . As described above, let each
member ai in the population be a Q × p-dimensional
vector, Fn×p, which is defined as Wi = w∗1,w

∗

2, . . . ,w
∗
q

(w11,w12, . . . ,w1p), (w21,w22, . . . ,w2p), . . . , (wQ1,wQ2,
. . . ,wQp). The main goal of the optimization method over
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TABLE 2. (a) Parameter configurations of ABC, IWO, PSO, and TLBO algorithms. (b) Characteristics of the twelve benchmark datasets.

the four proposed hybrids of the firefly algorithm in this
study is minimization, where we employed the two common
and most used cluster validity indices namely, CS and DB
indices, to minimize the sum of the distances between the
datasets fi(i = 1, 2, . . . , n) and centers di(i = 1, 2, . . . ,C).
The upper and lower boundaries of the number of groups
in the population are respectively defined as, Varmin repre-
sented as k∗j = min{F1,F2, . . . ,Fp} and Varmax denoted as
m∗j = max{F1,F2, . . . ,Fp}. In general, the lower bound-
ary is k = (k∗1 , k

∗

2 , . . . , k
∗
C ) and the upper boundary is

m = (m∗1,m
∗

2, . . . ,m
∗
C ), for the solution space. To solve the

automatic clustering problem, the ith particleWi is evaluated
as follows:

Wi = rand (1,Q× p)∗. (m− k)+ k (10)

where rand (1,Q× p) is a vector of a uniformly distributed
random number which returns an integer between 0 and 1.

C. CLUSTERING VALIDITY INDEX
In this section, we discuss the two validity indices that are
used across the study to measure and analyze the effective-
ness of the four proposed hybrids of the firefly algorithm,

as well as the quality of the clustering solution obtained.
Generally, a good cluster validity index offers two significant
purposes; firstly, it helps to determine the number of clusters
and, secondly, it determines the best (optimal) partition [35].
Likewise, a good cluster validity index is expected to handle
two key areas of portioning namely cohesion and separation.
Cohesion: in this case simply means that the objects or data
points in a cluster should be compact and identical (similar)
and as possible. A deviation in the fitness variance of the
objects in a cluster indicates good compactness of such a
cluster. On the other hand, separation in contrast to cluster
compactness should be different and distinct to each other.
This step can be, however, seen in the distance among cluster
centers, which indicates the cluster separation. Davis and
Bouldin [36] further stated that a clustering validity index
should as well exhibit the following properties:
1. Ability to involve minimal or no human interference or

parameter specification during its operation.
2. Ability to be scalable computational-wise for large

datasets.
3. Ability to produce accurate results for datasets with

arbitrary dimensions.
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TABLE 3. Numerical results comparison of average solutions obtained by muted FA and the four hybrid algorithms based on the CS and DB indices over
40 replications.

For a crisp or hard clustering, some of the most used
and well-known validity indices are CS index [35] and DB
index [36], which were also used in this study as afore-
mentioned. For most of the validity indices, they are con-
sidered as either minimization or maximization optimization
technique by default. Similarly, their implementation outputs
demonstrate a good clustering partition. As a result of their
optimizing strategy, the clustering validity indices are best
adopted with optimization algorithms such as the PSO, DE,
GA, etc. In this study, we define the cluster validity index as
a function J , such that a given clustering B, and a similarity
measure V it is defined as J (B,V ). The function J (B,V )
returns a real number which indicates the cluster validity
index or the fitness of the clustering task B. The two validity
indices adopted for our study are further discussed in the next
section.

1) COMPACT-SEPARATED INDEX
This cluster validity measure estimates the ratio of the sum
of within-cluster scatter to between-cluster separation, which
is similar to how the DB index operates. It has been studied
that the CS index offers more efficiency in handling clusters
having different dimensions, densities or sizes. Although, it is
computationally more intensive than the DB index in terms of
execution time, however, it does produce more good quality
solutions. Furthermore, a large value of a CS index indi-
cates weak compactness or separation, while a lesser value
means a good and better clustering. Let the within-cluster
scatter be denoted as Yi and the between-cluster separation
be represented as Yj, such that the distance measure V is

given as V
(
Yi,Yj

)
. Hence, the CS index for a clustering B

is computed as given in equation 11.

JCS (B,V ) =
1
K

∑K
i=1 [

1
Bi

∑
Yi∈Bi maxYj∈Bi{V (Yi,Yj)}]

1
K

∑K
i=1[minj∈K ,j6=i

{
V
(
xi, xj

}
]

JCS (B,V ) =

∑K
i=1

[
1
Bi

∑
Yi∈Bi maxYj∈Bi{V

(
Yi,Yj

)
}

]
∑K

i=1 [minj∈K ,j6=i
{
V
(
xi, xj

}
]

(11)

where K is the number of clusters in B.

2) DAVIS-BOULDIN INDEX
The DB index estimates the quality of clustering by evalu-
ating the intra-cluster (average distances of all data points
within a cluster from the centroid) to inter-cluster (the
distance between two centroids) distances. Likewise, for
DB index, the smaller the index value, the better the com-
pactness or separation, and otherwise for a large value. Let
Wi be defined as the average distance of all the data points
within a cluster Bi to their centroids xi. The average distance
is calculated as:

Wi =

[
1
Bi

∑
X∈Bi

V (R, xi)t
] 1
t

(12)

where V (R, xi) is the distance between a data point R in Bi
and its centroid xi, and t ≥ 1 is an integer that can be
selected independently. If t = 1, Wi equates to the average
Euclidean distance of the vectors within the cluster. On the
other hand, if t = 2, Wi equates to the standard deviation
of the distances of objects within a cluster to their respective
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TABLE 4. Numerical results for the four hybrid firefly algorithms based on the CS and DB indices on over 40 replications.
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TABLE 4. (Continued.) Numerical results for the four hybrid firefly algorithms based on the CS and DB indices on over 40 replications.

TABLE 5. Mean ranks achieved by the Friedman test for the four proposed hybrid firefly algorithms.

centroids. Taking Hij to represent the inter-cluster distance
between two centroids xi and xj, we have that,

Hij = V
(
xi, xj

)
, i 6= j (13)

Let Vi be defined as

Vi = max
{
Wi +Wj

Hij
|1 ≤ i, j ≤ K , i 6= j

}
(14)

Thus, the DB index is expressed as:

JDB (B,V ) =
1
K

∑1

K
Vi (15)

where K is the number of clusters.
In summary, it is important to note that the data clustering

problem described in this paper is modelled as an optimiza-
tion problem. For example, given an instance of data points
with x attributes and a predetermined number of clusters g,
the objective function aims to determine an optimal cluster
setting such that the sum of squared Euclidean distances
between each data object and the center of the belonging
cluster is minimized. Therefore, by so doing, each data point
should belong to a unique cluster, and no cluster must be left
empty.

IV. SIMULATION EXPERIMENTS
Experiments were carried out using a 3.60 GHz Intel(R)
Core(TM) i7-7700 processor and 16 GB memory
on Windows 10 operating system. The entire algo-
rithm was programmed in MATLAB R2018b and sta-
tistical analysis conducted using IBM SPSS Statistics
Version 25.

A. PARAMETER SETTING
In this section, we present the settings of the control param-
eters for the respective four firefly-based algorithms that
are studied in this paper. The control parameter settings are
described in Table 2(a). For each of the proposed algorithm,
we initialize an equal number of populations and number of
iterations, as well as the same number of replications, which
in this case is 40 runs for all our experiments. The FA being
the control algorithm has the following parameter settings:
The population size is set as 25, a maximum number of iter-
ationMaxIt is set as 200, light absorption coefficient γ is set
as 1, attraction coefficient β is set as 2, mutation coefficientm
is set as 2, and finally the mutation coefficient damping ratio
α is set as 1. The parameter configurations of ABC, IWO,
PSO, and TLBO are further detailed in Table 2a.
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TABLE 6. p-values produced by the Wilcoxon rank-sum test for equal medians on CS index.

TABLE 7. p-values produced by the Wilcoxon rank-sum test for equal medians on DB index.

Parameter Key Terms: The parameter a is the accelera-
tion coefficient upper bound, Smin and Smax are the min-
imum and maximum number of seeds, E is the variance
reduction exponent, sigma_initial and sigma_final are the
values of initial and final standard deviations, c1 and c1
are the personal and global learning coefficients, wdamp
is the inertia weight damping ratio, while w is the iner-
tia weight defined as w = wmax −

(wmax−wmin)∗t
MaxIt , where

t denotes the number of iterations. Note that the value
of w is dynamically adjusted relative to iteration t to
avoid the hybrid FAPSO from plunging into premature
convergence.

B. DATASETS DESCRIPTION
The twelve datasets used are well-known and well-used
benchmark datasets from the UCI Machine Learning Reposi-
tory. A brief description of some of the datasets are presented
as follows:
• Breast Cancer Wisconsin (Original) dataset: this
dataset was obtained from the diagnosis of breast cancer
from the University of Wisconsin hospital. It contains
two classes of tumour (2 benign and 4 malignant),
699 data points with 10 attributes.

• Glass dataset: this was obtained from the USA Foren-
sic Science Service, defined in terms of their oxide
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FIGURE 9. Clustering results of hybrid FAPSO of some datasets on CS-index.

contents. The classification of this dataset wasmotivated
as a result of criminal investigation from crime scenes,
where glasses left can be used as a source of evidence if
correctly identified. Nine different chemical measures,
(Refractive index (RI), Sodium (Na), Aluminium (Al),
Silicon (Si), Potassium (K), Calcium (Ca), Barium (Ba),
Iron (Fe), and Magnesium (Mg)), were used as a stan-
dard for identifying a glass, which belongs to one of six
types of glasses. It consists of 214 data points with ten
attributes.

• Iris dataset: this dataset consists of three different vari-
ants of the iris flower, namely, Iris Setosa, Iris Versicolor
and Iris Virginica. The three different species are com-
prised of 150 instances with four attributes.

• Statlog (Heart) dataset: this dataset is based on the
diagnosis of heart disease from four different databases,
which was generated based on 13 different attributes.
It consists of 250 instances and 13 attributes.

• Wine dataset: the wine dataset was obtained by using
chemical analysis to determine the origin of wines
grown in the same region, but from three different cul-
tivators in Italy. The analysis was able to determine the
quantities made up in the 13 constituents that were found

in each type of the three varieties of wines. It contains
178 patterns with 13 attributes.

• Yeast dataset: the yeast dataset was used to predict the
localization sites of protein in cells. It contains 1484 pat-
terns and 8 attributes.

The details of the remaining datasets namely, Jain dataset,
Pathbased dataset, Spiral dataset, and Thyroid can be
obtained in [38] for Chang and Yeung [39] for both Pathbased
and Spiral, and [40] for the Thyroid dataset. The twelve
datasets configurations are summarized in Table 2b.

C. RESULTS AND DISCUSSION
In this section, we present and discuss the average numerical
results obtained by the standard FA and other four FA-based
hybrid firefly algorithms. The algorithms were compared
based on their computed average CS and DB indices values.
In Table 3, the bolded values indicate the algorithm that
obtained the best solution as compared to other competing
algorithms. All the results presented in this study are in
reported in four decimal places, and we focusedmainly on the
quality of solution produced by each of the algorithms, aswell
as execution time taken for each algorithm to search for the
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FIGURE 10. Clustering results of hybrid FAPSO of some datasets on DB-index.

near-optimal solutions. For the CS measure, it is shown that
FA performed well on the Breast dataset and Flame dataset.
Likewise, FAABC did well on Flame dataset. Furthermore,
the FAPSO recorded most of the best performance on nine of
the twelve datasets, namely, Compound, Iris, Jain, Pathbased,
Spiral, Statlog, Thyroid, Wine and, Yeast datasets. On the
contrary for the DB index, the best performance is seen with
the FATLBO algorithm, in which it obtained best results
in five datasets, namely, Flame, Iris, Pathbased, Spiral and,
Yeast datasets. This is closely followed by the FAPSO which
achieved the best performance in four datasets, Glass, Jain,
Thyroid, and Wine datasets. Although, the standard FA did
reasonably well on three datasets which are Breast, Com-
pound, and Statlog datasets. Both FAABC and FAIWO had
no outperforming solutions on the DB index. It was observed
that the FA outperformed all the other algorithms on the
Breast dataset in both instances of the cluster validity mea-
sure. In contrast, FAIWO did not exceed any of the different
approaches for either CS or DB validity measures.

In general, the comparisons between the standard FA and
its hybrid variants, show that the optimal fitness solutions
achieved by the FAPSO on the CS index are lesser in values,
which signifies better performance.More so, the performance

of the FAPSO algorithm was able to attain excellent per-
formance across more datasets than any other algorithms,
thus making it the most superior algorithm. However, for the
DB index, FATLBO emerged the best performed algorithm
with the best minimum average clustering results, and the
FAPSO closely follows it, then the standard FA. Therefore,
since the FAPSO algorithm showed excellent performance in
both instances of the validity measure, we can deduce that
the FAPSO is an efficient and effective automatic clustering
algorithm.

Next, we present and discuss the results of the four
proposed hybrid firefly algorithms using the following
descriptive statistics, namely, the best solution, worst solu-
tion, average solution and standard deviation. The highlighted
values in bold indicate where an algorithm outperformed the
rest of the compared algorithms or have the same results with
them. As seen in the CS index column, FAABC, FAIWO
and FATLBO achieved the same results on the Breast dataset,
as well as with FAABC and FATLBO on Compound dataset.
Likewise, FAPSO had the best performance on Flame, Iris,
Jain, Thyroid,Wine and Yeast datasets. FAPSO and FATLBO
achieved the best identical values for Pathbased dataset, while
FAABC obtained the best solution for Spiral dataset. A level
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FIGURE 11. Clustering results of hybrid FATLBO of some datasets on CS-index.

of consistency and stability is shown in the results obtained in
Glass and Statlog datasets, across all the four hybrid methods.
Hence, FAPSO clearly shows performance superiority over
the other hybrid algorithms on the CS index.

However, for the DB measure, FAABC, FAIWO and
FATLBO obtained the best but identical results for the Breast
dataset. These results are also similar to those of the CS index,
which is to say that FAABC, FAIWO and FATLBO perfor-
mance are the same for the Breast dataset in both instances of
the cluster validity measures. The FAPSO achieved the best
scores for Compound, Glass, Statlog and Thyroid datasets.
Similar to the results obtained by FAABC, FAIWO and
FATLBO for the Breast dataset, the three algorithms also had
identical results for Flame and Yeast datasets. The results
achieved by FAABC and FATLBO are identical for Iris and
Wine datasets. FAABC outperformed the other algorithms
on Spiral dataset. The values obtained by FATLBO on Jain
and Pathbased datasets are superior to those of the other
algorithms. Although there are a few instances where two
or more algorithms have similar results in some datasets,
however, this does not rule out the apparent evidence that the
FAPSO outperformed the other algorithms on four datasets.

For example, in Compound, Glass, Statlog and Thyroid
datasets, as aforementioned. Although the values obtained by
FAABC, FAIWO and FATLBO for Statlog dataset are iden-
tical as those of the CS index, FAPSO, however, obtained the
overall best clustering solution. Based on these evaluations,
we can, therefore, say that on the average, for all the four
algorithms and across the twelve datasets, the CS index is
an efficient validity measure for clustering solutions than the
DB index.

Figures 3 and 4 show the average computational time con-
sumed by each of the algorithms using the two validity indices
to complete their search for optimal solutions. For both time
graphs, FAACB is represented in yellow bars, FAIWO by
purple bars, FAPSO by red bars, and FATLBO by blue bars.
The average time consumed is plotted against corresponding
algorithms and datasets. For the CS index in Figure 3, it is
observed that FAPSO has the highest (worst) execution run
time across the twelve datasets. The FAIWO follows this, and
then FATLBO. FAABC has the best (least) run time across
all the twelve test datasets. As earlier discussed, although
FAPSO achieved the best solutions on CS amidst all the
methods, it, however, consumed considerable time in all its
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FIGURE 12. Clustering results of hybrid FATLBO of some datasets on DB-index.

search process on each dataset. Similarly, for the DB index
in Figure 4, FAABC has the best execution time across all
the datasets, followed by FATLBO, and then FAPSO. FAIWO
has the worst (highest) run time among the four algorithms.

D. STATISTICAL ANALYSIS TEST
For further comparison, we performed a non-parametric sta-
tistical test called the Friedman rank-sum test, which can
be used to identify the presence of any significant differ-
ences between the behaviour of two or more algorithms.
As presented in Table 5, we observe that for the CS index,
FAPSO particularly has the best rank on seven of the
twelve datasets, namely, Iris, Jain, Pathbased, Spiral Thyroid,
Wine and Yeast datasets. Similarly, there is an identical
rank for all the four algorithms across Glass and Statlog
datasets, as was seen in the numerical results presented
above in Table 4. The FATLBO is ranked next to FAPSO in
three datasets which include, Breast Compound and Flame
datasets. However, strengthens the fact that FAPSO is a bet-
ter efficient hybrid firefly algorithm for solving automatic
data clustering problem. Yet, for DB index, FAPSO and
FATLBO have a tie in their ranks on the equal number
of datasets, namely Compound, Jain, Statlog, Thyroid, and

Yeast datasets for FAPSO and Breast, Flame, Iris, Pathbased
and Spiral datasets for the FATLBO. Finaly, FAABC, FAIWO
and FATLBO have an identical mean rank-sum in Glass
dataset.

To further justify the mean ranks obtained by the Friedman
test statistic in Table 5, we performed additional Wilcoxon
post-hoc test to ascertain where significant statistical dif-
ference exists among the compared algorithms. Therefore,
the Wilcoxon’s statistics test is used in this case to aid us
to draw a meaningful statistical conclusion. Tables 6 and
7 reports the p-values produced by this posthoc analysis for
the pairwise comparison of FAPSO vs FAABC, FAPSO vs
FAIWO, FAPSO vs FATLBO, FAABC vs FAIWO, FAABC
vs FATLBO and, FAIWO vs FATLBO, for both the CS and
DB validity indices respectively. Almost all the values are
below our adjusted p-value of (p ≤ 0.0083). We obtained
a great number of statistically significant values on pairwise
of FAPSO with other algorithms than the other pairwise in
both cases of CS and DB indices. Hence, this further proves
the superiority of FAPSO over other methods with a clear
indication that the algorithm is a robust and efficient hybrid
firefly algorithm for carrying out the task of automatic data
clustering.
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FIGURE 13. Convergence curves on CS-index of each algorithm on all the test datasets.
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FIGURE 13. (Continued.) Convergence curves on CS-index of each algorithm on all the test datasets.

E. CLUSTERING PROCESS
The clustering results of some selected datasets for all the
algorithm on CS and DB index across all the four hybrid
algorithms are presented in Figures 5-12. In Figure 5
(FAABC based on CS index), we have three perfect clusters
for the Compound dataset, while we have one cluster for
Flame, Pathbased and Yeasts datasets, although with a blue
string outlier on them which is not noticeable. Likewise,
for Figure 6 (FAABC based on DB index), we have good
clustering but with red stringed-outlier on the Glass and
Jain dataset, and a red stringed-outlier in the Spiral cluster.
Figures 7 and 8 show clustering results for FAIWO using
CS and DB measures, respectively. The compound dataset
has three exact clusters, while Statlog has one. A blue string
of outlier is noticed in Flame and Iris datasets, as shown
in Figure 7. Also in Figure 8, Compound dataset is well
clustered into three groups, Pathbased into one group with
a string of red outlier, Thyroid dataset was equally classified
into three classes of blue, green and red. In contrast, the Wine
dataset was classified into one class but with a blue exception
class.

In Figure 9 on the Compound dataset, a small part of the
magenta and yellow class are mixed with the blue class, but

the dataset is divided into six classes. Also, some outliers
were not properly grouped, which are present in the green
class. For the Jain dataset, we had three distinct clusters with
a few green outliers attached to the magenta class. Also,
in Pathbased and Spiral datasets, we had five and six clearly
separated classes, respectively. Likewise, for DB index as
shown in Figure 10, all the selected datasets had perfect clus-
tering which is well separated and presented on each graph,
except the Yeast dataset that had a few outliers around it.

A good clustering result is presented for FATLBO, accord-
ing to Figures 11 and 12. In Figure 11, FATLBO achieved
one clustered distinct group on each of the selected datasets,
with a few outliers of red, blue and green outliers that are not
noticeable. While the Compound dataset has three definite
clusters, one cluster for each of Flame, Spiral, and Yeast
datasets, they, however, had green, red and blue outliers,
as seen in Fig. 12.

F. ALGORITHM CONVERGENCE CURVES
The equivalent convergence comparison curves for the four
hybrid algorithms are presented in Figures 13 and 14. The
overall convergence evaluation for the respective algorithm
on both the CS and DB measures show that the FAPSO
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FIGURE 14. Convergence curves on DB-index of each algorithm on all the test datasets.
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FIGURE 14. (Continued.) Convergence curves on DB-index of each algorithm on all the test datasets.

converges better than FAABC, FAIWO and FATLBO. Next
to FAPSO is FATLBO, which obtained fair convergence than
FAABC and FAIWO, while FAIWO converged the poorest in
both instances of the validity measures.

G. HIGH-DIMENSIONAL DATASET AND PARAMETER
FINE-TUNING
In this section, an additional experiment was carried out to
determine the scaling performance behaviour of the two best
performed algorithms proposed in this paper, namely, FAPSO
and FATLBO on seven relatively high dimensional datasets.
The performance of the two algorithms is further validated by
fine-tuning their standard control parameters, which in this
case is the population size. The population size of 50 and
100 were selected for the parameter tuning task. On the one
hand, the parameter tuning measure assists in evaluating the
impact of control parameters for the two algorithms, which
might somewhat affect the performance of the individual
algorithm either negatively or positively in terms of solu-
tion quality or computational cost complexity. The results
of the fine-tuning experiment are shown in Tables 8 and 9,
respectively. Note that the results of FAPSO and FATLBO
are compared with those of three hybrid algorithms from

literature namely, particle swarm optimization differential
evolution (PSODE) [40], firefly algorithm differential evo-
lution (FADE) [40], and invasive weed optimization differ-
ential evolution (IWODE) [40]. Each of these algorithms
is implemented and executed under the same experimental
conditions, which makes it logical to compare their clustering
results and computational costs.

For the two algorithms, some noticeable performance
improvements in the solution quality were observed as com-
pared to the results of the hybrid methods from the litera-
ture [40]. However, the observed improvements were at the
expense of computational time, which increased significantly
as shown in the two tables 8 and 9 below. The FAPSO
obtained the least average solution with 0.5411 and 0.5700,
followed by FATLBO with 0.5719 and 0.6096 for both pop-
ulation sizes of 50 and 100 as compared to literature results.
However, with an increase in the number of population size,
there is no significant improvement in terms of clustering
solution quality based on the results obtained by the hybrid
FATLBO.

The results of the computational time complexity for
the FAPSO and FATLBO algorithms implementation
are presented alongside the obtained clustering solutions
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TABLE 8. Results obtained by FAPSO and FATLBO for high-dimensional dataset using a population size of 50.

TABLE 9. Results obtained by FAPSO and FATLBO for high-dimensional dataset using a population size of 100.

in Tables 8 and 9. One of the significant drawbacks of the
parameter fine-tuning is that the running time considerable
grows for each algorithm. For example, the FAPSO even
though it produced the best clustering solution in terms of
cohesion and compactness, the computational costs increased
exponentially relative to population size. Although, similar
characteristics behaviour was displayed in the computation
cost obtained by other hybrid algorithms from the literature.
However, this is expected because the hybrid implementa-
tion process incorporates additional subroutine processing
overhead, which invariably increases the execution time
complexities of the combined algorithms. Thus the high
computational cost recorded by both FAPSO and FATLBO.

H. ALGORITHM COMPLEXITY
In determining the complexity of any metaheuristic algo-
rithm, there is no one size fits all solution that can be applied.
Although the detailed computational complexity may depend
on the structure of the algorithm design and implemen-
tation [29]. However, for the five proposed metaheuristic
algorithms used in this paper, their complexities can be easily
estimated. For the improved FA algorithm, the time com-
plexity is defined as O(n2t) where n denotes the number
of population size used, which in this case is n = 25

and t represents the number of iterations. Also note that
for the sake of simplicity in the implementation process,
all the five proposed algorithms, including FA and the four
hybrids, namely, FAPSO, FAABC, FATLBO, and FAIWO
algorithms have two inner loops when going through the
entire population n. Therefore, for the four proposed hybrid
algorithms, the time complexity is defined as O

(
n2t
4 +

n2t
2

)
,

this is because each section of the four single or individual
representative algorithms only uses half of the population
size. Also, as the values of n and t that were used for the
experiments reported in this paper are small (typically, n =
25, t = 200), the computation cost is relatively inexpensive
because the algorithm complexity is linear in terms of t.
Similarly, also note that the main computational cost relies
on the evaluations of the defined clustering task objective
function.

Further, similar to some othermetaheuristic algorithms, the
FA, which is used as the core representative algorithm for the
proposed hybrid techniques have some limitations as follows:
FA optimal performance highly depends on adequate param-
eter fine-tuning, diversification in FA can lead to reduced
computational speed and convergence rate, FA is not very
suitable for handling complex problems, because it can be
trapped in many local optima in the event of searching for
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possible candidate solutions [29]. However, because each of
the hybrid methods depends on the FA, their performance can
as well be restricted, precisely due to the parameter tuning
effects and over-diversification or exploration mechanism of
the FA base algorithm. These limitations were experienced
when the hybrid algorithms were subjected to clustering task
that involves the use of high dimensional datasets.

V. CONCLUSION
In this study, four new FA-based hybrid algorithms were
implemented and successfully used to solve automatic data
clustering problems. Subsequently, a performance study of
the respective proposed algorithms was carried out. The sim-
ulation results obtained from the multiple experiments exe-
cuted revealed that the FAPSO outperformed the other hybrid
algorithms, including the FAABC, FAIWO and FATLBO,
respectively, in terms of solution quality and convergence
speed. On the other hand, the FATLBO seemed to have
equally performed relatively well and was next to the FAPSO
algorithm, as it was able to yield high clustering solutions
and better computational speed as well. However, the FAIWO
appeared to be the least superior methods in terms of clus-
tering quality and speed of convergence. In future research,
we intend to apply the proposed FA-based hybrid algorithms
to solve other complex optimization problems with similar
settings and possibly on variants of the clustering problem
considered in this paper. Similarly, it will be interesting to
see some high-level extension of the proposed hybrid clus-
tering algorithms that would dynamically enable the indi-
vidual algorithms to determine the set of optimal parameter
configuration for maximum performance improvement of the
individual process.

Finally, the possibility of combining FA algorithms
with some recent deep learning clustering methods such
as the deep embedding clustering [83], deep clustering
network [84], pairwise constraints clustering [85], deep
embedding network [86], joint unsupervised learning of
deep representation for images [84], deep learning with
non-parametric clustering [87], convolutional neural net-
work clustering [88] and deep clustering with convolutional
autoencoder embedding [90] can be investigated to solve
real-world data clustering problems, specifically, those prob-
lems with high dimensionality and complex features.
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