
Received June 7, 2020, accepted June 27, 2020, date of publication July 1, 2020, date of current version July 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3006370

Multicast Load-Balanced Birkhoff-Von Neumann
Switch With Greedy Scheduling
SRDJAN DURKOVIC AND ZORAN ČIČA , (Member, IEEE)
School of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia

Corresponding author: Zoran Čiča (zoran.cica@etf.bg.ac.rs)

ABSTRACT Internet traffic is still exhibiting an exponential growth. This exponential growth will certainly
be continued given the Internet of Things (IoT) and Internet of Everything (IoE) predictions regarding the
number of devices connected to the Internet in the near future. Also, many popular multicast services such
as IPTV, distance learning, content distribution, distributive interactive gaming, collaborative computing
and others are rapidly increasing amount of the Internet multicast traffic, thus, significantly contributing to
the Internet traffic growth. The routers are typically designed to cope with unicast traffic. Multicast traffic
can negatively impact performance of such routers and cause significant degradation of overall network
performance. Hence, due to increasing importance and increasing amount of multicast traffic, there is a
great need for a scalable switch architecture that efficiently forwards both unicast andmulticast traffic. In this
paper, we propose a novel scalable, efficient and frugal multicast switch architecture based on load balanced
Birkhoff-von Neumann switch with greedy scheduling that achieves stable performance even at very high
traffic loads. The proposed switch is compared to other popular multicast switch solutions. Comparison
shows that our proposed multicast switch architecture outperforms other solutions in all tested common
traffic scenarios at the most critical (highest) traffic loads.

INDEX TERMS Packet switching, multicast, high speed networks.

I. INTRODUCTION
Given the IoT and IoE trends, the number of devices con-
nected to the Internet will be enormous in the near future [1].
Also, new Internet services are continuously emerging while
attracting large number of users and generating large amounts
of traffic. Among them, multicast services like IPTV, dis-
tance learning, content distribution, database replication and
others are gaining a lot of attention and popularity [2], [3].
Therefore, the Internet traffic exponential growth trend will
be continued [4]. Although, inter-domain multicast is still not
widespread [5], [6], ISPs and data centers are using multicast
for more efficient content delivery [6]–[8]. ISPs especially
use the multicast for intra-domain video content delivery [6],
while data centers use the multicast for various applications
like streaming telemetry, replicated state machines, publish-
subscribe systems, database replication that benefit from the
multicast support in data centers [7]. Thus, the share of mul-
ticast traffic in the overall Internet traffic is not insignificant
anymore and, nowadays, routers need to efficiently forward

The associate editor coordinating the review of this manuscript and

approving it for publication was Joanna Kołodziej .

multicast traffic. At the core of a router, a packet switch is
responsible for the traffic forwarding. The performance of
a packet switch has crucial impact on overall router perfor-
mance. However, most of the routers are based on unicast
packet switches designed to efficiently cope with a unicast
traffic. Usually, these routers have very poor performance
when serving a multicast traffic. Given the Internet traffic
growth and multicast traffic share increase, it is important to
develop packet switch architectures that can efficiently sup-
port both unicast traffic and continuously increasingmulticast
traffic. The packet switch architecture needs to be very scal-
able in order to support high throughputs and large number
of ports.

Input queued (IQ) packet switch architecture is very popu-
lar because it is significantly more scalable than the output
queued packet switches. Many unicast IQ packet switches
have been proposed in the literature [9]–[12]. Multicast
extensions of unicast IQ switches can be divided in two
main groups: 1) adjustment of existing unicast switch [13];
2) introducing multicast capable switch fabric combined with
IQ switch based scheduling algorithms [2], [3], [14]–[16].
However, the main problem of the IQ based approach is

120654 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-5378-7247
https://orcid.org/0000-0003-4456-5858
https://orcid.org/0000-0002-5181-8713


S. Durkovic, Z. Čiča: Multicast LB-BvN Switch With Greedy Scheduling

the random switch fabric configuration pattern. The random
pattern requires fast configuration calculations which can
represent serious problemwhen a switchwith large number of
ports needs to support very high throughput such as 100Gbps
throughput and beyond.

The load balanced Birkhoff-von Neumann (LB-BvN)
switch architecture avoids the problem of random switch con-
figurations, by using the deterministic switch fabric configu-
rations [17]–[24]. LB-BvN switches exploit the fact that the
deterministic switch fabric configuration is possible and sim-
ple for the uniformly distributed traffic. There are two switch-
ing stages with deterministic switch configurations. The first
switching stage makes the incoming traffic as uniform as
possible and the second switching stage just forwards the
traffic to corresponding output ports. Because the switching
pattern is deterministic, the LB-BvN solutions achieve great
performance for the unicast traffic. However, the LB-BvN
based solutions for the multicast traffic are not significantly
investigated in the literature so far, even though they represent
very promising multicast switch solutions [25].

In this paper, we propose a novel multicast architecture that
is based on the unicast load balanced Birkhoff-von Neumann
switch with greedy scheduling (LB-BvNGS) [24]. In order
to support multicast traffic, we use multicast controller to
build binary multicast trees in order to use simple unicast
LB-BvNGS architecture for multicast packets. Each multi-
cast flow has a corresponding binary multicast tree. Binary
multicast tree comprises the input port at which the multicast
packets are received and corresponding destination output
ports to which the packets are forwarded. The input port
that receives the multicast packets is the root node of the
tree. Multicast packets are forwarded as unicast packet copies
to destination output ports through the multicast tree. Since
multicast tree is binary, at each non-leaf node of the tree at
most two packet copies are created which limits the problem
of potential input port overload with additional packet copies
created from the original multicast packet. Hence, when a
multicast packet arrives at the input port, it is forwarded to
corresponding destination output ports by traversing all the
links in the tree in downstream direction. One or two packet
copies are created at every non-leaf node and forwarded to
its children nodes. Note that the unicast LB-BvNGS is non-
blocking with internal link speedup of two [24]. We show that
our proposed multicast architecture is also non-blocking but
with the internal link speedup of five due to additional packet
copies that create additional traffic at the input ports in the
worst case. We believe that this property is acceptable, given
nowadays technology. Also, we show that in typical traffic
scenarios even without internal link speedup our proposed
multicast switch achieves high performance. The multicast
controller is built in control plane and complies to software
defined networking (SDN) paradigm. Thus, the routers that
use the proposed multicast switch can be easily integrated in
the SDN based network architectures.

This paper has a few contributions. A novel multicast
switch architecture that is proposed is very scalable and

achieves great performance even under very heavy traffic
loads thanks to the fact that it is based on the efficient unicast
LB-BvNGS packet switch architecture. Overall complexity
of the proposed multicast switch architecture is low. The
proposed switch is non-blocking for any admissible traffic
scenario if internal link speedup of five is used. Also, speedup
of switch configuration is not required for the non-blocking
property. Note that most of the other existing multicast solu-
tions do not prove non-blocking property for any admissible
traffic scenario, but only show the performance for the typical
traffic scenarios. However, even if the speedup is not used,
the performances are still good for the common traffic sce-
narios. The multicast controller is built in the control plane
and can be used in SDN based network architectures.

The rest of the paper is organized as follows. Section II
covers related work. In section III, we give a detailed descrip-
tion of our proposed multicast load-balanced Birkhoff-von
Neumman switch with greedy scheduling. Special attention is
given to the multicast controller in this section. In section IV,
we compare our solution to the other popular multicast
schemes. Section V concludes the paper.

II. RELATED WORK
Several switch architectures with support for the multicast
traffic have been proposed so far. Typically, the packet
switches are optimized for the unicast traffic. However, due
to the increase of the multicast traffic, the efficient multi-
cast support has become an important feature of the modern
packet switches. Most of the multicast solutions are based on
the multicast support extension of the existing unicast packet
switches. In this section, we give overview of the multicast
switch solutions that have been proposed in the literature.

Many popular multicast solutions represent adjustment of
existing unicast input queued (IQ) switches. IQ switches store
incoming packets in buffers at the input ports. IQ switches
are controlled by a scheduler that manages packet forwarding
through the switch from input ports to corresponding output
ports. Scheduler is responsible for calculation of connection
patterns between input and output ports or, in other words,
scheduler is responsible for the switch configurations. Some
IQ switches, such as iSlip [9], [10], implement a central
scheduler, but the central scheduler can limit the switch scal-
ability. The pattern of IQ switch configurations is random in
terms that switch configuration pattern heavily depends on
the current traffic conditions. In the case when IQ switch
needs to support high throughput, the switch configuration
pattern must be calculated very fast, but the central scheduler
works with N 2 entries which limits the scalability in terms
of number of ports and supported throughput, where N is the
number of input/output ports. Also, many centralized sched-
ulers require multiple iterations in the switch configuration
calculation process and that property has negative impact on
scalability in term of the supported throughput. However, sin-
gle iteration schedulers can overcome the problem ofmultiple
iterations in the calculation process, but the problem of N 2

entries remains [11].

VOLUME 8, 2020 120655



S. Durkovic, Z. Čiča: Multicast LB-BvN Switch With Greedy Scheduling

Distributed schedulers can be used to overcome the scal-
ability problem of centralized schedulers by distributing
the switch configuration calculation to all input ports. One
such solution is the sequential greedy scheduler [12]. Here,
a scheduling process is distributed across all input ports. Each
input port schedules packets for some future configurations.
For example, port i schedules one of its packets for time x,
and at the same moment input port i+ 1 schedules one of its
packets for time x−1. In the next iteration, the input port i+1
schedules one of its packets for time x. In this way, multiple
switch configurations are calculated at the same time across
all input ports using the pipeline that comprises chain of the
input ports. Distributed scheduler at each input port works
with onlyN entries because the scheduler is distributed across
N input ports.
The aforementioned unicast IQ switch architectures can be

adjusted to support multicast traffic. One way is to adjust the
multicast traffic to unicast switch. Naive way to adjust the
multicast traffic is to create a copy for each targeted output
port for every received multicast packet. By targeted output
port we refer to the output port that needs to receive the cor-
responding multicast packet. However, this can significantly
increase the amount of traffic that needs to be forwarded
from the input ports. For example, in the worst case where
all packets are multicast and each multicast packet needs to
be forwarded to all output ports, the increase in traffic at the
input port would be N times - instead of 1 packet, N packets
should be forwarded for each received multicast packet.

Workaround is to create, for each multicast flow, a multi-
cast tree of output ports that belong to that flow, while the
tree’s root node is the input port that receives the multicast
packets of that flow [13]. Multicast packets travel down the
corresponding tree to all tree’s nodes, where at each inter-
nal node, copies of the multicast packet are created for its
children nodes. In this way, switch still operates as a unicast
switch, but the number of additional copies created at each
port is limited, thus, the problem of the input port overload
with additional packet copies is limited.

The other way to adjust IQ based schemes to multicast
traffic is to use a multicast switch fabric that enables simulta-
neous packet transmission to multiple output ports from one
input port [3], [14]. Here, the additional packet copies are not
created at the input ports and as a result, oversubscription of
the input ports is avoided. Hence, packets are duplicated at
the switching elements inside the switch fabric, and multi-
cast controller is needed to efficiently configure the switch
fabric and schedule packets. It is shown that the IQ multicast
switch based on multicast capable switch fabric has better
performance than the IQ multicast switch based on unicast
fabric [15]. In [2], there is an exchange of control information
between input and output ports in order to calculate multicast
switch configuration to achieve efficient transfer of packets
from input ports to output ports. In [16], multicast switch
configuration is calculated in three phases: 1) Scheduling of
multicast packets, 2) Scheduling of unicast packets, 3) Packet
sending. Order of phases 1) and 2) is reversed between

neighbouring calculation cycles to achieve a fair service of
multicast and unicast traffic. The downside of the approach
based on multicast switch fabric is the larger complexity of
the multicast switch fabric compared to unicast switch fabric.

It is important to notice that the major downside of all IQ
based solutions is a random pattern of switch configurations
which limits the scalability in terms of supported switch
throughput because the longest duration of calculation of one
switch configuration determines the supported throughput.
Even when the calculation operations are not complex, they
still consume some time to be calculated, and this might
represent a limiting factor when link speeds are 100Gbps and
beyond.

In order to avoid the major downside of the IQ based
solutions, load balanced Birkhoff-von Neumann (LB-BvN)
architecture can be used [17]. LB-BvN uses two switch
stages. The pattern of switch configurations is deterministic
in both stages, thus, avoiding the major downside of the IQ
based solutions since no switch configuration calculations are
performed at all. The task of the first stage is to uniformly
distribute incoming traffic over all input ports of the sec-
ond stage. Then, the second stage forwards packets to their
corresponding outputs. Central buffers are placed between
two switching stages to store packets before forwarding them
to the output ports. However, since the packets of the same
flow can travel via different paths through the two stage
architecture, the packets can experience different delays and
these delay differences lead to out-of-sequence problem [17].

Multiple solutions are proposed to cope with the out-of-
sequence problem. The first approach is to use resequencing
buffers at the output ports. EDF (Earliest Deadline First) [17]
and BF (Byte Focal) [18] use the resequencing buffers to
solve the out-of-sequence problem. The drawback of these
solutions is that the resequencing buffers increase the over-
all hardware complexity. Typically, the resequencing buffers
have O(N 2) complexity or higher [18].

The second approach is to use frame based solutions, such
as: FFF (Full Frames First) [19], PF (Padded Frames) [20],
CR (Contention and Reservation) [21]. Here, incoming pack-
ets are organized in frames which consist of N consecutive
packets of the same flow. Frame is sent only when it is
completed. Each packet from the frame is sent to different
central buffer. Since packets are sent only within the frames,
all packets from the same frame experience the same delay,
thus, packets are received in sequence. However, frame-based
switches have significantly larger packet delays, especially
at light traffic loads, because it takes some time to complete
a full frame. For this reason, in some frame-based solu-
tions, frames can be completed with dummy packets that are
dropped at the output ports in order to reduce the overall
packet delay [20]. But this leads to a problem of using the
switch capacity to transfer dummy information.

The third solution that prevents out-of-sequence problem is
FBSS (Feedback Based on Staggering Symmetry) [22], [23].
Thanks to the specific (staggering symmetry) connection
patterns of both stages, the packet out-of-sequence problem

120656 VOLUME 8, 2020



S. Durkovic, Z. Čiča: Multicast LB-BvN Switch With Greedy Scheduling

is avoided. Staggering symmetry connection pattern means
that if the central buffer i is connected to output port j, then,
in the next iteration, the central buffer i is connected to input
port j. Here, small central buffers, which can store up to N
packets (one for each output port), advertise non-scheduled
outputs. The central buffer i advertises non-scheduled outputs
to output port j. Since input and output port j typically reside
on the same line card, the output port j can pass the received
information to the input port j. Input port j uses that informa-
tion to schedule and send a packet to the central buffer i in the
next iteration. Since each central buffer can have at most one
packet for each of the outputs, all packets experience the same
delay, thus, the packet out-of-sequence problem is avoided.

The fourth solution, LB-BvNGS (Load Balanced Birkhoff-
vonNeumann switchwithGreedy Scheduling) [24] combines
the best properties of IQ switches and LB-BvN switches.
LB-BvNGS uses simple distributed greedy scheduling to
schedule packets at the input ports for forwarding to the
output ports. However, the scheduler is only responsible for
packet selection at the input ports, it does not configure switch
fabric, because configuration pattern of the switch fabric is
deterministic (property of the LB-BvN class of switches).
Furthermore, thanks to synchronized and same configuration
pattern of the first and the second switching stage, a folded
switch architecture is used where only one switch fabric is
used for both switching stages unlike in most of the other
LB-BvN based solutions where two physical switch fabrics
must exist. LB-BvNGS originally works without packet out
of sequence problem. LB-BvNGS can be modified to achieve
even greater performance, but at the cost of using the rese-
quencing buffers at the output ports to solve the packet out
of sequence problem [24]. However, the size of resequencing
buffers is limited to size of N , which is significantly lower
than in the other LB-BvN solutions that use the resequencing
buffers. As shown in [24], the FBSS and LB-BvNGS exhibit
the best performance among the LB-BvN based solutions for
the unicast traffic.

Most of the LB-BvN solutions are not dealing with the
multicast support, but with the out-of-sequence problem of
the unicast solutions. However, a deterministic switch con-
figuration property provides great scalability for LB-BvN
based switches. Therefore, LB-BvN architecture should be
investigated for multicast support. Multicast support in FBSS
is provided by adding the non-overlapping multicast queues
at the input ports where each queue corresponds to one subset
of the output ports [25]. When a multicast packet arrives to
the switch, it is stored in multicast queues which correspond
to destination output ports of that packet. In the scheduling
process, packets from multicast queues have priority over
unicast packets. At each input port, scheduler selects, from
all multicast queues at that input port, a HOL (Head of Line)
multicast packet which has the largest overlap with the set
of non-scheduled outputs signaled by the central buffer as
explained previously for the unicast FBSS solution. After-
wards, at the input port, destination output ports of that
scheduled packet are updated to exclude the output ports that

packet is sent to. Only when the packet is finally sent to
all destination output ports, the packet is removed from the
corresponding multicast queue at the input port. If none of
the multicast packets can be sent, unicast packet is selected
for some of the free outputs signaled by the central buffer.
The number of multicast queues at the input ports needs to be
carefully selected. If there is only one multicast queue (such
queue corresponds to all output ports), thenHOL packet is not
removed from the queue until it is sent to all its destination
ports. Thus, HOL blocking problem, especially under heavy
load, can cause significant performance degradation. On the
other side, if there are N multicast queues (each queue now
corresponds to one output port), then packet replication can
lead to input port overload with the created packet copies.
Hence, the number of additional multicast queues is a trade-
off between avoiding HOL blocking problem and creation of
large number of packet copies.

III. MULTICAST LOAD BALANCED BIRKHOFF-VON
NEUMANN SWITCH WITH GREEDY SCHEDULING
In order to explain the proposed multicast switch architec-
ture, we first provide a brief description of the unicast load
balanced Birkhoff-vonNeumann switchwith greedy schedul-
ing (LB-BvNGS) because our proposed multicast architec-
ture is based on the unicast LB-BvNGS architecture. Then,
we explain the multicast controller that is used in combina-
tion with the unicast LB-BvNGS to achieve multicast switch
architecture MLB-BvNGS (Multicast LB-BvNGS). In this
paper, we assume fixed size packets. In the case of variable
size packets, packet segmentation is performed at the input
ports.

Let us consider a LB-BvNGS switch of size N × N ,
where N is the number of input/output ports. In LB-BvNGS,
time is divided in cycles that last N slots, where the slot
represents duration of one fixed-size packet. LB-BvNGS has
two switching stages, where deterministic connection pattern
of both stages is the same: j = (i + t)modN , where i and j
represent connected input and output ports of stage in slot t .
Typically, input port k , output port k and central buffer k are
implemented on the same line card. This property, along with
the same connection patterns of both stages, enables the usage
of folded architecture where only one physical switch is used
instead of two. It is shown that folded physical switch in LB-
BvNGS does not need speedup of switch configurations [24].
This property enables good scalability of LB-BvNGS since
switch configuration speedup is more critical than the internal
links speedup.

At each input port there are N queues. Packets which
are destined to the same output port are stored in the same
queue. During each cycle, input ports use greedy scheduling
algorithm to choose packets that will be sent in the next
cycle. In each cycle, input ports exchange N vectors V c (c =
0 . . .N−1), where each vector V c corresponds to one central
buffer c. Each bit in V c corresponds to one output that can
be reached via central buffer c. Therefore, each vector V c
comprises N bits. If the bit on the location j of the vector

VOLUME 8, 2020 120657



S. Durkovic, Z. Čiča: Multicast LB-BvN Switch With Greedy Scheduling

V c is set to 1, it means that central buffer c can accept
packet destined to the output port j i.e. none of the input
ports scheduled packet for that location in central buffer c.
Otherwise, if the bit on the location j of the vector V c is
set to 0, then central buffer c already has a scheduled packet
for output port j i.e. one of the input ports already scheduled
packet for that location in central buffer c. When input port
receives V c, it determines non-occupied outputs and selects
packet for one of them according to the longest queue policy.
The selected output is marked as occupied in V c and updated
V c is passed to the next input port in chain. For example,
when input port i processes V c, it forwards the vector V c to
the input port (i − 1)modN . At the beginning of the cycle,
each input port c processes vector V c. Thus, in every slot,
each input port processes only one vector, and vectors are
sequentially exchanged between the inputs. V c value at the
beginning of the cycle shows that all outputs are unoccupied
at the central buffer c. This property of processing only one
vector during the slot makes LB-BvNGS very scalable.

FIGURE 1. LB-BvNGS port architecture.

The scheduled packets are stored in the corresponding
buffer for scheduled packets at the input port. Each input port
comprises two such buffers. One buffer (Buffer A in Fig. 1)
stores the packets scheduled in the current cycle, and the other
buffer (Buffer B in Fig. 1) stores the packets scheduled in
the previous cycle (these packets are forwarded to central
buffers in the current cycle). The role of these two buffers is
switched between the cycles. The size of each buffer is only
N packets, since at mostN packets can be sent from the buffer
(Buffer B) or scheduled (Buffer A) in one cycle. These two
buffers for scheduled packets at the input ports are needed to
avoid packet out-of-sequence problem as explained in [24].
The packets scheduled in the current cycle are transmitted to
central buffers in the next cycle.

The explained greedy scheduling ensures that each central
buffer receives at most one packet for each of the outputs,
so very small memories are used at the central buffers. Each
central buffer contains only two RAM memories with N
locations. In bothmemories, each location corresponds to one
output port. During the cycle, onememory (Mem. A in Fig. 1)
receives packets from the input ports, and those packets will
be sent to the corresponding output ports in the next cycle.
Other memory (Mem. B in Fig. 1) stores packets that arrived
in the previous cycle, and these packets are sent to the output
ports in the current cycle. The role of these two memories is

switched between the cycles. It is shown in [24], that overall
LB-BvNGS complexity is very low,while achieving excellent
performance.

Fig. 1 shows the previously described architecture of port
i of the LB-BvNGS switch. Switching stages are shown
logically (separated), but physically they are the same switch
fabric. During one slot, input port i is connected to central
buffer j, and central buffer i is connected to output port j.
Also, input k and central buffer k are connected to central
buffer i and output port i, respectively. Input port i receives
V c from input port (i+1)modN and selects the longest queue
among the queues that correspond to outputs that are marked
as free in V c. The corresponding bit in V c is flipped and V c
is passed to the input port (i-1)modN . The scheduled packet
is placed in the corresponding buffer (Buffer A in Fig. 1) that
contains packets scheduled for transmission in the next cycle.
The packet scheduled in the previous cycle (stored in Buffer
B in Fig. 1) for central buffer j is transmitted. Transmitted
packet from input port k is written to memory A in central
buffer i at the location corresponding to output that represents
packet’s destination. Packet from location j in memory B
at central buffer i is transmitted to output port j. Roles of
memories A and B are switched in the next cycle.

In order to add a multicast support to the previously
described unicast LB-BvNGS architecture, we implement
multicast controller. Multicast controller is responsible to
create a binary multicast tree for each multicast flow. First,
we explain the structure of one multicast binary tree as well
as the packet forwarding in the tree. Then, we explain the
construction and update of a binary multicast tree.

One binary multicast tree comprises root node and regular
nodes. Root node is the root of the binary tree and it is placed
at the input port where the packets of the corresponding
multicast flow are received. Regular nodes are the output
ports towhich the packets of the correspondingmulticast flow
need to be forwarded. An example of one multicast tree for
one multicast flow F is shown in Fig. 2.

FIGURE 2. Binary multicast tree forwarding.

Node indices in Fig. 2 correspond to port indices. The input
port 1 receives the multicast packets of flow F . Note that
input port uses the multicast address from packet’s header to
perform the lookup to multicast forwarding table at the input
port in order to determine towhich flow the receivedmulticast
packet belongs. The multicast address can be multicast IP

120658 VOLUME 8, 2020



S. Durkovic, Z. Čiča: Multicast LB-BvN Switch With Greedy Scheduling

address, MPLS label, etc. For each received multicast packet
of flow F , the input port 1 creates two copies of the packet,
one for the output port 3 and one for the output port 7. These
two copies are placed in the corresponding queues for the
output ports 3 and 7, respectively. Thus, the copies of the
multicast packets are forwarded using the unicast LB-BvNGS
architecture. At the input port 1, internal multicast label f is
added to each copy. Since, multicast packets are forwarded
using the unicast LB-BvNGS architecture, there is a need to
distinguish multicast packets from the unicast packets, and
also to distinguish to which multicast flow does the multicast
packet belong. Internal multicast label enables the ports to
choose the correct multicast tree for the packet forwarding.
Internal multicast label is retrieved from the multicast for-
warding table as well as the IDs of the left and right child
nodes. In the case when some child node does not exist,
NULL value is retrieved indicating that the corresponding
child does not exist. The described process of the multicast
packet forwarding at the root node from the given example
is shown in Fig. 3 that represents the system architecture
of the root node multicast packet forwarding. Note that all
modules in Fig. 3 are part of the MLB-BvNGS and only
the last module in Fig. 3 (Queues for LB-BvNGS) is part
of the original LB-BvNGS as this is the place where unicast
and multicast packet flows are joint together into LB-BvNGS
unicast architecture.

FIGURE 3. Root node multicast packet forwarding.

We also give the pseudocode of a root node packet
forwarding. The pseudocode covers forwarding up to the
moment where the packets are written to the corresponding
LB-BvNGS queues i.e. where the unicast and multicast
packet flows are joint into the LB-BvNGS unicast archi-
tecture that represents the basis of the MLB-BvNGS.
Lines 11-13 of the pseudocode represent the part of the uni-
cast LB-BvNGS architecture.

Multicast packet copy received at the output port 3 is
detected to be a multicast packet. Thus, besides forwarding of
the packet copy to the output, a lookup in internal multicast
forwarding table is performed. Each output port contains
internal multicast forwarding table, where for each internal
multicast label there is a record of the child nodes in the cor-
responding binary multicast tree. If child nodes are detected,
for each child, a copy of the packet is created and passed to
the input port of the same index - in the given example it
is the input port 3. Note that typically input and output port

Algorithm 1 Root Node Packet Forwarding Pseudocode
1: if received packet is multicast then
2: multicast forwarding table lookup
3: if left child exists then
4: create left child copy and add IML
5: write copy to corresponding LB-BvNGS queue
6: end if
7: if right child exists then
8: create right child copy and add IML
9: write copy to corresponding LB-BvNGS queue
10: end if
11:else //unicast packet is received
12: unicast forwarding table lookup
13: write packet to corresponding LB-BvNGS queue
14: end if

reside on the same line card, thus, this packet passing from the
output port to the input port of same index is low complexity
operation. At the input port, these packet copies are added to
the corresponding queues for the output ports. In the given
example, at the output port 3, two packet copies are created
for the output ports 4 and 6.

The described process of the multicast packet forward-
ing at the regular node 3 from the given example is shown
in Fig. 4 that represents the system architecture of the regular
node multicast packet forwarding. Note that all the modules
in Fig. 4 are part of the MLB-BvNGS and only the Output
queues and Queues for LB-BvNGS modules are part of the
original LB-BvNGS.

FIGURE 4. Regular node multicast packet forwarding.

We also give the pseudocode of regular node packet for-
warding. Again, the forwarding is given up to the point
where multicast copies are written to LB-BvNGS queues.
Lines 12-13 of the pseudocode represent the part of the uni-
cast LB-BvNGS architecture.

Only one packet copy (for output port 5) is created at the
output port 7. In case when no child nodes are detected in the
record retrieved from the internal multicast forwarding table,
multicast packet reached the end of the binary multicast tree,
thus, no additional packet copies are created. This happens
at the output ports 4, 5 and 6 in the given example. The
given example shows that using the binary multicast trees,

VOLUME 8, 2020 120659



S. Durkovic, Z. Čiča: Multicast LB-BvN Switch With Greedy Scheduling

Algorithm 2 Regular Node Packet Forwarding Pseudocode
1: if received packet is multicast then
2: write packet with removed IML to output queue
3: internal multicast forwarding table lookup
4: if left child exists then
5: create left child copy
6: write copy to corresponding LB-BvNGS queue
7: end if
8: if right child exists then
9: create right child copy
10: write copy to corresponding LB-BvNGS queue
11: end if
12:else //unicast packet is received
13: write packet to output queue
14:end if

the unicast LB-BvNGS architecture can be efficiently used
for the multicast packet forwarding as well.

In order to create multicast forwarding trees in the network
of routers, a protocols like PIM (Protocol Independent Mul-
ticast) are used [26]. Based on the work of these protocols,
routers can determine for each multicast flow F , which input
port of the router receives the multicast packets of the flow F ,
and to which output ports of the router the multicast packets
of flow F need to be forwarded. The protocol messages are
processed in the control plane. For that reason, we imple-
ment our multicast controller (MC) in the control plane. The
multicast controller is responsible for creating and sending
configurationmessages to input and output ports of the router.
In that way, our MC implementation can support software
defined networking (SDN) paradigm where the control plane
is decoupled from the actual router hardware and router in
such case comprises only the forwarding plane. This rep-
resents additional reason why we decide to implement MC
in the control plane. Based on multicast protocol (like PIM)
messages, the MC creates and updates the binary multicast
trees in the router. In order to create the binary multicast tree
for some multicast flow F , there needs to be at least one
output port to which the multicast packets of the multicast
flow F need to be forwarded. Multicast tree is incrementally
updated. When new output port needs to be added to the
binary multicast tree, the node corresponding to that output
port is added to the tree. Left first rule is applied, where the
nodes in the next level are added by adding left branch child
nodes first.

Fig. 5 shows the order of regular node additions to the
binary multicast tree, where regular node indices given
in Fig. 5 show the order in which the regular nodes are
added to the tree. Note that indices given in Fig. 5 do not
correspond to port indices, but they correspond to the order
of additions to the tree. In this way, we achieve balanced tree
with the minimal possible depth. Minimal possible depth is
important tominimize the difference in delays of the copies of
the same multicast packet because the output ports belonging

FIGURE 5. Binary multicast tree.

to the tree can have different number of hops from the root
node.When a node is deleted from the tree, if the deleted node
entry is not the last added node, the last added node is moved
to the emptied position. By the last added node, we assume
the node that has the largest index in the left first rule scheme.
In this way, the tree always preserves the compact structure.

Fig. 5 and Fig. 6 show the configuration messages sent by
MC in the most common multicast tree update scenarios.

FIGURE 6. Regular node deletion.

The configurationmessages sent to input ports (root nodes)
are responsible for adding, updating and deleting the records
in the multicast forwarding tables at the input ports. The
record contains the internal multicast flow label and the IDs
of the output ports that represent left and right child of the
root node. Note that ID value NULL indicates that the corre-
sponding child node does not exist.

The configuration messages sent to output ports (regular
nodes) are responsible for adding, updating and deleting the
records in the internal multicast forwarding tables at the out-
put ports. The record contains the IDs of the output ports that
represent left and right child in the corresponding multicast
tree. Note that ID value NULL indicates that the correspond-
ing child node does not exist. Fig. 5 shows the configuration
messages sent from the MC in the case of the last added node
(node 14). In this example, MC sends two configuration mes-
sages when a new node is added. One updatemessage is nec-
essary to update the corresponding record in the parent node
with the ID of the added child node in the internal multicast
forwarding table. Note that if the parent node is the root node,
the updated record is in the multicast forwarding table. In the

120660 VOLUME 8, 2020



S. Durkovic, Z. Čiča: Multicast LB-BvN Switch With Greedy Scheduling

given example, the record in internal multicast forwarding
table at the output port that corresponds to node at position 6
is updated with the right child ID that is set to value cor-
responding to the regular node (i.e. output port ID) that is
added to the binary multicast tree (position 14 in the tree).
The other configuration message sent by MC is add message
that adds record to the internal multicast forwarding table of
the regular node (i.e. corresponding output port) added to the
binary multicast tree (at position 14 in the given example).
Since the added node does not have any children, the added
record contains NULL value for left and right child nodes.

Fig. 6 shows the most complicated case when a node is
removed from the binary multicast tree and the removed node
is not the last added node. In this most complicated case, MC
needs to send four configuration messages. Delete message
removes the corresponding record from the internal multicast
forwarding table at the deleted regular node (node A in the
given example). The last added node in the given example
is the regular node B. Node B needs to be moved to the
place of the deleted node (node A in the given example). This
movement requires update in the node B to adjust to its new
position in the tree. Also, updates are required in the parent
node of the node B (regular node C in the given example)
and in the parent node of the deleted node (root node R in
the given example) in order to maintain the proper multicast
packet forwarding through the binary multicast tree. These
two parent nodes (nodes R and C) experience changes in
the child nodes due to the node A removal and the node B
position change. Thus, MC sends update message to the reg-
ular node B to update it with the child nodes of the removed
regular node A. MC also sends update message to the root
node R to update its left child with the node B (instead of the
deleted node A) and updatemessage to the regular node C to
update its right child to NULL since the node B is moved to
another position in the binary multicast tree.

As we can see from the given examples, MC is the one that
keeps track of all the binary multicast trees and updates the
structure of these trees based on the multicast protocol mes-
sages (like PIM messages) exchanged with the other routers.
Based on the structure updates, MC creates configuration
messages and sends them to the forwarding plane of the router
in order to properly update the multicast forwarding tables at
the affected router ports.

Unlike the most of the other existing multicast solutions,
we derive the minimum internal link speedup required for
the non-blocking property of the proposed MLB-BvNGS
for any admissible traffic scenario. Also, even without the
speedup, the proposed MLB-BvNGS achieves great perfor-
mance for the typical traffic scenarios that are analyzed in the
literature. The proposed MLB-BvNGS is non-blocking for
any admissible traffic scenario if the speedup of five is used.
In order to prove this statement, we introduce the following
assumptions. The size of the switch is N ×N , where N is the
number of input/output ports. The packets have a fixed size
that is equal to duration of one slot. Now, let us observe some
admissible traffic scenario. Since the traffic is admissible,

there is m ∈ Z+ such that the traffic in the interval m · N
is admissible i.e. there is a period that lasts integer number
of cycles where the traffic is admissible. Note that Z+ is
the set of positive integers (≥ 1). There are at most m · N
packets for each of the outputs in the observed interval (that
lasts m · N slots) because the traffic is admissible. Given the
input link capacity limits, at each input port at most m · N
incoming packets can be received in the observed interval.
Now, we observe some input port i and the packet that should
be forwarded from that input port to some output port j.
The worst case in forwarding some packet from the input
port i is the following: 1) all the incoming packets received
at the input port i are multicast packets with at least two
destination ports; 2) all the packets for the output port i are
the multicast packets and for these multicast packets port i is
the regular node in the multicast tree that is not leaf. In the
worst case, the considered packet must wait forwarding of all
the packets from the input port i that includes the copies of
the multicast packets received at the input port i as the root
node and as the regular node. There are 2 · m · N packets
where the input port i plays the role of the root node. This is
the consequence of point 1) in the analyzed worst case: each
packet is multicast with at least two output port destinations,
thus, there are 2 ·m ·N copies. There are m ·N packets where
the input port i plays the role of the regular non-leaf node in
the multicast tree. This is the consequence of point 2) in the
analyzed worst case and the fact that the traffic is admissible:
since the traffic is admissible there can be at most m · N
copies for the destination output port i. Since the port i is
non-leaf node, in the worst case 2 · m · Ncopies need to be
forwarded (both child nodes exist). Also, there are at most
m · N packets destined for the output port j since the traffic
is admissible. In the worst case, the considered packet needs
to wait forwarding of at most 4 · m · N − 1 packets from the
input port i and forwarding ofm ·N −1 packets for the output
port j from the other input ports before the considered packet
can be forwarded. This gives a total of 5 · m · N − 2 packets,
thus speedup of five is required to forward all the traffic for
the period of m · N slots.

The goal of a speedup is to enable faster forwarding
of packets from input ports to output ports in order to
avoid potential congestions at the input ports [27]. Also,
the speedup decreases packet delays [27]. The larger speedup
value as a consequence has a higher implementation cost [28].
Typically, in the packet switches that use a speedup, speedup
is required for both, the internal links and the switch fab-
ric [28]. If the speedup value is SP, then the internal links
rate is SP times higher than the external links rate. The
straightforward way to implement the internal link speedup
is to simply use faster links inside the router. However, the
maximal speedup value in this approach is limited by the
external link rate value and the used technology. In the case
where this straightforward approach is not able to implement
a desired SP value, then the desired SP can be achieved by
implementing each internal link as an aggregate of several
links to achieve the desired internal link rate. This expansion

VOLUME 8, 2020 120661



S. Durkovic, Z. Čiča: Multicast LB-BvN Switch With Greedy Scheduling

of the straightforward approach additionally increases the
implementation costs since the switch fabric should accom-
modate (at its inputs and outputs) bundles of links instead
of individual links. The speedup of switch fabric requires
faster reconfigurations of the switch fabric in order to prop-
erly switch the packets that are incoming over internal links
with speedup [28]. Usually, the switch fabric speedup is
considered to be more critical from the design point of
view [28]. However, the LB-BvNGS does not require speedup
of switch fabric even in the case when the internal links
use speedup [24]. Since, the MLB-BvNGS relies on the
LB-BvNGS for packet forwarding, the same property holds
for the MLB-BvNGS as well. Because of this, we believe
that the MLB-BvNGS implementation cost increase if the
speedup of five is used is acceptable since only the inter-
nal links use speedup. However, we emphasize also that
the MLB-BvNGS exhibits great performance even when no
internal links speedup is used as shown in section IV, so the
lower value of speedup can be used.

IV. PERFORMANCE ANALYSIS
In order to analyze the performance of the proposed mul-
ticast LB-BvNGS (MLB-BvNGS) we develop the simula-
tion model for the MLB-BvNGS. Our goal is to test the
MLB-BvNGS switching performance (performance in the
data plane) and compare it to the other existing multicast
switch solutions. For this reason, the simulation model does
not differ the location of the control plane i.e. whether the
control plane is decoupled from the data plane or not. The
simulation model is written in C language.

MLB-BvNGS simulation model pseudocode gives the
overview of the MLB-BvNGS simulation process. Note that
we omit the simulation of speedup from the pseudocode
because we do not use speedup in the performance analy-
sis presented in this section. The simulation starts with the
initialization of the following parameters: simulation dura-
tion in number of slots (Tsim), switch dimension - number
of input/output ports (N ), traffic scenario, traffic genera-
tor parameters. Traffic generator parameters depend on the
selected traffic scenario. More details on the traffic scenarios
and the traffic generator parameters are given later in this
section.

After the initialization, the simulation process enters the
while loop where each loop iteration represents one slot -
time in simulation is measured in slots. We set Tsim to 1 mil-
lion slots. In case when slot corresponds to beginning of
the new cycle, all V c vectors are initialized to all 1s (all
central buffers are marked as completely free as explained
in Section III). Then, for loop passes through each input port
and the following functions are performed at each input port:

1) Incoming traffic is generated according to the selected
traffic scenario. The generated packets are written to cor-
responding input queues at the input ports. There are N
input queues at each input port, and each input queue cor-
responds to one output port. The input queues are modeled
as lists, where each element of the list represents one packet.

Algorithm 3MLB-BvNGS Simulation Model Pseudocode
1: simulation parameter initialization
2: t = 0
3: while (t< Tsim) do
4: if (t mod N= 0) then
5: init all V c vectors to free
6: end if
7: for each input do
8: generate incoming traffic and write to corresponding
input queues
9: select packet for the next cycle and update V c
10: send scheduled packet to central buffer
11: end for
12: for each central port do
13: send packet to output port
14: end for
15: for each output port do
16: send packet to output external link
17: if multicast packet and at least one child exists then
18: write copies to corresponding input queues
19: end if
20: end for
21: for each input do
22: send V c to neighbour input port
23: end for
24: t ++
25:end while

List element (packet) comprises the following information:
timing information for each point in the path of the packet
from the input port to the output port (time when the packet
entered the input port from the traffic generator, time when
the packet is sent to the central buffer, time when the packet
is sent to the output port, time when the packet re-entered the
input port - this last time is relevant only for the multicast
packet copies created at the output port), type of the packet
(unicast/multicast), input port id, output port id (used only
for the unicast packets), subtree (used only for the multicast
packets). Subtree represents the remaining part of the multi-
cast tree that the copies of the corresponding multicast packet
need to traverse. Subtree is embedded in the packet to avoid
simulating the process of the internal multicast forwarding
table lookup because simulating the lookup would increase
the complexity of the simulator without adding the value to
the performance analysis of the packet switching. The timing
information is used not only for monitoring and analysis
purposes, but also for preventing the packets to traverse mul-
tiple stages in one slot which would violate the simulation
correctness. For example, if the packet is added to the input
queue at the current slot, it can not be scheduled in the current
slot - the timing information says that packet entered the input
queue in the current slot, thus it is not considered for the
scheduling.

2) Packet scheduling for the next cycle. By inspecting the
vector V c and non-empty input queues, the longest queue

120662 VOLUME 8, 2020



S. Durkovic, Z. Čiča: Multicast LB-BvN Switch With Greedy Scheduling

among the input queues that are allowed by V c to schedule
the packet is selected. The scheduled packet is written to the
scheduled packets buffer (Buffer A in Fig. 1) that is also
modeled as a list. V c is updated by marking the central buffer
that is selected by the scheduler as occupied.

3) Sending the packet scheduled in the previous cycle
to the corresponding central buffer. Corresponding central
buffer is the central buffer to which the input port is currently
connected according to j = (i+ t)modN formula, where i is
the id of the input port and j is the id of the central buffer. The
packet from the list that corresponds to Buffer B in Fig. 1 is
sent to corresponding central buffer. Note that the lists that
correspond to Buffers A and B switch their roles between
the cycles as explained in Section III. The sent packet is
written to the list that correspond to Memory A in Fig. 1 at
the corresponding central buffer.

After the input port events simulation, for loop that passes
through each central buffer is performed. The packet from
Memory B in Fig. 1 is sent to the corresponding out-
put port. Corresponding output port is the output port to
which the central buffer is currently connected according to
j = (i + t)modN formula, where i is the id of the central
buffer and j is the id of the output port. Note that the lists that
correspond to Memories A and B switch their roles between
the cycles as explained in Section III. The packet is written to
the list that corresponds to output buffer at the output port.

At the output port the packets are sent from the output
queue to the external link and the total delay is measured for
the packet. The total delay represents the time that has passed
between the time when packet entered the input port from
the traffic generator and the time when packet was sent to
external output link. If the packet is multicast at the output
buffer, besides sending the packet to the external output link,
the subtree in the list element (packet) is inspected. If there is
at least one child, the corresponding packet copies (one or
two, depending whether one or two child nodes exist) are
created and written to the corresponding input queues. The
subtree in each packet copy is updated so that left child gets
left part of the subtree and right child gets right part of the
subtree, with the subtree root node removed (it is removed
because the packet has reached that output port).

At the end of simulation of the events during one slot, each
input port sends updated V c to its neighbour input port. For
the input port i, the neighbour input port is (i− 1)modN .

We compare the proposed multicast LB-BvNGS
(MLB-BvNGS) to the recent IQ multicast schemes pro-
posed in [2], [16]. We denote these two IQ schemes as
M-IQ1 [2] and M-IQ2 [16]. We also compare MLB-BvNGS
to the multicast scheme based on LB-BvN that is proposed
in [25]. We denote this scheme as M-BvN. We test two
M-BvN schemes that differ in the number of multicast queues
because the number of multicast queues has significant
impact on performance. Namely, we select schemes with
2 and 16 multicast queues that we denote as M-BvN2 and
M-BvN16, respectively. We compare the schemes in terms
of average packet delay Davg. Speedup is not used in any of

the schemes. We show the results for three admissible traf-
fic scenarios: Bernoulli uniform mixing traffic (BUMT),
Bernoulli uniform multicast traffic (BUMuT) and bursty
mixing traffic (BMT) [25].

The traffic generator parameters for the BUMT scenario
are: P - probability that packet arrives in slot, Pm - probability
that the packet is multicast, Fmin - minimal fanout of the mul-
ticast packets,Fmax - maximal fanout of themulticast packets.
The traffic generator works in the manner described by the
following pseudocode. The given pseudocode is performed
at each input port in every slot.

Algorithm 4 BUMT Traffic Generator Pseudocode
1: generate random number x in range 0 to 1
2: if (x < P) then//packet arrives
3: generate random number y in range 0 to 1
4: if (y < Pm) then//multicast packet arrives
5: generate random integer z in range Fmin to Fmax
6: randomly select z outputs and create multicast tree
7: create packets (list elements) and write to
corresponding input queues
8: else //unicast packet arrives
9: select random output o from range 0 to N − 1
10: create packet (list element) and write to corresponding
input queue
11: end if
12:end if

When the traffic generator creates a multicast packet, mul-
ticast tree associated to that packet is created. Given the
randomly generated fanout z, outputs are randomly selected
one by one and added to the multicast tree following the
addition order shown in Fig. 5. In this way, we simulate the
random creation of the multicast tree, where the outputs join
the multicast flow in random order and consequently they
are added to the multicast tree following that joining order.
The generatedmulticast packets have a corresponding subtree
embedded in the list element that represents the packet. Left
child holds the left subtree of the generatedmulticast tree, and
right child holds the right subtree of the generated multicast
tree.

BUMuT scenario is very similar to BUMT scenario, with
only one difference - all arriving packets are multicast i.e. Pm
is set to 1.

Fig. 7, Fig.8 and Fig. 9 show the average packet delayDavg
for BUMT scenario where Pm is set to 0.25, 0.5 and 0.75,
respectively. The switch size is set to 32 input/output ports.
Fmin is set to 2 andFmax is set to 32. Fig. 10 shows the average
packet delay Davg for BUMuT scenario that practically rep-
resents special case of BUMT where Pm is set to 1. We show
the Davg for high and very high loads, because significant
difference between schemes begins to show at loads higher
than 0.9.

All schemes exhibit stable behaviour in BUMT and
BUMuT scenarios, and MLB-BvNGS achieves the low-
est Davg at the highest loads in all four cases shown

VOLUME 8, 2020 120663



S. Durkovic, Z. Čiča: Multicast LB-BvN Switch With Greedy Scheduling

FIGURE 7. Average packet delay for BUMT scenario for Pm = 0.25.

FIGURE 8. Average packet delay for BUMT scenario for Pm = 0.5.

FIGURE 9. Average packet delay for BUMT scenario for Pm = 0.75.

in Fig. 7 - Fig. 10. Only in the case shown in Fig. 7 (BUMT
Pm = 0.25), the M-IQ1 exhibits poor performance at the
highest loads, which suggests that M-IQ1 scheme is more

FIGURE 10. Average packet delay for BUMuT scenario.

FIGURE 11. Average packet delay for BUMT scenario for N = 64.

adjusted to multicast traffic than to the unicast traffic in
the case of BUMT scenario. M-BvN2 scheme has lower
performance than M-BvN16 scheme, because there are less
multicast queues, thus, HOL blocking has significant impact
on performance, especially at high loads. For this reason,
M-BvN2 scheme has the worst performance in all tested
scenarios with the exception of the scenario shown in Fig.7.
On the other hand, M-BvN16 scheme creates more packet
copies and requires either faster memories to store all the cre-
ated copies in one slot or multiple physical memory instances.
But, since there are more multicast queues at the input port,
the effects of the HOL blocking are significantly decreased in
the case of M-BvN16 scheme. For this reason, the M-BvN16
scheme achieves the second best performance at the highest
loads in the tested scenarios.

In order to inspect the schemes scalability and behavior in
the case of greater switch sizes, we show the average packet
delay Davg for BUMT scenario where Pm is set to 0.5 and for
the BUMuT scenario, when the switch size N is set to larger
values - 64 and 128. All other traffic scenario parameters are
the same as in traffic scenarios given for the switch size 32.
Fig. 11 and Fig. 12 show the results for the switch size

120664 VOLUME 8, 2020



S. Durkovic, Z. Čiča: Multicast LB-BvN Switch With Greedy Scheduling

FIGURE 12. Average packet delay for BUMuT scenario for N = 64.

FIGURE 13. Average packet delay for BUMT scenario for N = 128.

64 for BUMT and BUMuT scenarios, respectively. Fig. 13
and Fig. 14 show the results for the switch size 128 for BUMT
and BUMuT scenarios, respectively. The relation between the
schemes is similar to relations between the schemes in the
tested BUMT and BUMuT scenarios for the switch size 32.
Again, the M-BvN2 scheme exhibits the worst performance
because of the HOL blocking problem, while the M-BvN16
exhibits the second best performance thanks to larger number
of multicast queues that minimize the HOL negative effect.
MLB-BvNGS still achieves the best performance indicating
good scalability. M-IQ1 and M-IQ2 exhibit similar behavior
like in tested scenarios for N = 32. M-IQ1 achieves bet-
ter performance for the BUMuT scenario, while the M-IQ2
achieves better performance for the BUMT scenario, which
again suggests that M-IQ1 is more suitable for cases when
multicast traffic has more share in the overall traffic. Probable
reason for this behaviour is that the M-IQ2 services unicast
and multicast flows fairly, unlike the M-IQ1.

BMT traffic scenario uses ON/OFF model to simulate
bursty traffic [25]. There are ON and OFF states for each

FIGURE 14. Average packet delay for BUMuT scenario for N = 128.

FIGURE 15. Average packet delay for BMT scenario for Pm = 0.25.

FIGURE 16. Average packet delay for BMT scenario for Pm = 0.5.

input port. Packets arrive only in ON state. The traffic gen-
erator parameters for the BMT scenario are: P - probability
of packet arrival, s - average burst size, Pm - probability that
the burst is multicast, Fmin - minimal fanout of the multicast

VOLUME 8, 2020 120665



S. Durkovic, Z. Čiča: Multicast LB-BvN Switch With Greedy Scheduling

FIGURE 17. Average packet delay for BMT scenario for Pm = 0.75.

FIGURE 18. Average packet delay for BMT scenario for N = 64.

packets, Fmax - maximal fanout of the multicast packets.
The probabilities Pon and Poff are derived from the average
burst size s and the probability of packet arrival P [25]. The
probability to switch from OFF to ON state Pon is equal
to P/[s∗(1 − P)], while the probability to switch from ON
to OFF state Poff is equal to 1/s [25]. Packets that belong
to the same burst have the same destination ports. In the
case of multicast packets, fan-out and destination ports are
determined at the beginning of the burst in the same way as
in BUMT traffic scenario. The traffic generator works in the
manner described by the following pseudocode. The given
pseudocode is performed at each input port in every slot. Note
that burst element represents the pattern for packets in the
burst. In the case of unicast burst, the burst element carries
info about the output port to which the packets from the burst
are destined for. The same applies for the multicast burst
where the info about the output destinations is saved as the
multicast tree.

Fig. 15, Fig. 16 and Fig. 17 show the average packet
delay Davg for BMT scenario where Pm is set to 0.25, 0.5
and 0.75, respectively. The switch size is set to 32 input/output
ports. Fmin is set to 2 and Fmax is set to 32. Average burst

Algorithm 5 BMT Traffic Generator Pseudocode
1: if (state = OFF) then
2: generate random number x in range 0 to 1
3: if (x < Pon) then//switch to ON state
4: state = ON
5: generate random number y in range 0 to 1
6: if (y < Pm) then//multicast burst
7: generate random integer z in range Fmin to Fmax
8: randomly select z outputs and create multicast tree
9: create burst element
10: else //unicast burst
11: select random output o from range 0 to N -1
12: create burst element
13: end if
14: end if
15:else//input port is in ON state
16: create packets out of burst element and write to input
queues //1 unicast packet or 2 multicast packets
17: generate random number w in range 0 to 1
18: if (x < Poff ) then//switch to OFF state
19: state = OFF
20: end if
21:end if

FIGURE 19. Average packet delay for BMT scenario for N = 128.

size is set to s = 30 as in [25]. BMT scenario puts more
burden to switch architecture due to the burstiness of the
traffic. As expected, all compared architectures exhibit higher
Davg than in the BUMT and BUMuT scenarios. Also, some
of the schemes start to exhibit unstable behavior. M-IQ2
and M-BvN2 schemes are the first to become unstable.
M-IQ1 scheme is slightly better than M-IQ2 and M-BvN2 as
it becomes unstable at higher load values than the M-IQ2 and
M-BvN2 schemes. MLB-BvNGS and M-BvN16 are stable
even at very high loads, and again MLB-BvNGS achieves
the lowest Davg at high loads.

Fig. 18 and Fig. 19 show the average packet delay
Davg for BMT scenario when the switch size is increased

120666 VOLUME 8, 2020



S. Durkovic, Z. Čiča: Multicast LB-BvN Switch With Greedy Scheduling

to 64 and 128, respectively. The relation between the schemes
is the same as in the BMT scenarios for N = 32. However,
the M-BvN16 scheme has a decrease in performance at the
highest loads as the switch size grows, suggesting that HOL
blocking effect increases as the switch size increases. For this
reason, the M-BvN scheme would have to use larger number
of multicast queues for larger switch size but that would
increase the implementation costs of the M-BvN scheme.

V. CONCLUSION
In this paper, we propose a novel multicast scheme based
on the LB-BvN architecture. Performance comparison shows
that LB-BvN based solutions are more stable at high loads
than IQ based solutions. Also, our proposed MLB-BvNGS
outperforms the other LB-BvN based multicast solution at
very high loads. The tests show that MLB-BvNGS exhibits
great stability even under very high loads. This good per-
formance in combination with low complexity architec-
ture presents MLB-BvNGS as very promising multicast
solution.

REFERENCES
[1] H. N. Saha, A. Mandal, and A. Sinha, ‘‘Recent trends in the Inter-

net of Things,’’ in Proc. IEEE 7th Annu. Comput. Commun. Workshop
Conf. (CCWC), Las Vegas, NV, USA, Jan. 2017, pp. 1–4.

[2] J. Xiao and K. L. Yeung, ‘‘Iterative multicast scheduling algorithm for
input-queued switch with variable packet size,’’ in Proc. IEEE 30th Can.
Conf. Electr. Comput. Eng. (CCECE), Windsor, ON, Canada, Apr. 2017,
pp. 1–4.

[3] P. Giaccone, M. Pretti, D. Syrivelis, I. Koutsopoulos, and L. Tassiulas,
‘‘Design and implementation of a belief-propagation scheduler for mul-
ticast traffic in input-queued switches,’’ Comput. Commun., vol. 103,
pp. 141–152, May 2017.

[4] L. Vu, V. L. Cao, Q. U. Nguyen, D. N. Nguyen, D. T. Hoang, and
E. Dutkiewicz, ‘‘Learning latent distribution for distinguishing network
traffic in intrusion detection system,’’ in Proc. IEEE Int. Conf. Com-
mun. (ICC), Shanghai, China, May 2019, pp. 1–6.

[5] F. Coras, J. Domingo-Pascual, F. Maino, D. Farinacci, and
A. Cabellos-Aparicio, ‘‘Lcast: Software-defined inter-domain multicast,’’
Comput. Netw., vol. 59, pp. 153–170, Feb. 2014.

[6] R. Canonico and S. P. Romano, ‘‘Leveraging SDN to improve the perfor-
mance of multicast-enabled IPTV distribution systems,’’ IEEE Commun.
Standards Mag., vol. 1, no. 4, pp. 42–47, Dec. 2017.

[7] M. Shahbaz, L. Suresh, J. Rexford, N. Feamster, O. Rottenstreich, and
M. Hira, ‘‘Elmo: Source routed multicast for public clouds,’’ in Proc.
ACM Special Interest Group Data Commun., Beijing, China, Aug. 2019,
pp. 458–471.

[8] C. Koch, S. Hacker, and D. Hausheer, ‘‘VoDCast: Efficient SDN-based
multicast for video on demand,’’ in Proc. IEEE 18th Int. Symp. A World
Wireless, Mobile Multimedia Netw. (WoWMoM), Macau, China, Jun. 2017,
pp. 1–6.

[9] N. McKeown, ‘‘The iSLIP scheduling algorithm for input-queued
switches,’’ IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188–201, Apr. 1999.

[10] W. Zhu and M. Song, ‘‘Integration of unicast and multicast schedul-
ing in input-queued packet switches,’’ Comput. Netw., vol. 50, no. 5,
pp. 667–687, Apr. 2006.

[11] B. Hu, F. Fan, K. L. Yeung, and S. Jamin, ‘‘Highest rank first: A new class
of single-iteration scheduling algorithms for input-queued switches,’’ IEEE
Access, vol. 6, pp. 11046–11062, Feb. 2018.

[12] M. Petrovic, A. Smiljanic, and M. Blagojevic, ‘‘Design of the switching
controller for the high-capacity non-blocking Internet router,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 8, pp. 1157–1161,
Aug. 2009.

[13] M. Blagojević and A. Smiljanić, ‘‘Design of multicast controller for high-
capacity Internet router,’’ IET Electron. Lett., vol. 44, no. 3, pp. 255–256,
Jan. 2008.

[14] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, ‘‘Mul-
ticast traffic in input-queued switches: Optimal scheduling and maxi-
mum throughput,’’ IEEE/ACM Trans. Netw., vol. 11, no. 3, pp. 465–477,
Jun. 2003.

[15] Z. Ċiča, ‘‘Non-blocking frame based multicast scheduler for IQ switches,’’
Electron. Lett., vol. 52, no. 4, pp. 285–287, Feb. 2016.

[16] J. Xiao, K. L. Yeung, and S. Jamin, ‘‘Pipelined scheduler for unicast and
multicast traffic in input-queued switches,’’ in Proc. IEEE Global Com-
mun. Conf. (GLOBECOM), Washington, DC, USA, Dec. 2016, pp. 1–6.

[17] C.-S. Chang, D.-S. Lee, and C.-M. Lien, ‘‘Load balanced Birkhoff-von
Neumann switches, part II: Multi-stage buffering,’’ Comput. Commun.,
vol. 25, no. 6, pp. 623–634, Apr. 2002.

[18] Y. Shen, S. Panwar, and H. Chao, ‘‘Design and performance analysis of
a practical load-balanced switch,’’ IEEE Trans. Commun., vol. 57, no. 8,
pp. 2420–2429, Aug. 2009.

[19] I. Keslassy and N. McKeown, ‘‘Maintaining packet order in two-stage
switches,’’ in Proc. 21st Annu. Joint Conf. IEEE Comput. Commun. Soci-
eties, New York, NY, USA, Jun. 2002, pp. 1032–1041.

[20] J. J. Jaramillo, F.Milan, andR. Srikant, ‘‘Padded frames: A novel algorithm
for stable scheduling in load-balanced switches,’’ IEEE/ACM Trans. Netw.,
vol. 16, no. 5, pp. 1212–1225, Oct. 2008.

[21] C.-L. Yu, C.-S. Chang, and D.-S. Lee, ‘‘CR switch: A load-balanced switch
with contention and reservation,’’ IEEE/ACM Trans. Netw., vol. 17, no. 5,
pp. 1659–1671, Oct. 2009.

[22] B. Hu and K. L. Yeung, ‘‘Feedback-based scheduling for load-
balanced two-stage switches,’’ IEEE/ACM Trans. Netw., vol. 18, no. 4,
pp. 1077–1090, Aug. 2010.

[23] A. Huang and B. Hu, ‘‘The optimal joint sequence design in the feedback-
based two-stage switch,’’ in Proc. IEEE ICC, Sydney, NSW, Australia,
Jun. 2014, pp. 3031–3036.

[24] S. Durkovic and Z. Cica, ‘‘Birkhoff-von Neumann switch based on
greedy scheduling,’’ IEEE Comput. Archit. Lett., vol. 17, no. 1, pp. 13–16,
Jan. 2018.

[25] B. Hu and K. L. Yeung, ‘‘Multicast scheduling in feedback-based two-
stage switch,’’ in Proc. Int. Conf. High Perform. Switching Routing, Paris,
France, Jun. 2009, pp. 1–6.

[26] J. Ko, S. Park, and E. Lee, ‘‘An extended PIM-SM for efficient data trans-
mission in IPTV services,’’ in Proc. 2nd IEEE Int. Conf. Netw. Infrastruct.
Digit. Content, Beijing, China, Sep. 2010, pp. 115–119.

[27] B. Prabhakar and N. McKeown, ‘‘On the speedup required for combined
input and output queued switching,’’ in Proc. IEEE Int. Symp. Inf. Theory,
Cambridge, MA, USA, Aug. 1998, pp. 165–180.

[28] B. Hu, K. L. Yeung, and C. He, ‘‘On iterative scheduling for input-queued
switches with a speedup of 2-1/N,’’ in Proc. IEEE HPSR, Vancouver, BC,
Canada, Jun. 2014, pp. 26–31.

SRDJAN DURKOVIC received the B.S. degree in
telecommunications from the Faculty of Electrical
Engineering, University of Montenegro, in 2013,
and the M.S. degree in telecommunications from
the School of Electrical Engineering, University
of Belgrade, in 2014, where he is currently pur-
suing the Ph.D. degree. His research interests
include packet switching, scheduling algorithms,
and multicast.

ZORAN ČIČA (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in telecommunications
from the School of Electrical Engineering, Uni-
versity of Belgrade, Serbia, in 2002, 2007, and
2012, respectively. In 2002, he joined the School
of Electrical Engineering, University of Belgrade,
where he is currently an Associate Professor. His
research interests include packet switching, com-
munication protocols, high-speed networks, and
communication hardware design.

VOLUME 8, 2020 120667


