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ABSTRACT Android applications are developing rapidly across the mobile ecosystem, but Android malware
is also emerging in an endless stream. Many researchers have studied the problem of Android malware
detection and have put forward theories and methods from different perspectives. Existing research suggests
that machine learning is an effective and promising way to detect Android malware. Notwithstanding, there
exist reviews that have surveyed different issues related to Android malware detection based on machine
learning. We believe our work complements the previous reviews by surveying a wider range of aspects of
the topic. This paper presents a comprehensive survey of Android malware detection approaches based on
machine learning. We briefly introduce some background on Android applications, including the Android
system architecture, security mechanisms, and classification of Android malware. Then, taking machine
learning as the focus, we analyze and summarize the research status from key perspectives such as sample
acquisition, data preprocessing, feature selection, machine learning models, algorithms, and the evaluation of
detection effectiveness. Finally, we assess the future prospects for research into Android malware detection
based on machine learning. This review will help academics gain a full picture of Android malware detection
based on machine learning. It could then serve as a basis for subsequent researchers to start new work and
help to guide research in the field more generally.

INDEX TERMS Android security, malware detection, machine learning, feature extraction, classifier

evaluation.

I. INTRODUCTION

Since Android was released in 2008, it has become the
most popular operating system for smart mobile devices.
In 2019, about 86.6% of smartphones sold globally were
based on Android [1]. By the end of April 2020, there were
more than 2.8 million applications on Google Play, which
is the official store for Android applications [2]. Due to
various factors, such as the open ecological mode of Android
applications, its coarse-grained permission management, and
the ability to invoke third-party code, many security attack
surfaces are present, which seriously threatens the integrity
of Android applications. Statistics show that in 2016 alone,
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more than 3.25 million Android apps that were infected with
malware were discovered, which means that a new Android
malware app was found roughly every 10 seconds [3].
To ensure the security of the Android ecosystem, a variety
of solutions have been proposed, including application rein-
forcement, vulnerability detection, developer reviews, and
malware detection [4]. Among the various security options,
Android malware detection is a widely used security protec-
tion method that can prevent malware from being released
into the Android application marketplace or being installed
and used. Based on previous research, Android malware
detection technology can be divided into three categories:
static detection, dynamic detection, and hybrid detection
[5]-[7]. Static detection is based on the analysis of sus-
pect code without running the Android application. It can

124579


https://orcid.org/0000-0002-2274-783X
https://orcid.org/0000-0002-9582-0698
https://orcid.org/0000-0002-1714-5578

IEEE Access

K. Liu et al.: Review of Android Malware Detection Approaches Based on Machine Learning

achieve high code coverage but faces many countermea-
sures such as code obfuscation and dynamic code loading.
Conversely, dynamic detection involves the analysis of the
Android application by running the code. This can expose
risks that are not easy to discover by static analysis, but the
computational resources and time cost of dynamic detection
are relatively high. Hybrid detection is a method that com-
bines static detection and dynamic detection to achieve a bal-
ance between detection effectiveness and efficiency. Machine
learning theory is widely applied in the detection of Android
malware, whether based on static, dynamic, or hybrid anal-
ysis approaches. Compared with traditional methods, such
as signature-based malware detection, which is based on
identifying specific patterns of known malware, machine
learning-based detection has the ability to detect previously
unseen types of malware [8] and can provide better perfor-
mance in detection efficacy and efficiency [9], [10]. Some
previous studies have discussed Android malware detection
approaches based on machine learning. However, there are
some limitations in the surveyed research, including the now
outdated literature on which previous reviews were based,
the narrow scope of studies, and the lack of discussion regard-
ing some controversial content. To overcome these limita-
tions, this paper presents a systematic overview of research
within this specific area of work. The main contributions of
this paper are summarized as follows.

(1) We present a systematic and categorized overview of
machine learning approaches to Android malware detection.
The paper briefly covers some of the wider background of
Android applications but focuses on key aspects of machine
learning such as sample acquisition, data preprocessing, fea-
ture selection, machine learning model theory, and evaluation
of detection effectiveness.

(2) We fill some research gaps in previous reviews on
machine learning methods for Android malware detec-
tion. These are important aspects in the field of machine
learning but are rarely mentioned in previous reviews.
Examples include data preprocessing and reliability
estimation.

(3) We point out some areas of disagreement or neglect
in the field of Android malware detection based on machine
learning, and present our own assessments based on our
review of the relationship between data preprocessing and
feature selection, the classification of machine learning algo-
rithms, and the relationship between neural networks and
deep learning.

(4) We further explicate the limitations of machine learn-
ing approaches in Android malware detection and provide
insights for potential new research directions.

As shown in Table 1, this review differs from several
previous works in this discipline. It is not a general study
of Android malware detection [15], [23] or Android secu-
rity [35], [37] but instead systematically focuses on key per-
spectives on machine learning approaches used in Android
malware detection. In some papers, although machine learn-
ing methods are included, the information is scattered
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throughout the article to support different objectives. For
example, researchers in Ref. [24] give an overview of mal-
ware detection using data mining techniques. This article
is from the perspective of data mining, and although some
mainstream machine learning methods are analyzed, it does
not pay attention to the key aspects of the whole machine
learning process. Furthermore, some similar reviews only
focus on one or two aspects of machine learning approaches
in Android malware detection. For example, researchers in
Ref. [30] primarily summarize feature selection in mobile
malware detection, while researchers in Ref. [12] mainly
summarize various machine learning methods.

From the above analysis, there is a clear need to con-
duct a review that gives a more general and comprehen-
sive understanding of the state-of-the-art research in this
field, with the end goal being to help motivate and direct
future research. This review may thus be useful to a wide
range of readers. The rest of this paper is organized as
follows. Section II describes our method of literature col-
lection. Section III outlines some background on Android
applications, including the Android system architecture,
security mechanisms, and classification of Android malware.
Section IV presents a comprehensive survey of Android mal-
ware detection approaches based on machine learning from
key perspectives such as sample acquisition, data preprocess-
ing, feature selection, machine learning models, algorithms,
and evaluation of detection effectiveness. Section V suggests
some research directions and challenges for future work.
Finally, Section VI gives our conclusions.

Il. METHOD OF LITERATURE COLLECTION

For a literature review, it is very important to collect all the
relevant literature. We consider it necessary in this paper
to briefly describe our method of literature collection. Our
process of literature collection was as follows.

(1) Based on the theme of this review, we determined the
most relevant information we wanted to collect. Obviously,
the information that needs to be collected is focused on
machine learning approaches for Android malware detection.

(2) We determined the search keywords in terms of
the information to be collected. There are three for-
mats of keywords. First, because the topic of this review
involves both machine learning and Android malware detec-
tion, we summarize some keyword combinations such as
“machine learning 4+ Android malware detection” and
“machine learning + Android malware”. Second, we believe
that machine learning is a more extensive field compared with
the detection of Android malware, and therefore we expanded
the scope to directly search keywords such as “Android mal-
ware detection”. Finally, we tried to find information about
machine learning from previous reviews of Android security,
searching for keywords such as “‘review/survey/overview +
Android security” and “review/survey/overview + Android
malware”.

(3) We selected the data source to search using the
keywords. Most of the reviewed literature was from top
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TABLE 1. Comparison of recent reviews having overlapping coverage with this article. (,/ = Having content, * = Little to no content, x = No content).

Evaluation of Detection Effectiveness

okt Soor e Sl Do Kot VS Lo i Bintonof ety
Method ¢ pataset Classifier Estm{atlon of
Performance Evaluation Results
2020  This Article v v v v v v v v
Android 2019 [6] x x * N N o N y
Doy 0901 R T / :
basedon 2019 [12] x x * N N < N «
Machine
Learning 2018 [13] N * « N N « J y
2016 [14] v x % v J J J x
2020 [15] * x x * * x N N
2019 [16] x x x * * x N N
2019 [17] \ x x N N * \ «
2019 [18] x x x * N x N »
2018 [19] x * * \/ J x \ x
2018 [20] J x x * N x N N
2018 [21] x x x * x x J N
2018 [22] x x x N x * N N
2018 [9] J x * * N x N N
Android 2017 [23] S x N N * x * N
Malware 2017 [24] * x v N N * N %
Detection 2017 25] y y N Ny 7 y " .
2017 [26] x x x \/ * x * %
2016 [27] x x x N N * * %
2016 [28] x x x N N * N o
2015 [29] x/ x x N * x x «
2015 [30] J x N N N x N N
2015 [31] x x x N N x x N
2015 [32] x x N N N x * «
2014 [33] x x x N N x N “
2014 [34] x x x * * x * %
2019 [35] J x x V J x * «
2017 [8] x x x N N « x N
Android 2017 [36] x x x N x x x N
(Mobile) 2016 [37] \/ x x N N x * x
Securlty o1s [4] x x « N N Ny N )
2014 [38] J x * v \ x * «
2012 [39] x x * N \ x * N

conferences or mainstream journals, suggesting that our Libraries [40], Science Direct [41], Web of Science [42],
study has considered the important relevant works. The IEEE Xplore Digital Library [43], Cornell University
following online repositories were searched: ACM Digital Library [44], and SpringerLink [45]. In addition to the
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direct search of these online repositories, we also searched
some widely used third-party channels, including Google
Scholar [46], ResearchGate [47], and Academia [48].

(4) We determined the published date range of the collected
literature and conducted a preliminary search. Android was
released in 2008, and its security has attracted more and
more attention in recent years; hence, we focused on research
papers dated no more than 10 years ago, especially those pub-
lished in the last five years. Additionally, in order to ensure
that the literature analysis and summary were relatively fixed,
we set the deadline of literature collection as April 30, 2020,
which is in accord with the actual time period within which
this article was written.

(5) We excluded unsuitable literature from the preliminary
literature collection. The title of some of the collected litera-
ture was fascinating, but in fact its content was unfortunately
inconsistent with our research topic. Some short conference
papers have a maximum of 4 pages with insufficient descrip-
tion of their proposed approaches or tools, which are of little
significance to our work. There are also papers provided
by third-party data sources where we cannot confirm the
intellectual property rights, such as papers that have not been
published in their final version. In addition, the literature
collected from different data sources may be duplicated.
All the literature needed to be verified and excluded if
necessary.

(6) In the process of studying these papers, we further
collected literature closely related to our review topic accord-
ing to the bibliography listed in these papers. Referring to
the analysis and summary of systematic literature review
methods in Ref. [49], we performed an incomplete backward
snowballing from reference lists of the articles identified via
our earlier keyword search. Our goal was to find additional
relevant papers that may have not been located via keywords
alone.

This method of collecting literature inevitably has some
limitations. Almost all these processes are implemented man-
ually, and thus the collection efficiency is relatively low and
there are inevitably some omissions. Even if the method of
a keywords search combined with backward snowballing is
used to collect literature, it is difficult to guarantee that the
search is exhaustive. The purpose of this review is to collect as
much relevant literature as possible, and to give an overview
of the research field by analyzing a certain number of papers,
especially recently published papers. Therefore, we believe
that the existing literature collection is sufficient to support
the review work of this paper. Although it would be possible
to collect more literature by expanding the search scope and
keywords, the relevance of the articles retrieved would be
reduced.

Ill. OVERVIEW OF ANDROID APPLICATIONS

In this section, we do not expand the description of the
background knowledge of the Android architecture, security
mechanisms, and malware because this has been analyzed
and reported in detail in many articles and open source
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FIGURE 1. Android platform architecture [51].

communities [37], [38], [50]. For more Android background
details, readers may refer to the references listed in this
section.

A. ANDROID SYSTEM ARCHITECTURE

Based on the Linux kernel, the Android operating system
adopts a software stack to build its hierarchical system archi-
tecture. Google provides the classic layered architecture of
the Android system as shown in Fig. 1 [51], which is arranged
from bottom to top as follows: Linux kernel, hardware
abstraction layer, native C++/C libraries and Android Run-
time environment, Java API framework, and the application
layer. Each layer contains many submodules and subsystems.
The kernel space at the bottom of the Android stack has the
Linux kernel as its cornerstone while the user space at the
top of the Android system is composed of native C+4+/C
libraries, Android Runtime, and the Java API framework. The
kernel and user spaces are connected by system calls. User
space programs are mainly written in C++ or Java. Through
the Java native interface, the Java layer and the native layer
of the user space are connected to the rest of the Android
system [52].

B. ANDROID SECURITY MECHANISMS

In general, Android is a privilege-separated operating sys-
tem. The system achieves high-level system functions by
performing a set of system services through an inter-
process communication mechanism known as Binder. The
Android system isolates running applications using their
unique system identifiers (Linux UIDs). Android applica-
tions are granted very few permissions by default; they
must obtain fine-grained permissions to interact with sys-
tem services, hardware devices, and other applications.
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The permissions required by an Android application are
defined in the corresponding manifest file (Androidmani-
fest.xml) and are granted when the application is installed or
while running. The Android system uses UIDs to distinguish
the permissions granted to each application, executes these
permissions while the application is running, and further con-
strains the permissions of each process with SELINUX [53].

In the process of system update and iteration, Android
developers have devoted a great deal of attention to the
improvement of security functions. For example, Android Q,
which was released in 2019, has several new security fea-
tures, such as file-based encryption, access control for sen-
sitive information, access control for background camera/
microphone, a lock mode, encrypted backup, and a mech-
anism called Google Play Protect. Android Q protects user
privacy and security from multiple perspectives [54]. It also
has an improved permission control mechanism, gives users
more control over divulging their location, prohibits back-
ground applications from starting activities, restricts applica-
tion access to non-reset device identifiers (such as IMEI and
serial number), and enables MAC address randomization by
default. Nevertheless, malware is still a problem.

C. CLASSIFICATION OF ANDROID MALWARE

Malware is a type of application that contains malicious
executable code that can destroy the normal or preset services
and functions of a system or other application [55]-[58].
Reference [59] classifies malware on smart devices from
three perspectives: attack goals and behavior, distribution
and infection routes, and privilege acquisition modes. Attack
goals and behavior may include, but are not limited to, fraud
and service misuse, spamming, espionage, data theft, and
sabotage. Distribution and infection pathways include the
software market, applications, web browsers, SMS, network,
and PCs, among others. Methods of privilege acquisition
include user manipulation and technical exploitation.

With the rapid development of mobile internet and smart
devices, malware targeting the Android mobile platform
has emerged in various forms. Referring to the traditional
concept of malware, Android malware can be divided into
the following: trojan, backdoor, worm, botnet, spyware,
aggressive adware, and ransomware [38]. Felt et al. [60]
classified Android malware according to human behavioral
motivations, including novelty and amusement, selling user
information, stealing user credentials, making premium-rate
calls, sending SMS messages, SMS spam, search engine
optimization, and obtaining ransom. Zhou and Jiang [61]
classified and analyzed Android malware from the perspec-
tive of malware installation, activation, malicious payloads,
and permission abuse. In its research reports, Google [62]
uses very conservative words to describe malware, such
as potentially harmful applications (PHAs). The PHAs in
the Google application market are classified as click fraud,
SMS fraud, spyware, toll fraud, trojans, hostile downloaders,
backdoors, phishing, privilege escalation, and commercial
spyware.
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IV. ANDROID MALWARE DETECTION APPROACHES
BASED ON MACHINE LEARNING

Machine learning is a branch of artificial intelligence research
and application, and several researchers have provided def-
initions of machine learning [63], [64]. According to [65],
machine learning consists of a range of techniques for
automating the making of predictions based on past obser-
vations. Based on an analogy between machine learning
algorithms and the tasks performed by the human brain,
machine learning can be roughly divided into five paradigms
with different theoretical ideas: symbolists, connectionists,
evolutionaries, Bayesians, and analogizers. Each category of
machine learning has its own research areas and correspond-
ing algorithms, according to their respective fundamental
concepts [66]-[68]. Another representative and widely used
classification of machine learning approaches is based on the
learning method, which is typically divided into supervised
learning, unsupervised learning, semi-supervised learning,
and reinforcement learning [69]—[72].

Supervised learning makes use of a labeled dataset of
samples or instances to train the predictive model, which
is often used to solve classification or regression problems.
When the prediction of the output is a continuous variable,
itis a regression problem, and when the prediction is discrete,
it is a classification problem.

Unsupervised learning does not require specially labeled
datasets to train the prediction model. The purpose of this
kind of machine learning is to discover the internal structure
or distribution characteristics of the datasets themselves, and
it is often applied to problems such as data clustering and
feature dimension reduction.

Semi-supervised learning combines elements of super-
vised learning and unsupervised learning, using both labeled
and unlabeled data. The basic idea of semi-supervised learn-
ing is to enable a learner to label the unlabeled sample data
by using a model of the data distribution [73]. This type of
machine learning is primarily used in scenarios where there
is only a small amount of labeled data in the dataset.

In reinforcement learning, there is no labeled data as in
supervised learning. Reinforcement learning proceeds as a
cycle of prediction and evaluation, where the input data is
transferred directly into the model, leading to the dynamic
adjustment of the model parameters. The learning model and
training data are inferred by receiving feedback from the
environment to update the model parameters [74]. Common
applications of this type of machine learning include dynamic
systems and robot control.

A typical project that uses machine learning methods to
solve real-world problems consists of the following main
processes [75]-[78]:

(1) Abstract the problem to be solved: Establish whether it
is a classification problem, a regression problem, a clustering
problem, or something else.

(2) Sample data acquisition and analysis: The acquired data
should be representative of the problem domain. It should be
of sufficient volume and not be excessively skewed.
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(3) Data preprocessing: In view of the limitations and
potential errors within sample data, the optimization is
realized through preprocessing. This includes data cleaning,
normalization, discretization, factorization, missing value
processing, dataset segmentation, and other methods.

(4) Feature selection: This involves selecting the most sig-
nificant features and discarding insignificant features using
relevant techniques of feature validity analysis, such as cor-
relation analysis, the chi-square test, average mutual informa-
tion, conditional entropy, and posterior probability.

(5) Model selection and training: Select the model accord-
ing to the data and the problem to be solved and use the
training data to obtain the model parameters.

(6) Model evaluation and optimization: Use test data to
evaluate the model in terms of accuracy, training speed, state
space complexity, reliability, portability, and generalization,
and optimize the model with the appropriate methods.

(7) Use the new dataset to make predictions and solve
practical problems.

(8) Evaluation of the machine learning method to learn its
performance (e.g., accuracy, specificity) on the new dataset.

Traditional Android malware detection relies on a library
of malicious code features, which needs to be updated over
time to ensure the accuracy of detection results. In recent
years, researchers have widely applied machine learning
techniques to detect malware through training models on a
large number of features to achieve the capability of detecting
new malware. Current theoretical and practical work mainly
focuses on sample acquisition, data preprocessing, feature
selection, machine learning models and theory, evaluation of
detection effectiveness, and other aspects.

Based on the current literature, the following sections of
this paper analyze and summarize the above key aspects of
Android malware detection based on machine learning.

A. SAMPLE ACQUISITION

It is essential to train the model with good samples of data
so that the acquired model can be applied reliably to make
predictions on new data [79]. The obtained sample data
should be representative and adequate; otherwise, it may lead
to misleading conclusions. For a classification problem like
the detection of Android malware, the sample data should not
be skewed too much in terms of the number of instances of
benign and malicious applications.

The method of obtaining samples of benign Android appli-
cations is relatively straightforward. Since the Android appli-
cations that are available in various app stores are generally
subject to strict testing before they are released, app stores
can be expected to be a good source of benign applications.
Most of the relevant research uses the method of crawling
applications from the mainstream app market such as Google
Play to obtain benign samples [6], [80]. A slight variation is
that some studies crawl applications with high rating scores
and a large number of downloads from the app store [81],
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or use tools such as VirusTotal [82] and AndroBugs [83] to
further ensure that their samples are benign [84].

Compared to obtaining benign applications, there are more
ways to obtain samples of Android malware. Some studies
have used VirusShare [85], Contagio [86], and other web-
sites that share malware to obtain samples. However, these
samples are often non-standardized and will lack metadata
such as descriptions, user ratings, and download numbers,
which hampers the scope of the subsequent analysis. With
the development of Android malware detection research,
some specialized malware sample libraries have been cre-
ated. One representative dataset is MalGenome [61], which
is part of the Android Malware Genome Project and contains
1,260 applications from 49 different malware families. The
dataset from the Drebin project [87] contains 5,560 appli-
cations from 179 different malware families. MalGenome,
Drebin, and other datasets of Android malware have been
widely used by several researchers. However, as the evolution
of Android malware continues, datasets created just a few
years ago quickly become outdated.

In recent years, several research organizations and person-
nel have been working to build and update a larger and more
standardized sample library of Android applications. Taking
the AndroZoo [88] project as an example, it has collected
more than 10 million Android applications and more than
20 kinds of metadata related to each application, including
the size of the application, hash values, and permission list in
the Androidmanifest.xml file, as well as VirusTotal’s report
on each application. Based on the AndroZoo dataset and
combined with machine learning methods, Ref. [89] achieved
good results in the detection of malware. Reference [90]
made comprehensive use of VirusShare, MalGenome, Andro-
Zoo, and other Android application market resources to form
a sample library containing 19,725 malicious samples and
10,000 benign samples. Some researchers further verified the
distribution and effectiveness of samples after preliminary
establishment of the datasets, to ensure the rationality of the
sample data. Reference [91] used DroidKin [92] to check the
dataset to ensure the uniqueness and representativeness of
samples. Meanwhile, Ref. [93] used a resampling technique
to address an unbalanced dataset. Recently, researchers have
created a database named RmvDroid [94], which claimed to
be the first large-scale and reliable Android malware dataset.
This dataset contained 9,133 samples, with their metadata
(e.g., app description, app ratings) belonging, with high con-
fidence, to 56 malware families.

B. DATA PREPROCESSING AND FEATURE SELECTION

When using machine learning algorithms to detect Android
malware, an excellent feature set is vital for training the
machine learning algorithm [95]. Many factors need to be
considered in forming the feature set from Android applica-
tions. For instance, the features should be sufficiently differ-
entiated in the dataset to distinguish between malicious and
benign Android applications. There is a lot of work involved
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in this step, among which data preprocessing and feature
selection are two very important tasks.

When studying and summarizing existing research on
Android malware detection based on machine learning,
we found that some research papers would include a section
on data preprocessing and feature selection, or have two
separate sections to illustrate these two aspects of the work.
We think it is necessary to first explain the relationship
between data preprocessing and feature selection at this
point to avoid ambiguity. As a matter of fact, in the process
of machine learning, data preprocessing covers more than
feature selection. Feature selection is a component of data
preprocessing, where its main purpose is to improve the
effectiveness of machine learning by removing irrelevant or
redundant features [96].

1) DATA PREPROCESSING

Feature extraction based on a dataset can obtain raw feature
data, but this data may not be satisfactory due to prob-
lems such as inconsistent specifications, redundancy, miss-
ing values, and an imbalanced distribution [97]. Machine
learning on such raw feature data may be unreliable, and
therefore it is vital to carry out data preprocessing, which
is a key step that underpins the effectiveness of machine
learning [98]. The techniques of data preprocessing include
data cleaning, data integration, data reduction, and data
transformation [96]:

(1) Data cleaning: This includes addressing noise and cor-
recting inconsistencies in the data using techniques for data
smoothing and dealing with missing values.

(2) Data integration: This involves merging data from
multiple sources, removal of redundant data, and correlation
analysis.

(3) Data reduction: The aim of this stage is to obtain a
reduced representation of the dataset that is much smaller in
size than the original raw data. Wavelet transform, principal
component analysis, clustering, and sampling are all com-
monly used methods, as is feature selection.

(4) Data transformation: This stage focuses on transform-
ing or consolidating the data into forms more appropriate for
further processing. Common methods include normalization,
discretization, and aggregation.

Each element of data preprocessing is associated with a
range of techniques, which are well summarized in Ref. [96]
and therefore not be repeated in this paper. In research on
the detection of Android malware based on machine learning,
the techniques adopted in data preprocessing are relatively
standard due to the limited types and styles of the original
datasets. We summarize some references on data preprocess-
ing in the detection of Android malware based on machine
learning in Table 2. It should be noted that some of the litera-
ture is omitted from Table 2 due to a lack of detailed descrip-
tion of data preprocessing in those articles. In addition, if the
description of data preprocessing mainly focuses on feature
selection, those studies are summarized in subsection IV-B2.
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We classify the references listed in Table 2 according to the
four types proposed in [96].

In the data cleaning phase of preprocessing, some
researchers remove unnecessary features based on sub-
jective judgment from a macro perspective, such as
Refs. [93] and [101]. Meanwhile, some researchers clean
up the data according to the requirements of subsequent
processing steps. For example, [102] deletes data such as
email address, URL links, punctuation, and stop words,
according to the requirements of subsequent natural language
processing.

In the data integration phase, researchers mainly form
feature datasets for subsequent machine learning by drawing
on multiple types of data. For example, Ref. [103] integrates
basic information on equipment, a list of installed applica-
tions, system calls, and other information into feature vectors.
Furthermore, Ref. [104] integrates 6 types of data to form fea-
ture datasets that represent the complexity of the application.

In the data reduction phase, in addition to feature selec-
tion, which is covered in subsection IV-B2, some researchers
directly adopt a method of feature identification substitu-
tion to reduce the dimensionality of feature vectors, such
as Ref. [106]. Other studies reduce the feature space into a
new one composed of a linear combination of the principal
components of the raw data by means of principal component
analysis (PCA) (for example, Ref. [107]). Meanwhile, some
studies use data clustering to represent the original data, such
as Ref. [108].

There are various methods involved in the data
transformation phase of preprocessing. For example,
Refs. [109]-[111] convert binary files into standard images
and then generate the data format required for further pro-
cessing by combining normalization and other methods.
In Refs. [112]-[116], the n-gram model from natural lan-
guage processing is used to represent Dalvik instructions,
API calls, and other data. Additionally, in Ref. [119],
a one-dimensional feature vector is converted into a
two-dimensional matrix to facilitate deep neural network
learning.

2) FEATURE SELECTION
Feature selection is a common method of dimensionality
reduction. By eliminating redundant and irrelevant features,
the size of the dataset can be significantly reduced. The aim
of feature selection is to select the optimal subset of features
to improve the generalization performance and operational
efficiency of machine learning. In general, feature selection
involves four basic steps [121]:

(1) Generation: generate the candidate subset of features;

(2) Evaluation: evaluate the quality of the feature subset;

(3) Stopping criterion: decide when to stop the generation
procedure;

(4) Validation: check whether the feature subset is valid.

Each of the above steps has a series of principles and meth-
ods, which are well summarized and analyzed in Ref. [121].
According to the degree of integration with the machine
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TABLE 2. Summary of data preprocessing in selected references related to Android malware detection based on machine learning.

Year Reference Description Type OfD?ta
Preprocessing

2012 [99] Control flow graphs (CFGs) with no more than 5 nodes are discarded because such CFGs are relatively rare

and contain less information, and thus discarding them can greatly improve processing speed.

Natural language processing (NLP) is used to filter and extract topic descriptions of the application.
2014 [100]  Applications with less than 10 topic words and without calling any sensitive APIs are removed, leaving 22,521

applications for subsequent clustering and analysis.
2017 [101]  System calls that are never invoked by any application in the dataset are removed. Data Cleaning
2018 [93] There are a lot of ambiguous vectors in the eigenvector matrix, which will affect the performance of the

classifier. By removing these ambiguous vectors, the effect of classification can be improved.

Preprocess the application descriptions in the app store and then subject them to topic analysis. There are three
2019 [102]  phases to this process: (1) use regular expressions to remove non-text descriptions; (2) tokenize the description

into a list of words, then remove punctuation and stop words; (3) reduce words to their root.

2011

2014 Data Integration

2019

To reduce the dimensionality of feature vectors and avoid overfitting, features are kept as generic as possible by

2015 L replacing specific identifiers of the application with tokens.
Principal component analysis (PCA) is used to reduce the feature space to a new feature space composed of a .
2017 L linear combination of components from the original features. Data Reduction
2018 [108] The affinity propagation (AP) clustering algorithm is used to replace the original data with a clustered
representation of the data to reduce feature size.
The binary executables are disassembled into opcode sequences, and then converted into images. Histogram
2016 [109] normalization and other methods are used to enhance the contrast between malicious and benign application
images.
Researchers extract the APK file, convert the 4 files of classes.dex, AndroidManifest.xml, resources.arsc, and
CERT.RSA4 into 8-bit unsigned integer vectors, organize them into a two-dimensional array, and finally
2017 [110] L : . .
visualize them as grayscale images. The grayscale images are decomposed by wavelet transformation, and
image textures can be obtained for subsequent machine learning.
The binary files are used to generate grayscale images, and then a bilinear interpolation algorithm is used to
2018 [111]  preprocess the grayscale images so that the images have the same length and width, thereby making them
suitable for the subsequent image classification by a convolutional neural network (CNN).
2014 [112]  The API call sequences at runtime are extracted, represented in the form of n-grams, and finally normalized.
Dalvik instructions are represented in the form of n-grams, and the frequency of different n-grams is calculated
2015 [113] . Data
for further processing. .
2017 [114]  Dalvik bytecode’s n-gram form and the corresponding occurrence frequency are obtained as the feature vector. Transformation
2017 [115]  Dalvik instructions are expressed in the form of n-grams.
2019 [116]  The API call sequences are represented in the form of n-grams.
Raw data such as continuously measured data and events within Android applications are obtained by
2010 [117]  monitoring. Knowledge-based temporal abstraction (KBTA) is used to transform raw data into time-based
features.
2016 One type of feature is the co-occurrence matrix vector. The co-occurrence matrix is established based on the
[118] . . )
system call sequence and is then normalized and finally transformed into a vector.
2018 [119] Researchers convert the opcode sequence into a matrix vector, and transform the one-dimensional vector into a
two-dimensional matrix, which is suitable for subsequent learning in a deep neural network (DNN).
2018 [120] The function call graphs (FCGs) extracted from an APK file are used to generate the topological signatures of

the corresponding applications.

learning algorithm, feature selection methods can be divided
into two categories: filter and wrapper. Filtering is indepen-
dent of the subsequent machine learning algorithm and gener-
ally has the characteristics of high efficiency, low complexity,
and strong commonality. The wrapper approach directly uses
the prediction accuracy of the subsequent machine learning
algorithm to evaluate the quality of the generated feature
subset. Compared with the filter method, the wrapper method
can obtain a better feature subset, but it is more complex and
less efficient.

124586

The selection of an evaluation metric is an impor-
tant factor affecting the performance of feature selection.
Dash and Liu [121] divided evaluation metrics into five types:
distance metrics, information metrics, dependence metrics,
consistency metrics, and classifier error rate metrics.

(1) Distance metrics: Also known as separability or
discrimination metrics, distance metrics assess the dis-
criminability between features by calculating the distance
between them. The distance can be expressed in terms of geo-
metric distance and probability distance. Geometric distance
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TABLE 3. Comparison of different evaluation functions in feature selection.

Dependence on

Evaluation ., Calculation Classification Applicable Feature . . Feature Selection Algorithm or
. Generality Machine Learning .
Function Overhead  Accuracy Types . Evaluation Index
Algorithm
Distance Absolute value distance, Euclidean distance,
Measure Strong Low Uncertain ~ Continuous/Discrete Filter Chebyshev distance, Kolmogorov distance.
Relief algorithm, Relief-F algorithm.
Information . . . . Information gain (Mutual information). BIF
Measure Strong Low Uncertain ~ Continuous/Discrete Filter algorithm, MDLM algorithm.
Dependence Chi-square statistics, T-test, Pearson
I\/Pieasure Strong Low Uncertain ~ Continuous/Discrete Filter correlation coefficient, Fisher score.
POE1ACC algorithm, PRESET algorithm.
Consistency Strong Low Uncertain Discrete Filter Focus algorithm, LVF algorithm.
Measure
Classifier SFS algorithm, SBS algorithm, LVW
Error Rate ~ Weak High High Continuous/Discrete Wrapper 18 ? & ?
Measure algorithm.

refers to a distance in geometric space, such as absolute value
distance, Euclidean distance, LAN distance, Mahalanobis
distance, and Chebyshev distance. Probability distance is
used to measure the discriminability between features from
the perspective of probability, and an example is the Kol-
mogorov distance [122]. Relief [123] and Relief-F [124]
are typical feature selection algorithms using distance as the
evaluation metric.

(2) Information metrics: These apply the concept of infor-
mation entropy to feature selection. Information metrics use
information gain (mutual information) and other quantitative
indexes of features to make the feature selection. The infor-
mation gain of a feature is defined as the difference between
the prior uncertainty and expected posterior uncertainty when
including this feature. BIF [125] and MDLM [126] are typ-
ical feature selection algorithms that use information as the
evaluation metric.

(3) Dependence metrics: Also known as correlation met-
rics, dependence metrics are used to evaluate the degree of
correlation between objects. The correlation coefficient is
a popular evaluation index used to evaluate the degree of
linear correlation as a real value between —1 and 1. The
closer the absolute value of the correlation coefficientis to 1,
the stronger the correlation; meanwhile, the closer it is to 0,
the weaker the correlation [127]. Commonly used correlation
metrics include Chi-square statistics, T-test, Pearson correla-
tion coefficient, and the Fisher score. POE1ACC [128] and
PRESET [129] are typical feature selection algorithms that
use dependence as the evaluation metric.

(4) Consistency metrics: What the distance, information,
and dependence metrics mentioned above have in common is
that they try to find the feature set that can best help the clas-
sifier distinguish between the options to be predicted [130].
From another point of view, a consistency metric tries to
find the smallest feature subset that has the same ability to
judge the options to be predicted as the original feature set.
Consistency metrics can find a smaller subset of features by
eliminating irrelevant and redundant features, but they are
only applicable to discrete features and are greatly affected
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by noisy data. Focus [131] and LVF [132] are typical fea-
ture selection algorithms using consistency as the evaluation
metric.

(5) Classifier error rate metrics: Classifier error rate met-
rics evaluate the feature subset using the classifier itself.
They use several candidate subsets to train the classification
model, and the subset with the minimum classification error
is deemed the best feature subset. Feature selection using
this type of evaluation function is a type of wrapper method.
SES, SBS [133], and LVW [134] are typical feature selection
algorithms using classifier error rate metrics as the evaluation
function.

In Table 3, we compare the above five types of evaluation
metrics from the aspects of generality, calculation overhead,
classification accuracy, applicable feature types, dependence
on machine learning algorithm, and typical feature selection
algorithm or evaluation index.

According to our literature review, we present a summary
of the feature selection algorithms and evaluation indexes
in Android malware detection based on machine learning
in Table 4. In Refs. [108], [114], and [135]-[146] in Table 4,
only the information gain (mutual information) is selected
as the index to evaluate the generated feature subset. Infor-
mation measures are a non-parametric and non-linear eval-
uation standard that do not depend on the distribution of
the sample data, and therefore they are widely used in fea-
ture selection. In addition, some researchers integrate mul-
tiple evaluation indexes to select the feature subset, such as
Refs. [101] and [147]-[149]. The genetic search (GS) is
a search method based on the genetic algorithm (GA)
[157], [158]. Researchers in Ref. [155] claim that it is the
first time that the genetic search (GS) was used to select
features in Android malware detection. Some studies make
use of previous research experience to select the feature
subset. In Ref. [30], the method of feature selection based on
empirical knowledge was categorized as ‘““selection based on
rationalizing”. For example, in the selection of static features,
Ref. [156] refers to the experience of Arp ef al. [87] in the
development of Drebin.
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TABLE 4. Summary of feature selection in selected references related to
Android malware detection based on machine learning.

Feature Selection Algorithm or Evaluation

Year Reference Index

2013  [135] Information gain (Mutual information)
2014  [136] Information gain (Mutual information)
2015  [137] Information gain (Mutual information)
2015  [138] Information gain (Mutual information)
2015 [139] Information gain (Mutual information)
2015  [140] Information gain (Mutual information)
2017  [114] Information gain (Mutual information)
2017 [141] Information gain (Mutual information)
2017 [142] Information gain (Mutual information)
2017 [143] Information gain (Mutual information)
2018  [108] Information gain (Mutual information)
2018 [144] Information gain (Mutual information)
2018  [145] Information gain (Mutual information)
2019  [146] Information gain (Mutual information)
2012 [147] Infqrn}ation gain_ (Mutual information), Chi-square
statistics (CS), Fisher score (FS)
2014 [148] Information gain (Mutual information),
Dependence measure
2017 [101] Information gain (Mutual information),

Dependence measure
TF-IDF, cosine similarit

2018 [149]

The selection of static features refers to the

AR R experience of Arp et al. in the Drebin project.

C. FEATURE TYPE

This subsection summarizes and analyzes the features
selected by various machine learning algorithms in the
field of Android malware detection. These features can
be arranged into three categories: static features, dynamic
features, and hybrid features, depending on whether they
are acquired by running an Android application [6], [17],
[23], [24]. The analysis methods used to obtain these three
types of features are called static analysis, dynamic analysis,
and hybrid analysis, respectively.

The static analysis method analyzes the application and
related objects without executing the application [35]. Most
static methods use techniques that parse program source code
to traverse program paths to check some properties [36].
After the application package (APK) file is decompressed,
many of the analysis objects used in the static method
can be extracted, such as the AndroidManifest.xml file,
which describes permissions, API calls, package name, refer-
enced libraries, and application components (e.g., activities,
services). Another example is the classes.dex file, which con-
tains all Android classes compiled into dex file format [23].
Some static methods may represent the analyzed application
code as an abstract model (e.g., the opcode in the form
of n-grams) based on the purpose of the research. Other
information about the application, such as the metadata
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(e.g., app description, app ratings, app download numbers),
can be collected for static analysis from other perspectives.

The dynamic analysis method analyzes features while the
application is running (on a real device or virtual environ-
ment) [35]. Dynamic analysis is mainly used to identify
the behavior characteristics of an Android application, and
techniques such as function call monitoring, information flow
tracking, and instruction tracing can be applied [17], [24].
The objects of dynamic analysis are network traffic, battery
usage, CPU utilization, IP address, and opcode, among oth-
ers. One type of dynamic analysis relies on the Dalvik runtime
(or ART runtime) to obtain the same level of privileges as
the Android application, which typically requires modifica-
tions to the operating system or the Dalvik virtual machine.
Another type of dynamic analysis generally uses emulators
and virtual environments for data collection and analysis and
achieves higher security through isolation [23].

The hybrid analysis method is a comprehensive approach
gaining the benefits of static analysis and dynamic analysis.
It combines the two methods in different forms. A hybrid
approach provides a better balance between resource and
time efficiency, code coverage, method robustness, detection
accuracy, and depth [23].

1) STATIC FEATURES
Features obtained by analyzing the source code or other
information associated with the application are called static
features [159], [160], and the corresponding method of anal-
ysis is called static analysis. Specifically, for Android appli-
cations, the main object of analysis is the APK file, which is
the Android application installation package. Files including
AndroidManifest.xml, smali files, etc., can be obtained by
decompiling APK files. Further analysis of these files reveals
a set of static features, including permissions, API calls,
Dalvik opcodes, and other components. According to our
review, we summarize the static features used in Android
malware detection based on machine learning in Table 5.
It should be noted that we chose representative, highly cited,
or recently published literature as examples for Table 5.
According to Table 5, we find that when researchers detect
malware using only one kind of static feature, they usually
select either permission (rows 1-7), API call (rows 8-20),
opcode sequence (rows 21-29), or function call graphs
(rows 30-32) as features. This phenomenon reflects the
close correlation between these static features and whether
Android applications contain malware. Moreover, this close
correlation is consistent with the conclusion that “Android
permissions are the best single predictor of the app’s
malignity” in Ref. [14]. There are also some studies that
select or extract static features from other perspectives.
Reference [104] detects Android malware from the perspec-
tive of software complexity. It extracts 144 features that
reflect the complexity of a program’s control flow, data
flow, and object-oriented design. Meanwhile, Ref. [176]
defines a kind of static feature named a modality vector,
which is generated in three steps: behavior graph generation,
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TABLE 5. Summary of the static features used in selected references related to Android malware detection based on machine learning.

No.

Year Reference

Features

No.

Year Reference

Features

1 2012 34 2014
2 2013
3 2013 36 2017
42014
5 2015 38 2019
6 2015 2013 Permission, API call
7 2018 40 2014 [148] Permission, API call
8 2013 [165] API call 41 2015 [138] Permission, API call
9 2015 [166] API call 42 2015 [179] Permission, API call
10 2016 [152] API call 43 2017 [180] Permission, API call
11 2016 [167] API call 44 2017 [181] Permission, API call
122017 [107] API call 45 2017 [182] Permission, API call
13 2017 [168] API call 46 2017 [143] Permission, API call
14 2017 [169] API call 47 2018 [183] Permission, API call
15 2018 [144] API call 48 2012 [99] Permission, Control flow graph (CFG)
16 2018 [170] API call 49 2012 [184] Permission, Component, Intent, API call
17 2018 [145] API call 50 2013 [185] Permission, Intent filters, Native code, Zip files
18 2019 [105] API call 51 2013 [186] Permission, Other features of the manifest file (Uses-feature tag)
19 2019 89] API call 52 2014 (87] Is’zglzr(l)lg(s)ut)‘:; t/[?II;IS )call, Intent, Component, Network Address, etc. (About
20 2019 [116] API call 53 2014 [187] Intent, Permission
21 2013 [135] Opcode sequence |54 2014 [100] Description in the app store, API
22 2014 [136] Opcode sequence |55 2015 [137] Permission, API call, Specific Linux command
23 2015 [113] Opcode sequence |56 2016 [153] Permission, Component
24 2016 [109] Opcode sequence |57 2016 [188] Permission, Intent, System command, Suspicious API call, Malicious activity
25 2017 [171] Opcode sequence |58 2017 [189] Class-level dependence graph (CDG), Method-level call graph (MCG)
26 2017 [114] Opcode sequence (59 2018 [111] Grayscale image, Opcode sequence
27 2017 [172] Opcode sequence |60 2018 [149] Permission, API call, System event, URL
28 2018 [108] Opcode sequence (61 2018 [155] Permission, Code-based features, Directory path
Hardware components, Requested permission, Component, Filtered intent,
29 2018 e B 62 2018 ey Restricted APIpcall, Used pqermissi(l))n, Suspicious AII’)I call, Network address
Function call (1) String featur'es:_ Permission, Hardware feature, Filter intent, Restricted API
30 2013 [174] 63 2018 [191] call, Used permission, Code pattern.
g (FEG) (2) Structural features: Function call graph (FCG)
Function call Permission, API, and other key application information such as Dynamic
312017 L1551 graph (FCG) 64 2018 [192] code, Reflection code, Native }(]:ogg, Cryptographic code, etc. Y
322018 [120] Z;lal;ct?glccél)l 65 2019  [102]  Description of function, Data flow, Permission
g 66 2019 [193] Permission, Hardware feature

sensitive node extraction, and modality generation. Refer-
ence [151] conducts malware detection from the perspective
of inter-component communication (ICC) among Android
applications. It extracts features associated with ICC from
four types of objects: components, explicit intents, implicit
intents, and intent filters. Reference [110] carries out malware
detection from the perspective of textural features within
grayscale images. It first unzips the APK file, then converts
the files classes.dex, AndroidManifest.xml, resources.arsc,
and cert.rsa into 8-bit unsigned integer vectors, and finally
converts them into grayscale images for further processing.
Reference [177] focuses on the static features of third-party
API calls, which are difficult to obfuscate and therefore can
improve the detection accuracy. Lastly, Ref. [146] establishes
the static feature set from the perspective of quantity, includ-
ing the number of multiple objects such as lines of code (loc),
permissions, and activities.
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In Table 5, we find that a lot of Android malware detection
research is based on a combination of multiple static features
(rows 39-66), most of which are based on a combination of
features including permissions or API calls, or a combination
of only two types of these features (rows 39—47). To some
extent, this reflects the important role these two types of
static features have in the detection of malware. Considering
that different features have a different influence on detection
results, Ref. [191] divides the static features used into string
features and structural features, and assigns a weight of 60%
to predictions based on string features and 40% to predictions
based on structural features. The researchers in Ref. [189]
divide the detection of Android malware into two stages. Each
stage is based on a different kind of static feature, namely,
coarse-grained class-level dependence graphs (CDG), and
fine-grained method-level call graphs (MCG). Finally, the
researchers in Refs. [100] and [102] generate a class of
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static feature by analyzing the description of functions of the
application in the app store, and check whether the behavior
of the Android application meets its claimed functionality in
combination with the features of API calls or data flows.

The acquisition and analysis of static features consumes
relatively little time and resources, but the use of code obfus-
cation, dynamic code loading, and other techniques present
significant obstacles for static analysis [4].

Take obfuscation as an example. Through obfuscation
techniques, malicious code and all its harmful functional-
ity are difficult to detect and understand by static analysis
until they are activated [24]. In Ref. [23], researchers divide
obfuscation technology into three categories: trivial trans-
formations, transformations hindering static analysis, and
transformations preventing static analysis.

Trivial transformations do not require changes at the code
or bytecode level, and this type of obfuscation is mainly
used to prevent signature-based analysis by methods such
as decompressing and repackaging APK files. Transforma-
tions hindering static analysis are used for specific static
analysis techniques. For example, feature-based analysis is
often susceptible to data obfuscation, and structural analysis
is generally vulnerable to control flow obfuscation. Data
obfuscation modifies APK data, such as renaming application
methods and classes, or reordering or encrypting instance
variables and strings. Control flow obfuscation confuses the
flow of an application by moving method calls or reordering
code. Transformations preventing static analysis usually uses
more complete bytecode encryption or Java reflection, which
renders static analysis methods ineffective.

In addition, dynamic code loading has a great impact on
static analysis. Android applications can load JAR files or
shared libraries from remote sources at runtime. This facil-
itates application development while making it difficult for
static methods to perform security analysis on loaded or
generated code [37].

2) DYNAMIC FEATURES
When running Android applications in real environments
or emulation environments such as a sandbox, the acquired
runtime behavioral features are known as dynamic fea-
tures [194], and the corresponding method of analysis is
known as dynamic analysis. Specifically, for Android appli-
cations, the objects of dynamic analysis include system calls,
API calls, network traffic, and CPU data. According to our
literature review, we present a summary of the dynamic fea-
tures used in Android malware detection based on machine
learning in Table 6. Many studies use dynamic analysis tech-
nology to detect Android malware, such as [195] and [196],
which apply dynamic taint analysis, and [197], which uses
Dalvik opcode combined with graph theory. However, since
these examples are not primarily based on machine learning
methods and are thus outside of the scope of this paper, we do
not list them in Table 6.

From Table 6, we find that when researchers detect mal-
ware using just one kind of dynamic feature, they usually
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TABLE 6. Summary of the dynamic features used in selected references
related to Android malware detection based on machine learning.

Features

No. Year Reference
2011
2015
2016
2016
2017
2017
2014 [112]
2016 [200]

API call
API call

Network traffic: Connection duration, TCP
size, Number of GET/POST parameters

3 RN Ko NN O, T N N NS I I (O3

9 2013 [201]

Network traffic: Average packet size, Average
traffic duration, Time interval between packets

Network traffic: DNS, HTTP, TCP, Origin-
destination

CPU, Network traffic

CPU, Memory, Battery, Network traffic,
Keyboard, etc.

CPU, Memory, Binder API, Battery, etc.
API call, System call

10 2014 | [202]

11 2017 | [203]

12 2010 | [117]

13 2012 | [147]

14 2013 | [204]
15 2015 | [205]

System call, Decode Binder communication,
Abstracted behavioral patterns

CPU, Memory, Network traffic

Method call, Inter-component communication
(ICC) intent

16 2016 | [206]

17 2017 | [142]

18 2019 | [207]

select either system calls (rows 1-6), API calls [112], [200],
and network traffic [201]-[203]. This phenomenon reflects
the close correlation between these dynamic features and
whether Android applications contain malware or not.
Even though malware detection is based on a single type
of dynamic feature, different researchers have different
concerns or analysis perspectives. Taking the feature of sys-
tem calls as an example, Refs. [118], [139], and [198] analyze
the application based on the sequence of system calls when
the application is running. Conversely, Refs. [101] and [199]
analyze the application based on the frequencies of different
system calls.

In Table 6, we also find that a lot of Android malware
detection research is based on a combination of multiple
dynamic features (rows 12-18) — most based on features
such as network traffic, CPU data, and system calls. This
reflects the important role of these types of dynamic fea-
tures in the detection of malware. The study described in
Ref. [142] evaluates whether the application is malicious
according to the resource consumption of the application
at runtime, focusing on the consumption of CPU, memory,
network, and other resources. Researchers in Ref. [207] group
70 dynamic features used into the dimensions of structure,
security, and ICC, and determine whether the application is
malicious from these three dimensions.

For Android applications, dynamic analysis has many
advantages over static analysis [23], [207], [208]. Due to
the event-driven nature of the Android system, many objects
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TABLE 7. Summary of the hybrid features used in selected references related to Android malware detection based on machine learning.

No. Year Reference

Features

Static: Permission, API

1 2014 [210]

Dynamic: Behavior (Service startup, Network data transmission, File loading)

Static:_ Permission, Intent

2 2015 (211] Dynamic: Behavior (Method call, Network data transmission)
Static: Permission, APL Intent, Java package name, Publisher ID for advertisement library
3 2015 [106] Dynamic: Behavior (File operation, Network operation, Data leakage, Phone event, Dynamically loaded code,
Dynamically registered broadcast receiver)
4 2015 [212] Static: Permissiop APF Intent Hardware, Network addr'ess
Dynamic: Behavior (File operation), Resource consumption (CPU, Memory)
Static: Permission, APL
> 2016 [213] Dynamic: Behavior (System call)
6 2016 [214] Static: l?ermissiop APL o . ) - .
Dynamic: Behavior (Network activity, File system access, Interaction with the operating system)
79016 [215] Static: Permission, Intent, Sensitive function

Dynamic: Behavior

8 2017 [154]

Static: Permission, API, Intent, Uses-feature, etc.
Dynamic: Behavior (Running process, SMS activity), Resource consumption (CPU, Power)

Static: Permission

o 2017 [141] Dynamic: Behavior (System call)
Static: Permission
102017 [216] Dynamic: Behavior (Network traffic)
1 2017 [115] Static: Permission, Opcode, App store information (Rating, Download number, Developer reputation, etc.)
Dynamic: Behavior (System call, SMS, Administrator privilege abuse)
Static: Permission
122017 (217] Dynamic: Behavior (System function, Sensitive permission, Sensitive API)
13 2018 [93] Static: Permission, Intent, Hardware feature, Software features, IP address, Advertisement module, System security setting

Dynamic: Behavior (Sensitive APIL, System service, IP address)

14 2018 [218]

Static: Permission, App store information (Rating, Download number, etc.)
Dynamic: Behavior (System call, SMS service, Sensitive API, etc.)

15 2018 [156] Dynamic: Behavior (System call)

Static: Permission, API, Intent, Components, Hardware

Static: Permission, APL, Intent, Min_sdk
16 2019 [194]
transmission, etc.)

Dynamic: Behavior (Service startup, File operation, SMS and phone event, Sensitive data leakage, Network data

or events cannot be analyzed through static analysis alone
and need to rely on the runtime environment; these include
lifecycle callbacks, GUI handling, control flow, and data
flow at runtime. Some permissions or APIs declared in
Android application code such as AndroidManifest.xml do
not necessarily mean that they will be actually executed
or invoked. Additionally, since Android version 6.0 (API 23),
the Android system has added dynamic permission support,
so detection based on static analysis alone may be prone
to false positives. Techniques such as code obfuscation and
dynamic code loading make it difficult to detect malicious
behavior in Android applications through static analysis, but
dynamic analysis can overcome these limitations to some
extent. Although dynamic analysis has many advantages as
mentioned above, it also has the disadvantage of consuming
more time and resources than static analysis [154], [209].

3) HYBRID FEATURES

Hybrid features are made up of static features and dynamic
features, and the corresponding method of analysis is called
hybrid analysis [7], [17], [21]. Hybrid analysis can exploit
the advantages of both static and dynamic analysis to meet
the detection needs in specific scenarios. According to our
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literature review, in Table 7, we summarize the hybrid fea-
tures used in Android malware detection based on machine
learning.

From Table 7, we find that when researchers select static
features as part of a hybrid approach, they tend to use API or
intent as features. The use of permission features is particu-
larly prominent, as all the examples in Table 7 adopt them.
This phenomenon is consistent with the conclusion drawn
from Table 5, in that permissions are widely used for static
analysis. In the dynamic analysis stage of the literature listed
in Table 7, researchers mainly select application behavior,
such as file operations, network behavior, and data transmis-
sion at runtime, as the feature for analysis. In contrast to static
analysis, dynamic analysis often focuses on more than just a
few features.

The selected hybrid features in Table 7 have much in com-
mon, but peculiarities still exist in the selection of features
for machine learning. In terms of the static features used in
Refs. [115] and [218], besides the features of the Android
applications themselves, the researchers make use of third-
party auxiliary data on the applications from the app store,
such as ranking and number of downloads. In terms of the
dynamic features used in Refs. [154] and [212], in addition to
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TABLE 8. Classification of common machine learning algorithms based on learning method.

Learning Method

Machine Learning Model or Algorithm

1. Decision Trees
2. Naive Bayesian
3. Linear Model

Supervised

Learning (2) Logistic Regression
(3) Linear Discriminate Analysis (LDA)
4. K-Nearest Neighbor (KNN)
Support Vector Machine (SVM)

(1) Linear Regression: Ordinary Least Squares Regression

Clustering Algorithms: K-means
Principal Component Analysis (PCA)
Unsupervised Singular Value Decomposition (SVD)

A-priori Algorithm
Expectation-Maximization (EM)

1. Neural Network (NN) and Deep Learning (DL)
2. Hidden Markov Model (HMM)

3. Transfer Learning

4. Ensemble Learning: Bagging, Boosting,
Random Forest

5. Online Learning

5.
1.
2.
3.
Learning 4. Independent Component Analysis (ICA)
5.
6.
1.

Semi-supervised Learning with Nuclear Norm

Semi-supervised Regularization (SSL-NNR)

Learning 2. Graph Inference Learning (GIL)
3. Laplacian SVM
: 1. Q-Learning
Reinforcement )
Learning 2. Deep Q-Learning Network (DQN)

3. Temporal Difference Learning

the behavioral features of Android applications, the authors
exploit information that can reflect whether the applications
are working properly, such as CPU consumption, memory
usage, power consumption, and other resources. Researchers
in Refs. [115], [154], [211], and [216] divide hybrid analysis
into two phases, static analysis and dynamic analysis, where
the results of static analysis can be used to guide dynamic
analysis and improve the pertinence and coverage of dynamic
analysis. There are also some studies that classify and extract
features from a special perspective and do not strictly distin-
guish whether the features used in the research are obtained
by static or dynamic analysis. For example, Ref. [93] divides
the 377 features used into 10 categories, among which the IP
address is derived from both static source code analysis and
dynamic behavioral analysis. The researchers in Ref. [218]
analyze the application over the four levels, i.e., the kernel
level, application level, user level, and package level, and
make comprehensive use of both static and dynamic features
such as application metadata, API calls, user behavior, SMS
services, and system calls.

D. COMMON MACHINE LEARNING MODELS

AND ALGORITHMS

1) INTRODUCTION TO COMMON MODELS

AND ALGORITHMS

In this subsection, we first classify the commonly used
machine learning models and algorithms according to their
learning method, as shown in Table 8. There are several points
worthy of note:

(1) Methods such as neural networks, ensemble learn-
ing, and online learning may be implemented in differ-
ent ways, such as by applying supervised learning and
unsupervised learning, according to the specific situation.
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Taking neural networks as an example, the perceptron-based
algorithm implements supervised learning, while the Boltz-
mann machine-based algorithm uses unsupervised learning.
For another example, ensemble learning combines multiple
learners into a predictive model with the aim of improving the
accuracy of prediction. Strictly speaking, ensemble learning
is not a learning method, but a way of combining learners.
Therefore, we put such models or algorithms in the last
column of Table 8, rather than categorizing them according
to their learning method.

(2) Machine learning techniques can be considered from
different perspectives. For example, they can be divided into
classification, regression, clustering, and dimension reduc-
tion, according to the task objectives. Alternatively, learn-
ing can be done via online learning and batch learning,
according to whether incremental learning is carried out.
The machine learning algorithms listed in Table 8 are cat-
egorized according to their learning method, which is the
most commonly used classification [69]-[72], as described
at the beginning of Section IV. However, there are still con-
troversies. For example, deep learning can be considered as
a more complex extension of neural networks. Even though
it is difficult to have a universally agreed upon understand-
ing of the classification of machine learning models and
algorithms, we list the most popular models and algorithms
in Table 8.

Based on classifying common models and algorithms,
we briefly introduce those typically used in the detection of
Android malware.

(1) Decision Trees (DT): A decision tree is used to make
decisions based on data items held in a tree-like structure.
As in a kind of thinking and processing mode analogous
those adopted by humans when facing decision problems, its
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basic process follows the simple and intuitive “divide and
conquer”’ strategy [79], [219].

(2) Naive Bayesian (NB): Naive Bayes methods are a group
of supervised learning algorithms based on Bayes’ theorem.
These methods “‘naively” assume that each pair of features
is independent from each other [219], that is, each feature
independently influences the prediction results [220].

(3) Linear Model (LM): The linear model is based on a
function that predicts results through a linear combination
of features, and the optimal solution of parameters in the
function is solved by using the training dataset [79]. When
the linear model is applied to regression problems, it is known
as linear regression. When a linear model is used to solve
classification problems, logistic regression can be adopted.
Taking binary classification as an example, the main principle
of the logistic regression method is to use the logistic function
to convert the real value generated by the linear regression
model into a value of 0 or 1, corresponding to the two cate-
gories to be predicted [79].

(4) Support Vector Machine (SVM): From the perspec-
tive of geometry, the principle of the SVM is to find an
optimal separating hyperplane that meets the classification
requirements so that the hyperplane can separate points in an
n-dimensional space “‘as far as possible” while ensuring the
accuracy of classification [221], [222]. To satisfy the extreme
value requirement of ‘“‘as far as possible”, a method such as
the Lagrange multiplier can be used [79].

(5) K-Nearest Neighbor (KNN): The strategy of the
k-nearest neighbor algorithm is to find the k labeled samples
closest to the sample to be classified in the sample space.
If most of the k-nearest samples belong to a certain cate-
gory, then the sample to be classified also belongs to that
category. Distance can be measured by a variety of metrics,
and Euclidean distance is the most commonly used. This
algorithm makes a classification according to the distribution
of data in a set of labeled samples [223], [224].

(6) K-means Clustering Algorithm: The aim of k-means
clustering algorithm is to classify similar objects into the
same cluster. This algorithm partitions cases into k different
clusters where the number of clusters is specified by the user.
The center of mass of each cluster is represented by the mean
of all the objects in the cluster [224]. When calculating the
distance between each point and the center of mass, many
metrics are available, such as the Euclidean distance [225].

(7) Neural Networks (NN) and Deep Learning (DL): Neu-
ral networks simulate how biological neurons interact with
the real world [226], and date back to the 1940s [227].
In 1943, the neurophysiologist Warren McCulloch and logi-
cian Walter Pitts, inspired by the structure of biological neu-
rons, first proposed an abstract “M-P”’ neuron model [228],
whose output value is “0” or “1”, corresponding to the two
states of neuronal inhibition and excitation in a biological
neural network.

Many of these neurons can be connected in a layered
structure to form a neural network. From the perspective
of macroscopic mathematical calculation, a neural network
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is a mathematical model with several parameters. Machine
learning models based on neural networks mainly includes
two categories. One category is based on the perceptron
model [229]. The multilayer perceptron (MP) model is com-
monly used, and it usually utilizes the error back propaga-
tion (BP) algorithm [230] to train the network according
to the expected output. The other category is based on the
Boltzmann machine [231], which is a random neural network
whose output is determined according to a probability distri-
bution. Restricted Boltzmann machine (RBM) models [232]
are commonly employed, and they usually use the contrastive
divergence (CD) algorithm [233] to train the network accord-
ing to the training data.

Deep learning models consist of multilayer networks that
are used to learn representations of data with multiple levels
of abstraction [234]. Deep learning emerged from the devel-
opment of neural networks, and different studies have dif-
ferent views on the relationship between the two. Ref. [235]
argues that deep learning is a type of machine learning that
is based on neural networks, while Ref. [236] argues that
neural networks are the most commonly used form of deep
learning. Due to this controversy, the present paper will not
impose a distinction between neural networks and deep learn-
ing; instead, the two will be combined for the purpose of
discussion.

(8) Ensemble Learning: Ensemble learning achieves bet-
ter performance at generalization than any single learner
by combining multiple learning models. According to the
way the learners are arranged, ensemble learning meth-
ods can be divided into two categories [237]. One is the
serialization method where the learners operate sequentially
and there is strong dependency between individual learners,
as in boosting [238]. The other is parallelization, where the
learners operate simultaneously without strong dependency
between individual learners, as in bagging [239] and random
forests [240].

(9)Online Learning: Online learning does not utilize the
entire training set at any one time. Rather, inputs to the model
are processed in batches so that the prediction model is con-
stantly updated with new training data [241]. Online learning
is suitable for scenarios where algorithms need to be dynam-
ically adjusted to fit new patterns in the data. Commonly
used online learning algorithms include passive aggressive
learning and adaptive regularization learning [242].

2) MACHINE LEARNING MODELS AND ALGORITHMS

USED IN ANDROID MALWARE DETECTION

It should be noted that the machine learning models
and algorithms briefly introduced in subsection IV-D1 are
commonly used for the detection of Android malware,
and each one has many specific implementation methods.
In Table 9, we analyze the advantages and disadvantages of
the models and algorithms introduced in subsection IV-D1,
and then list more than 100 articles that apply these to detect
Android malware. Most of the articles listed in Table 9 have
been published in the past five years. The machine learning
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TABLE 9. Comparison of machine learning models or algorithms commonly used in Android malware detection.

Model or Algorithm

Advantage

Disadvantage

References

Decision Trees
(DT)

Simple to understand and
interpret. It can handle
samples with missing values
or large scale.

Prone to lead to overfitting. It
does not support online learning.

[31,[93],[101],[105],[118],[135],[137],[138],[141],
[144]-[147],[150],[151],[162],[165],[166],[172],[176],

[178],[186],[188],[189]1,[192],[194],[199]1,[201],[203],
[205],[214]-[217],[246]

Naive Bayesian

The model can be trained

Not applicable to situations
where the feature variables are

[931,[108],[114],[118],[137],[138],[141],[143],[144],
[146]-[148],[153],[162],[166],[176],[187],[192],[201],

(NB) easily and quickly. correlated. The prior probability
needs to be calculated. [205],[213]-[215],[217],[243],[246]
Linear Model Itis the main algorithm in The premise of the algorithm is [1181,(1371,[1411,[1461,[1471,[1621,[172],
(LM) statistics; fast and direct. strict. It cannot deal with the [1881,[1941,[2031,[2051,[215],[246]

high-dimensional features well.

Support Vector

It has advantages in solving

The overhead in data processing

[31,[871,[99]-[102],[104],[106]-[108],[112]-[116],[118],
[120],[135],[136],[138],[139],[142],[146],[150]-[152],[154],

Machine small-scale, high-dimensional is large. It is sensitive to samples [1561,[1611,[165],[1661,[168],[174]-[176],[178]-[1801,[182]
or non-linear problems. ith missi alues. ’ ’ ’ ’ ’ ’ ’ ’
VM) rnon-tinear pr W 1ng vatues [186],[188],[1891,[1911,[192],[194],[201],[206],[211]-[215]
E: 1 li ithout
K Nearest Neiahbors ::zm‘e’t:ae;fm“;io:”h N Greatly affected by data skew. [89],[931,[101],[104],[107],[108],[118],[135],[141],[144]-
(KNN)g Suilable for solving rr;ulti The computation overhead is [146],[148],[152],[162],[165],[172],[184],[186],[188],[189],
classification problems. relatively large. [191],[194],[201],[203],[205],[213]-[215],[218],[243]
Simple. fast. and easy fo Results are affected by the initial
K-means P, ’ 4 setting. It is sensitive to noise [100],[102],[103],[147],[164],[177]

implement.

and outliers.

Neural Network and
Deep Learning
(NN&DL)

Has high accuracy and strong
fault tolerance.

Needs a lot of data for training.
Parameter and network topology
selection is not easy.

[101],[109],[111],[119],[138],[140],[167],[171],[181],[183],
[1881,[1901,[193],[198],[201],[210],[214],[2151,[243],[246]-
[249]

Ensemble Learning
(EL)

Much more accurate than
using a single model.

Overhead is large. It requires a
lot of model training and
maintenance.

[31,[89]1,[93],[101],[104],[107],[108],[110],[113],[114],[118],
[138],[141],[144],[146], [149]-[152],[162],[169],[170],
[172],[176],[178],[185],[188],[189],[191],[192],[194],[199],
[203],[204],[205],[207],[214]

Online Learning
(oL)

Strong adaptability and good
real-time performance. It
reduces the threshold
requirement of hardware

Some models are not suitable for
online learning. It is difficult to
find the global optimal solution.

[244],[245],[250],[251]

performance.

methods used in some of the literature in Table 9 are improve-
ments based on models or algorithms that are also classified
under the corresponding models or algorithms. The relevant
research that does not specify the machine learning models
or algorithms used are not listed in Table 9. To aid explana-
tion, the literature listed in Table 9 is also shown in Venn
diagram form in Fig. 2. Some studies have used multiple
machine learning models or algorithms, which correspond
to the reference numbers shown on overlapping regions or
intersections in Fig. 2. There are also some overlapping areas
or intersections without elements, which indicates that there
is no literature in Table 9 that makes use of all the machine
learning methods simultaneously. Note that the area of each
shape in the Venn diagram is not proportional to the number
of elements it contains. The Venn diagram only shows the
distribution in the application of machine learning methods
according to the literature listed in Table 9, and does not
indicate the proportion or degree of usage of each learning
model or algorithm in the field of Android malware detection
as a whole.

We believe that there are three modes by which researchers
select machine learning models or algorithms to detect
Android malware. The first is to design the scheme based
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on a single model or algorithm. The selection of model or
algorithm is often done based on the sample data, selected
features, and application scenarios. The second is to choose
different models or algorithms according to the purpose of the
research. For example, some researchers choose algorithms
with a high prediction accuracy, such as neural networks or
deep learning. Computational overhead or hardware perfor-
mance is not the main factor considered. The third mode is
to choose a variety of models or algorithms and compare
the advantages and disadvantages of each machine learning
method in the particular scenario.

As an example of the first mode, Ref. [87] extracts
545,000 features, including permissions and API calls, then
selects an SVM algorithm due to its ability to solve high-
dimensional problems in analyzing the relationship between
features and malicious behavior of the application. In some
studies, the algorithms are based on a typical SVM, which
is then improved and optimized. For example, Ref. [168]
uses a heterogeneous information network (HIN) to represent
the relationship between API calls and constructs a multi-
kernel learning algorithm based on an SVM. Reference [116]
defines a data flow named Complex-Flows, extracts API call
sequences by using data flow analysis tools, such as BlueSeal,
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[109],[111],[119],[140],[167],[171],[181],

[183].[1901,[193].[198].[210].[247]-[249] Online Learning (OL)

[244],[245],[250],[251]

§ IS _— e
Decision Trees (DT e -
k-Nearest Neighbor (KNN) [105],[216]( ) LY L)
[184],[218] Support Vector Machine (SVM)
s g
[148},1213] [135],[165] [1751,[179],[1801.[182].[ 186],[206],[211]-[213]
3],[150],
[243] [
[201] [151],[178]
® i 214 [101]
Neural Network and Deep Learning [214]
(NN&DL) 2151 [188] [113],[114],[138],[176],[192]
Linear Model
138y (e S piog > 199,
37]-[147] [141],[1621,[205]  [172) 1203] [108],[152],[191]
1661,[176],
Naive Bayesian (NB) [[1 92]],[[217]] 1931144]
[108],[114],[143],[153],[187] [199] [89]
Ensemble Learning (EL)

K-means
[103],[147],[164],[177]

[110],[149],[169],[170],[185],[204],[207]

Other Models or Algorithms

FIGURE 2. Venn diagram of machine learning methods listed in Table 9.

then generates feature sets in the form of n-grams, and finally
uses an SVM algorithm to detect malware. In Ref. [100], nat-
ural language processing (NLP) technology and the k-means
algorithm are firstly used to process the description of each
application in the market. Combined with the extracted
sensitive API calls, the SVM algorithm is finally used to
detect malware. Reference [180] adopts the incremental
SVM algorithm to make full use of the prior information of
historical samples. It avoids retraining all the data when new
samples are added, thus improving detection efficiency.

In the second mode, the purpose or perspective of the
research is an important basis for model or algorithm selec-
tion. For example, in Ref. [181], an extreme learning machine
is used for prediction based on the features of permissions
and API calls, with the aim of improving learning efficiency
and simplifying the process of setting model parameters.
In Refs. [154] and [245], an online passive aggressive algo-
rithm and an online confidence weighted algorithm are used
to address the problem of classifier aging. References [107],
[198], [200], [246], and [251] apply a Markov model to
solve the problem of malware detection from the viewpoint
of probability. Furthermore, some researchers optimize the
experimental scheme from the aspects of feature construction
and data preprocessing. For example, Ref. [167] analyzes the
API calls extracted from the smali files of Android applica-
tions and group the API calls belonging to a method in the
smali code into the same “API Call Block™. Based on the
“API Call Blocks™, a deep belief network (DBN) is used to
detect Android malware. In Ref. [119], the opcode sequence
obtained from the Dalvik command in the application is
converted into a feature vector, and the one-dimensional

VOLUME 8, 2020

vector is further transformed into a two-dimensional matrix
so as to facilitate the subsequent deep neural network (DNN)
learning. Based on the effectiveness of neural networks in
the field of image recognition, Refs. [109] and [111] extract
opcodes from the binary executable files and convert them
into images. Then neural network algorithms, such as convo-
lutional neural network (CNN) and a long short-term mem-
ory (LSTM) network, are used to make predictions.

The third mode is often used in current research on Android
malware detection. Here, a range of machine learning models
or algorithms are selected for comparative analysis to deter-
mine the best classifier for the particular problem. In Ref. [3],
the researchers propose a three-layer feature data clipping
method. They use this to extract 22 permissions that make the
greatest contribution to detection efficiency from 135 permis-
sions, and then carry out a comparative analysis of the detec-
tion effectiveness with 67 machine learning algorithms such
as a decision tree and an SVM. Reference [89] extracts API
calls and then constructs behavioral semantics by association
rule analysis to represent the behavioral features of the appli-
cation. Finally, an SVM, k-nearest neighbor, random forest,
and other algorithms are used for detection. Reference [105]
extracts three kinds of features of the API from control flow
graphs, including APIs (which APIs the suspect application
uses), the API frequencies (how many times the application
uses APIs), and API sequence (the order the application uses
APIs). The authors claim that this is the first time that features
have been constructed using the order in which an application
uses APIs. Finally, a decision tree, a deep neural network
(DNN), and a long short-term memory (LSTM) network are
used to detect malware and compare the results.
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E. EVALUATION OF DETECTION EFFECTIVENESS
Evaluating the performance of models or algorithms is an
important topic in the field of machine learning. Generally,
Android malware detection is studied as a typical binary
classification problem. The metrics can be used not only to
evaluate the predictive accuracy of the classifier, but also to
optimize the model. This subsection introduces some evalu-
ation metrics that are commonly used in the field of Android
malware detection. Referring to Refs. [79], [252], and [253],
we present the content of this subsection in three parts: one
is the division of the dataset, the second is the evaluation of
classifier performance, and the third is a reliability estimate
of the evaluation results.

1) DIVISION OF DATASETS

The original dataset is divided into a training set and a test set.
The training set is used to select the model and tune the
parameters while the test set is used to evaluate the perfor-
mance of the classifier. In order to ensure the integrity of
the evaluation, the training and test sets should be mutually
exclusive, and the distribution of data should be consistent
with the original dataset as much as possible. In the evaluation
of detection effectiveness, methods such as hold-out, cross
validation, and bootstrapping are often used to segment the
dataset into training and test sets [79]. Taking the commonly
used k-fold cross validation as an example, the main steps are
as follows [254]:

(1) The original dataset is divided into k mutually exclusive
subsets of roughly equal size.

(2) One of the subsets is selected as the test set, and
the remaining (k—1) subsets constitute the training set. The
training set is used for model selection and parameter tuning,
and then the obtained classifier is evaluated using the test set.

(3) Step 2 is repeated k times to obtain the performance
evaluation results for k groups. The average value of the k
groups of results is taken as the overall performance of the
classifier.

2) EVALUATION OF CLASSIFIER PERFORMANCE

There are many performance metrics for -classifiers.
A summary can be found in Refs. [255] and [256] while
Refs. [257] and [258] propose some new metrics. This section
introduces the performance metrics commonly used in the
Android malware detection field.

TABLE 10. Confusion matrix of predicted results.

Predicted Result
True Class Positive Negative
Positive TP FN
Negative FP TN

As a typical binary classification problem, the results of a
prediction of whether an Android application contains mal-
ware can be divided into four types, as shown through a
confusion matrix in Table 10 [259], [260].
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The concepts of FP, FN, TP, and TN are defined as follows.

(1) True positive (TP): the application is a malicious appli-
cation and was correctly predicted to be malicious;

(2) False positive (FP): the application is not a malicious
application but was wrongly predicted to be malicious;

(3) True negative (TN): the application is not a malicious
application and was correctly predicted to be non-malicious;

(4) False negative (FN): the application is a malicious
application but was wrongly predicted to be non-malicious.

The above four results are mutually exclusive, and thus
their sum is the total number of samples in the test. Based
on these four basic concepts, a series of performance met-
rics has been derived. Some commonly used metrics are as
follows.

(1) Accuracy (Acc) represents the ratio of correct pre-
dictions among the total number of samples in the test.
Equation 1 shows how accuracy is computed.

_ TP + TN
~ TP+ TN + FP +FN
(2) Error Rate (E;;) represents the ratio of false pre-

dictions among the total number of samples in the test.
Equation 2 shows how error rate is computed.

FP+ FN
E, — b)
TP+ TN + FP + FN

(3) Precision (P) represents the ratio of all samples cor-
rectly predicted to be positive among all samples predicted to
be positive. Equation 3 shows how precision is computed.

TP
P=—
TP + FP
(4) Recall (R) represents the ratio of all positive

samples correctly predicted among all positive samples.
Equation 4 shows how recall is computed.
TP
R = ——
TP + FN
Precision and recall are very important performance met-
rics, but they only provide a partial evaluation. In order to
combine these two values to obtain a more complete evalua-
tion of the performance of the classifier, the harmonic mean
of precision and recall can be used, which is known as the F
score. Equation 5 shows how the F score is computed.
P-R 5
"P+R ©)
A more general form is the weighted harmonic mean of
precision and recall, which is denoted by Fg. Equation 6
shows how the Fjg score is computed, where B is a positive
real number, which means that recall is 8 times as important
as precision.

ey

ACC

3

“

Fi=2

P-R
B*-P+R
Some researchers also evaluate classifier performance

through the receiver operating characteristic (ROC)
curve [261] and area under the ROC curve (AUC) [262].

Fs=(1+4) ©)
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This technique is popular because, compared with accuracy
and other performance metrics, the AUC is less affected
by class imbalance because it is not dependent on the
threshold set by the model and is invariant to prior class
probabilities [79], [263].

3) RELIABILITY ESTIMATION OF EVALUATION RESULTS
Although we can obtain evaluation results, such as the accu-
racy of the classifier, by combining dataset and performance
metrics, the performance evaluation on a limited dataset is
only representative of the classifier’s ability to learn patterns
within the dataset, rather than its ability to generalize this
performance on new data. To what extent should we trust the
performance measures of the classifier? In this case, there is
aneed to conduct reliability estimation of the previous evalu-
ation results of classifier performance. Therefore, answering
this question requires the application of statistical hypothesis
testing [264], [265], which has a very broad content. For
Android malware detection, the test results of each sample
can only be benign or malicious, and thus can be approx-
imately represented as Bernoulli trials [266], which have
a binomial distribution [267]. Under the condition that the
results follow the binomial distribution, we can conduct reli-
ability estimations by using the relatively simple ‘‘binomial
test”” [268]. We briefly introduce some basic principles of the
“binomial test” below.

Taking the error rate of the classifier as an example, in real-
ity we only know the test error rate of the classifier on
the original dataset, and hence it is impossible to know the
generalization error rate ¢ of the classifier on new data with
any degree of accuracy. Hypothesis testing involves making
a statistical decision, such as making an assumption that “‘the
generalization error rate ¢ of the classifier is no higher than
go”, that is, “e < gy, where ¢gq is a real number that we
set between 0 and 1. Hypothesis testing is the process of
determining to what extent the hypothesis can be accepted;
the basis of this is the null hypothesis, and the hypothesis
that differs from the null hypothesis is called the alterna-
tive hypothesis [269]. Hypothesis testing sets a significance
level («), which determines whether the hypothesis is to be
accepted. The value of the significance level is usually set to
0.05 or 0.1. The confidence corresponding to the significance
level is (1-«), which indicates the (1-«) confidence level for
the results. The p-value is used to decide whether the null
hypothesis is to be accepted based on the sample results.
Specifically, if p < «, the null hypothesis will be rejected;
if p > «, the null hypothesis will be accepted [270]. For
example, if the significance level is « = 0.05, ¢g = 0.3 is
a threshold set for the error rate and used as a reference to
calculate the p-value. The number of Android applications
used for performance evaluation in the test set is N, and
the resulting classifier test error rate is ;. The process of
hypothesis testing is as follows [79]:

(1) Establish the hypothesis and determine the significance
level.

VOLUME 8, 2020

Null hypothesis (Hy: € < g&g). That is, the generalization
error rate of the classifier ¢ is not higher than &y. The corre-
sponding significance level o« = 0.05.

Alternative hypothesis (H;: ¢ > &¢). That is, the general-
ization error rate of the classifier ¢ is higher than &g.

(2) According to the binomial distribution, calculate the
p-value.

The number of misclassified applications is N-gg. In the
binomial distribution, the probability that an application is
misclassified is the generalization error rate of the classifier ¢.
Equation 7 shows how the p-value is calculated.

N-go
P(X<N-g)=) Cye(1—e)" (7

i=1

(3) Only when p < o« will the null hypothesis, Hy,
be rejected. In other words, we can reject the null hypothesis
only if the probability of the observed result occurring by
chance is less than our chosen threshold. According to this
constraint of the p-value, the extreme value ¢ of the classifier
generalization error rate ¢ is solved. The test error rate of the
classifier ¢; is compared with &, and the conclusion is drawn.

If the test error rate &; is less than the extreme value &,
the null hypothesis Hy will not be rejected at the significance
level «.. In other words, we can take the confidence of (1 — «)
to believe that the generalization error rate € of the classifier is
not higher than . If the converse is true, the null hypothesis
Hj will be rejected.

In addition to the binomial test and the cross validation
method, a T-test [271], [272] can be used to evaluate the per-
formance of the classifier. When comparing the performance
of two classifiers, methods such as a cross validation T-test
[273], [274] and the McNemar test [275], [276] can be used.
When comparing the performance of multiple classifiers,
methods such as the Friedman test [277], [278] and Nemenyi
post-hoc test [279], [280] can be useful. These methods are
considered in detail in Ref. [79].

The content mentioned in this subsection mainly focuses
on evaluation of classifier performance and reliability esti-
mation of the evaluation results. Of course, we could base the
evaluation on many other aspects including real-time detec-
tion support, preservation of privacy, or economic resource
consumption [19]. However, these are outside the scope of
our paper and will not be detailed here.

V. RESEARCH DIRECTIONS AND CHALLENGES

Based on the above analysis and summary of the research
field of Android malware detection based on machine learn-
ing, we believe that there are currently some research direc-
tions and challenges. We categorize the content of this section
according to different aspects of this research field, as identi-
fied in subsections IV-A to IV-E.

A. ESTABLISHMENT OF THE SAMPLE SET

The training and validation of an Android malware detector
may produce biased results if the dataset they are based on

124597



IEEE Access

K. Liu et al.: Review of Android Malware Detection Approaches Based on Machine Learning

is not representative in distribution due to insufficient size or
quality. Even if the detector performs well in the experimental
tests, it may not work well in the real environment [281].
Therefore, establishing a good dataset of Android applica-
tions is an important task.

Due to the open source nature of the Android operating
system, users have a number of ways to obtain Android
applications. Not only can they download applications from
mainstream markets such as Google, Huawei, and Baidu, but
they can also obtain applications from many informal third-
party markets and websites. Additionally, malicious websites,
instant messengers, or storage on the network can share
Android applications for users. Currently, as described in sub-
section I'V-A, although many projects such as AndroZoo [88]
and RmvDroid [94] have established some standardized
Android application sample libraries, there still are some
problems in the sample set used for research, such as the
relatively outdated and small size of the samples, uneven
distribution of malicious and benign samples, and the repack-
aging of Android applications.

Alternatively, with the aim of accurately balancing the
proportion of Android malware in the dataset, the percentage
of Android malware in the training set can be adjusted by
sampling and other ways so as to improve the predictive
effect of the classifier. The experimental analysis under dif-
ferent proportions of Android malware illustrates the influ-
ence of sample distribution on the performance of classifier
[281], [282]. Although estimates of the proportion of Android
malware in specific datasets can be obtained from some
studies [283]—-[285], and relevant data can also be obtained
from the statistical reports of mainstream Android application
markets such as Google [62], there is still no strong evidence
to show the accuracy of these estimates. In addition, due to
the constant development and evolution of Android malware,
it is also very important to constantly update the sample set
with the latest Android applications. In short, it is an ongoing
task to establish a better sample set of Android applications.

B. DATA OPTIMIZATION AND PROCESSING

Data processing runs through the whole process of Android
malware detection based on machine learning, including not
only the processing of collected Android application samples,
but also the processing of the feature set extracted from the
samples.

The increasing scale of malware indirectly leads to a huge
amount of data to be processed, and thus it is necessary to find
effective means to deal with such “big data”. Meanwhile,
the feature data used in some studies is both high-dimensional
and large-scale [87], [106]. This trend is likely to become
more pronounced as the number of Android applications
grows and as the Android framework updates, creating new
features for classifiers to learn from, such as new API calls.
The processing of high-dimensional mass data will lead to
problems such as rising overhead and performance degra-
dation of machine learning models, which are areas where
many research fields are striving to make breakthroughs.
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Distributed or cloud-based architectures can reduce the
requirements of data processing on hardware performance to
some extent, and methods such as data mining and fusion can
also improve the efficiency of big data processing to a certain
degree [19].

As described in subsection IV-B, the quality of the feature
dataset has a great influence on the effectiveness of machine
learning and directly affects the efficiency of malware detec-
tion. In the process of feature selection, how to use feature
engineering and other methods to evaluate and select feature
sets and eliminate redundant and irrelevant features is also a
very important research field. Through our literature review,
we find that in the field of Android malware detection, there
are few studies that focus on feature selection alone as in
Ref. [30]. More researchers tend to conduct feature selection
based on the traditional practices in the field and pay more
attention to the analysis and detection methods of Android
malware. By combining the literature on feature selection,
we can infer that in the field of Android malware detection,
the scalability and stability of the feature selection algorithm
is a big challenge. With the rapid growth in the number of
Android applications, the feature sets used in many studies
are both high-dimensional and large-scale. However, many
feature selection algorithms have a much higher time com-
plexity as dimensionality increases, which requires greater
scalability of the feature selection algorithms [286]. We hope
that the feature selection algorithm can be very stable, that is,
less sensitive to perturbations in the feature data. When new
samples are added or some samples are deleted, the algorithm
should produce a consistent subset of features [95].

In addition, the processing of incompletely labeled data
can also be further improved. As new Android applications
appear, it is obviously inefficient to classify and label them
one by one, and the semi-supervised learning method to
deal with incompletely labeled data will be restricted by fac-
tors such as efficiency and sample distribution [287]. Some
researchers use ensemble learning to label these new applica-
tions by combining the weights of multiple learners and their
predictions to indirectly solve the problem of incompletely
and unlabeled data [288]. However, there will be some prob-
lems in model selection and weight assignment, and even the
risk that all the learners in the ensemble will make wrong
predictions. How to make better use of this unlabeled data
to aid machine learning is a challenging task.

C. FEATURE EXTRACTION AND ESTABLISHMENT
How to extract the features of Android applications and which
features to extract is a very extensive research topic. The
impact of features on machine learning effectiveness and effi-
ciency should be considered comprehensively. Additionally,
some malware is designed to deliberately defend against the
analysis of researchers or anti-virus tools, which creates an
endless game between the two sides.

As mentioned in subsection IV-C, the analysis of Android
applications can be divided into three categories: static,
dynamic, and hybrid. Different detection methods based on
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machine learning may extract different features, which need
to be realized by the comprehensive use of different methods.
The developers of malware will take a variety of countermea-
sures in response to these analysis and detection methods.
However, due to the characteristics of the Android architec-
ture itself, many analysis techniques will be limited. Static
analysis cannot resist code obfuscation, dynamic code load-
ing, and other technologies. There are also many challenges
to feature extraction with dynamic analysis. For example,
how to realize more accurate behavioral simulation through
an emulator that is not convenient to monitor through the
application, how to ensure that all malicious behaviors can be
triggered during dynamic analysis, and how to use real mobile
devices to efficiently generate large-scale dynamic features
are all problems to be solved. At the same time, to achieve
high code and path coverage, we usually use automation
tools for testing to improve the efficiency of the analysis.
In this case, time bombs, logic bombs, and login interfaces
based on passwords, for example, will bring difficulties to
our automated analysis. Although a lot of research work
has put forward methods to address these deficiencies, it is
still difficult to achieve a perfect unity between the analysis
effectiveness and efficiency [4], [35], [37].

Another aspect is to search for new features with
a strong training effect. Inter-component communication
among Android applications, the descriptions, and user rat-
ings of the applications in the app store are receiving
increased attention from researchers. Indeed, in the absence
of a revolutionary change in the architecture of the Android
system, there are currently a limited number of features that
researchers can use to detect malware by using machine
learning methods. The analysis and summary we presented
in subsection IV-C indicates that most of the research is still
based on common features such as permission and API calls.
In our opinion, some future directions for feature extraction
and establishment are as follows. Firstly, we can search for
the relationship between different types of information about
Android applications to establish features. Secondly, we can
combine these commonly used features across the time and
space domains to establish new features. Thirdly, we can also
use third-party platforms or crowdsourcing to obtain auxiliary
feature data for malware analysis and detection.

D. APPLICATION OF MACHINE LEARNING

Machine learning has rapidly growing in recent years.
By referring to the latest research achievements in machine
learning and artificial intelligence, machine learning methods
should be carried out with the goal of improving the effective-
ness and efficiency of detection.

The design of the algorithm should be more inclined
toward mixed and multi-level techniques. The subject of
Android malware detection can be assessed from differ-
ent perspectives such as image processing, natural language
processing, and data mining. Combined with deep learn-
ing, online learning, and other methods, hybrid feature data
obtained from multiple channels can be used to achieve
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a more intelligent and adaptive detection effect. To the best
of our knowledge, many learning algorithms that have been
paid attention to and applied in other fields have not been
widely used in Android malware detection [24]. For exam-
ple, incremental learning can dynamically add sample data
to maintain the high performance of the classifier [289],
active learning can deal with the data scarcity problem and
reduce the learning cost [290], and transfer learning can apply
the knowledge obtained from learning tasks to improve the
learning effect on other related tasks [291]. From a macro
perspective, the problems that can be solved by these learning
algorithms are present in the field of Android malware detec-
tion. In the future, these types of learning algorithms will be
applied more widely to Android malware detection.

Another research direction that cannot be ignored in
machine learning is concept drift [292]. Over time, due to the
continuous development and evolution of Android malware,
the predictive performance of a trained classifier declines.
This phenomenon is called concept drift, which is a problem
that researchers have been trying to solve in the field of
machine learning. Although the problem of concept drift can
be alleviated by using new datasets for training periodically to
update the classifier’s models, it is obvious that the overhead
is large, and the classifier’s prediction effectiveness between
two training cycles cannot be guaranteed. The Transcend
framework [293] utilizes statistical methods to detect concept
drift and is not subject to the machine learning algorithm
used by the classifier; however, it does not propose a specific
and effective method for the classifier to overcome concept
drift. DroidSpan [294] defines two parameters to evaluate the
stability of the classifier under the influence of factors such
as concept drift, and further makes use of a set of dynamic
features with stable and distinct differentiation to train the
classifier. Although the predictions are more stable than the
existing tools or algorithms, the prediction accuracy is still
greatly affected by concept drift and other factors, and may
be thwarted by code obfuscation, the addition of glue code,
time bombs, and other malicious countermeasures. To over-
come the problem of classifier aging, DroidEvolver [288]
obtains API call features through static analysis and uses the
ensemble method combined with online learning to update
the models integrated in the classifier. Although this method
is somewhat robust to code obfuscation, static analysis is
affected by techniques such as dynamic code loading, and
online learning is threatened by sabotage methods such as
poisoning attacks [295].

The robustness of detection methods based on machine
learning has received more and more attention from
researchers. Machine learning techniques were not origi-
nally designed to deal with purposeful and capable attackers.
Some studies have shown that machine learning has inher-
ent weaknesses, and attackers can modify their behavior to
mislead learning algorithms and thus avoid detection during
testing [296], [297]. When we choose a machine learning
algorithm to detect Android malware, prediction accuracy,
computational complexity, etc., are often the primary factors
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considered, and it is easy to ignore the security issues that
machine learning algorithms may face, such as susceptibility
to poisoning attacks and evasion attacks [298]. How to use
adversarial learning [299] and other methods to train the
learner to deal with attacks effectively, and how to strengthen
the security of a machine learning algorithm without signif-
icantly increasing its cost, are some topics that need further
study.

E. CLASSIFIER EVALUATION

The Android application classifier obtained by machine
learning needs to be properly evaluated; otherwise, the results
predicted by the classifier in the real world will be mean-
ingless. The selection of evaluation methods and metrics
is a very important topic, and should be based on sound
reasoning [300]. Blindly choosing an evaluation metric and
method may lead to the wrong conclusions.

As we mentioned in subsection IV-E, when researchers
apply machine learning methods to the detection of Android
malware, they tend to directly select specific metrics such
as accuracy and precision to evaluate the classifier, with-
out giving sufficient justification for their choice. No single
evaluation method is better than the others in all cases, but
some methods are superior to others under certain conditions
or are obviously inadequate in particular cases. Therefore,
it is better to reconsider the selection of the classifier eval-
uation method for every new training and testing cycle [301].
For Android malware detection, we can try to use methods
such as meta learning to summarize the mapping rela-
tionship between a specific scenario and algorithm perfor-
mance [302]-[304], thereby helping us identify appropriate
evaluation methods and metrics. On this basis, the develop-
ment of a unified automated evaluation framework will help
to improve the efficiency of classifier evaluation. We can
further expand the evaluation metrics for Android application
classifiers, such as robustness, confidence, and generalization
capability. At present, most learning algorithms have a high
computational cost, which limits their applicability in many
practical scenarios. Therefore, the real-time performance of
the classifier deserves further study. On the basis of the
existing evaluation metrics, we can construct new evaluation
metrics that are multi-level or multi-dimensional. For exam-
ple, the work in Ref. [258] shows that a two-tier evaluation
combining the metrics of AUC and accuracy has a better
performance than an evaluation of AUC or accuracy alone.
In addition, the design of evaluation methods with lower com-
putational cost and higher efficiency, systematic evaluation
of the correlation between different evaluation metrics, and
exploration of the relationship between evaluation methods
and test adequacy are all areas that invite further study.

For the time being, the reliability estimation for the eval-
uation results of classifiers has not been widely studied in
the field of Android malware detection. Many theories and
techniques in statistics, such as hypothesis testing or confi-
dence measures [305], can be applied in this research. There
are more studies on the reliability estimation of the results in
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traditional statistics and other application fields [306]-[308],
but it does not seem to have attracted enough attention in
the field of Android malware detection. This phenomenon
can be attributed to the fact that most researchers focus
their evaluation on the performance of classifiers, and the
fact that many studies are based on an established and
labeled dataset, without considering the use of classifiers
in real-world environments [281]. As we mentioned in
subsection I'V-E, hypothesis testing can be simply regarded as
a choice between two opposing hypotheses (the null hypoth-
esis and the alternative hypothesis). A hypothesis test uses
limited observational data in order to either reject or accept
the null hypothesis [309], [310]. A hypothesis test does not
prove a hypothesis, but merely provides evidence to accept
or reject it. The p-value, representing probability, measures
the strength of evidence against the null hypothesis [311].
It is affected by sample size, sample distribution, and other
factors. After obtaining the p-value through hypothesis test-
ing, it is necessary to carry out targeted explanation of the
p-value in specific application scenarios, which will make
the hypothesis testing more meaningful. In addition, the cal-
culated accurate p-value and the relevant confidence inter-
val can be given together to provide a more comprehensive
evaluation of the evaluation results. Diversity, robustness,
and applicability are also factors to be considered [312]. The
research on reliability estimation can be used to evaluate the
application effect of selected algorithms and features, which
can in turn improve their selection. We believe that the study
of classifier evaluation can fully draw on and utilize the latest
research theories and results of statistical analysis.

VI. CONCLUSION

With the popularization of the Internet of Things, 5G, and
other technologies, mobile smart devices are developing
rapidly, and the scale of Android applications installed on
smart terminals, such as mobile phones and tablets, is also
increasing. However, this has been followed by an increase
in malware targeting the platform. In turn, this has attracted
a great deal of research into detecting Android applications
that are affected by malware. The introduction of artificial
intelligence methods, such as machine learning, has greatly
improved the prospects for the detection of Android mal-
ware. Through surveying the collected literature, this paper
provides a detailed review of current approaches for detect-
ing Android malware, with a focus on the use of machine
learning. The main aim of this paper is to present a com-
plete picture of Android malware detection based on machine
learning.

We briefly introduced the background to Android malware
and gave a comprehensive review of machine learning-based
approaches for detecting Android malware, arranged roughly
in the order of the machine learning development pipeline.
A range of alternative approaches were considered at each
stage with a detailed consideration of their advantages in
specific contexts. Some key content was summarized in the
form of diagrams and tables to provide a better understanding
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and facilitate comparative analysis. Finally, we isolated five
topics to be studied in future research: the establishment
of the sample set, data optimization and processing, feature
extraction and establishment, application of machine learn-
ing, and classifier evaluation.

This work is different from previous surveys on Android
malware detection, focusing on more aspects of machine
learning methods. We believe this work complements previ-
ous reviews by filling some research gaps and putting forward
some open issues in this field. We hope this review will
provide a foundation for interested readers and inspire them
to pursue new research avenues.
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