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ABSTRACT Currently, a large amount of defect data in relay protection devices (RPDs) is accumulated in
operation. However, the defect data dependence analysis is absence and thus it could not meet the demand for
further improving the management and operation RPDs. Based on 7-years defect data of RPDs in SGCC,
this paper discovers the association rules (ARs) of defect data based on the Apriori algorithm. In detail,
the ARs among different categories of PRDs, such as defect parts and defect causes are discovered and
analyzed. Furthermore, the family characteristics of defects are illustrated, with the defect data of RPDs
from different manufacturers. The analysis results show that the Apriori method can effectively reveal the
hidden information in the defect data, such as the ARs between the vulnerable parts of RPDs, defect causes
and other factors.

INDEX TERMS Relay protection devices (RPDs), defect analysis, data mining, association rules (ARs),
Apriori algorithm.

NOMENCLATURES
Relay Protection Devices (RPDs), Relay Protection System
(RPS), State Grid Corporation of China (SGCC), Association
Rule (AR), Condition Based Maintenance (CBM), Merging
Unit (MU).

I. INTRODUCTION
Relay protection is the first line of defense to ensure the
safety of the power grid, thus its reliability is very important.
However, statistical data show that various defects often result
in failure of RPDs, which may threaten the safety of power
grid, or even lead to blackouts [1].

Currently, with the expansion of power grid, the number
of RPDs in operation is large. For example, there are over
180000 RPDs in SGCC. Thus, a lot of data, which contains
a lot of defects information, is produced by the RPS in
operation [2]. Thus, mining the above data, could recognize
the regular defects patterns of RPDs, guide the operation,
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maintenance and management of RPDs, so as to improve the
reliability of RPS.

There is some work on the mining detects data [3],
however, they are focused on using traditional statistical
methods to carry out simple classification, and this work
is lack of deep mining, e.g., the dependence among data,
the defects patterns. Thus, the hidden information lying in the
defects data PRDs needs to be further discovered.

On the other hand, data mining could extract the patterns
and rules concerned by users from seemingly unrelated mas-
sive data [4]–[6], thus it has been applied to the data analysis
for the equipment in power grid [7]–[13]. For example, in
Ref [7], the Apriori algorithm is used to mine the defects
data of the automation equipment, which is part of secondary
equipment, and reveals the weak link of the automation
equipment and the causes of defect. In Ref [8], an improved
algorithm called FP-growth is applied to analyze the defect
data of secondary equipment the certain substation, discover
the dependence among frequent, location, property and cause
of the frequent defects in substation.

It is worth noting that, the applications of the defects data of
PRDs are focusing on condition based maintenance (CBM)
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and risk assessment, but not the dependence of the data.
For example, in Refs [9] and [10], based on the failure
characteristics of RPD, the reliability evaluation model of
RPD is constructed to determine the optimal maintenance
period and replacement period of RPD. In Ref [11]–[13],
based on the RPS reliability data, Markov state method is
used to establish the system reliability evaluation model by
considering the fixed inspection, self-inspection and protec-
tion configuration of RPD, and the optimal fixed inspection
period of RPD is proposed. As state before, the above work
has initially reflected the value of defects data of RPDs, but
they are focusing on device reliability assessment, lacking of
the dependence analysis to the defects data themself.

Recognizing the above problems, based on the 7-years
defects data of PRDs in SGCC, this paper applies the Apriori
algorithm to reveal the dependence among the defect data.
The ARs of the defect parts and defect categories and defect
causes of RPDs are discovered, and the vulnerable parts and
defect causes of all kinds of RPD are determined. The similar-
ities and differences of the obtained dependence rules accord-
ing to the defect data of RPDs with different manufacturer
discover the characteristics of family defect.

The contributions of the paper are as follows.
(1) The Apriori algorithm is applied to mine the hidden

association information in defects data of RPDs, and the ARs
in the device category, defect parts and defect causes for the
common defects of RPDs are revealed.

(2) Based on the analysis of the ARs of different
manufacturers, the characteristics of family defects of the
RPDs are discovered, which could be conducive to the
improvement of the production quality.

The remainders of the paper are as follows. Section II
introduces the basic concept of ARs, including the support
and confidence and mathematical calculation formula, after
that, describes the implementation process of Apriori algo-
rithm. Section III analyzes the structure of the data, and select
appropriate feature items to participate in the generation of
ARs according to the characteristics of the data. In Section IV,
the defect data of RPDs in SGCC from 2012 to 2018 is mined
as a whole, and the common ARs of defects are analyzed.
Then, based on the data of three manufacturers, the family
characteristics of devices are explored. Finally, section V
gives out the conclusions and remarks.

II. ASSOCIATION RULES AND APRIORI ALGORITHM
This section introduces the basic concept of ARs, including
the support and confidence and mathematical calculation
formula, after that, describes the implementation process of
Apriori algorithm.

A. ASSOCIATION RULES
The AR is correlation between different transactions, which
is known as the rule of ‘‘beer-diaper’’ from the user’s pur-
chase record [14]. The AR mining, which is also popular
known as ‘‘shopping basket analysis’’, could discover the
hidden relationship between two or more things, provide the

association mechanism, and even predict the occurrence of
things. Themathematical description ofAR is as follows [15].

Let I be a set of M different items, which is called itemset.
A itemset with a length of K is called k-itemset. The sample
set T used for association rule mining is a subset of itemset I.
and all the samples form the sample database D. Then, there
are two key indexes to evaluate the rule, one is the support
and the other is the confidence. Support is the possibility of a
rule, confidence is the degree of trust of a rule.

A and B are two subsets of itemset I, and their AR could
be expressed as:

R : A => B

Count(A) is the number of samples in sample set T that
contains A, and Count(B) is the number of samples in sample
set T that contains B. the mathematical expression of the
support of itemset A is as follows:

Support (A) =
count (A)

|D|
(1)

The mathematical expression of support for rule R is as
follows:

Support (A => B) =
count (A ∪ B)

|D|
(2)

Count (A∪B) indicates the number of samples in sample
set T that contains A and B.

The mathematical expression of the confidence of rule R
is as follows:

Confidence (A => B) =
count(A ∪ B)
count(A)

(3)

If one obtained AR is engaged with both the minimum
support and the minimum confidence threshold, then it is
called a strong AR. Furthermore, the AR mining is a process
of finding frequent itemset from data sets and finally generat-
ing rules through filtering according to the needs of minimum
support and minimum confidence.

B. APRIORI ALGORITHM
As one of the classical algorithms of association rule mining,
Apriori algorithm extracts sub item sets that can represent the
rules of data sets through iterating layer by layer. The basic
implementation of the method is to discover the frequent
itemset according to the combination of all different items
and then gives out the ARs. The algorithm will end once the
frequent itemset become empty. the corresponding flow chart
is shown in Figure 1.

In detail, the general processes of Apriori algorithm are as
follows:

Step 1: A minimum support G (0 < G < 1) is determined
according to the total amount of data.

Step 2: In first iteration, all elements of the sample set
T are called transactions, each of them are composed of
many characteristics. These characteristics are members
of candidate 1-term set C1. In this step, the algorithm
scans all transactions, counts the number of occurrences of
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FIGURE 1. Flow chart of Apriori algorithm.

each characteristics, and then calculates the support
according to Eq (1).

Step 3: If the support of a characteristic is less than the
minimum support, it is abandoned; if the support of a charac-
teristic is not less than the minimum support, it is retained.
Furthermore, all characteristics not less than the minimum
support G constitute frequent 1-itemset L1.

Step 4: The candidate 2-term called set C2 is generated
by L1. C2 is composed of two pairs of each element in
L1. Similarly, scan the transactions, calculate the support
of elements in C2 according to Eq (2), and then retain the
combinations that are not less than the minimum support G,
which constitute frequent 2-itemset called set L2.

Step 5: When C3 is generated by L2, Apriori pruning is
used: all subsets of frequent itemset must be frequent. Then
take the same method as the above steps, scan the transac-
tions, calculate the support of each element in C3 according
to Eq (2), reserve combinations that are not less than the

TABLE 1. Set of features included in device properties.

TABLE 2. Set of features included in defect level.

minimum support G, which constitute frequent 3-item set
called L3.

Step 6: Follow steps (1) - (5) to search and iterate layer by
layer until the frequent k-itemset cannot be found.

Step 7: A minimum confidence U (0 < U < 1) is
determined according to the total amount of data.

Step 8: According to Eq (3), the confidence of the
items included in each frequent itemset (L1, L2. . .Lk) are
calculated

Step 9: Compare the confidence of the above itemswith the
minimum confidence U. The items whose confidence are not
less than the minimum confidence threshold are called ARs.

III. DEFECT DATA OF RPD AND FEATURE SELECTION
In this section, the structure of the defects data is analyzed,
and furthermore, appropriate features are selected to partici-
pate in the generation of ARs, according to the characteristics
of the data.

A. DEFECT DATA INTRODUCTION AND PROCESSING
The defect data of RPDs used in this paper is range from
2012 to 2018 years in SGCC. There are 18439 records of
defect data. Every data contains 21 features, according to the
different description property, the feature sets can be divided
into three category features: equipment attribute; defect level;
defect description. The specific features of each category are
shown in tables 1, 2 and 3.

For the collected defect information of RPD, considering
the quality problems such as the lack of data items and
irregular description, it is necessary to clean the data.
After data processing, there are 19 categories of defec-
tive equipment, including ‘‘RPD itself’’, ‘‘channel interface
equipment’’, ‘‘communication transmission equipment’’, etc;
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TABLE 3. Set of features included in defect description.

the causes of defects are classified into 8 categories, including
‘‘poor manufacturing quality’’, ‘‘poor debugging quality’’,
‘‘poor operation and maintenance’’, ‘‘internal component
damage’’; the specific causes of defects are summarized as
‘‘plug-in damage’’, ‘‘device crash’’, ‘‘Damage of compo-
nents and parts’’, ‘‘principle defects’’, etc.; The defective
parts include 71 parts such as ‘‘CPU plug-in’’, ‘‘interface
plug-in’’, ‘‘acquisition plug-in’’ and ‘‘MMI plug-in’’, etc; the
degree of defects includes three categories, namely ‘‘gen-
eral’’, ‘‘serious’’ and ‘‘critical’’.

B. DEFECT FEATURE SELECTION OF RPD
The purpose of this paper is to mine the value information
hidden in the defect data of RPD, such as the correlation
between the categories, the vulnerable parts and the causes.
Therefore, in order to avoid the noise interference caused by
irrelevant feature attributes, six features, which can describe
the main characteristics of defects, including manufacturer,
defect equipment category, defect reason, specific defect rea-
son, defect position and defect degree, are selected from the
attribute set as the data mining object. The selected features
are expressed in the following composite forms:

Q = (F,N (a, b, c, d, e)) (4)

In formula (4), F represents the dimension feature attribute,
which is used to determine the dimension range of data min-
ing, including the main manufacturers and the overall data; N
represents the collection of mining feature attributes, which
is used to participate in the generation of rules, including
5 specific features, where a represents the defect equipment
category, b represents the defect reason, c represents the
specific defect reason, d represents the defect part and e
represents the degree of defect. Q is an abstract tuple structure
composed of F and N, which is used to summarize the method
for defect data mining.

It can be seen from N that every defect sample is a point
in the 5-Dimensional space constructed by these 5 types of
defect feature attributes. On the basis of the initial candidate
set, based on the Apriori algorithm, the frequent item set is
filtered through the threshold value, and finally the strong
ARs are generated.

Based on the above methods and considering the
dimensional characteristics, the common association charac-
teristics of defects can be obtained from the perspective of

TABLE 4. Strong association rules in PRD itself.

the overall data, the differences of ARs of different manufac-
turers can be analyzed and compared to explore the charac-
teristics of family defects of RPDs from the perspective of
manufacturer data.

IV. CASE STUDIES
In this section, the defect data of RPDs from 2012 to
2018 year in SGCC is used in the case studies. Furthermore,
due to large amount of data and low occupancy rate of differ-
ent type of defect samples, the minimum support threshold
and the minimum confidence threshold is set to 2% and 5%,
respectively. Then, the Apriori algorithm is carried out to
obtain the frequent item and ARs.

A. ANALYSIS OF OVERALL RESULTS
With the defect data from 2012 to 2018 as a whole, the strong
ARs of defect equipment categories, defect parts and defect
causes can be obtained. Among them, the defect equipment
categories mainly involve the RPD itself, communication
transmission equipment, channel interface equipment, merg-
ing unit and intelligent terminal. The specific rules are shown
in Table 4∼8, respectively:

(1) According to the ARs 1-7 in Table 4, the defects of
RPD itself mainly focus on the power plug-in, CPU plug-
in, input plug-in, MMI plug-in and channel interface plug-in,
with confidence of 17.6%, 29.3%, 16.3%, 6.4%, 10.0% and
6.1% respectively, thus they are the vulnerable parts of RPD
itself. Furthermore, the confidence of power plug-ins and
CPU plug-ins (17.6%, 29.3%) is far greater than the others, so
they are the weakest parts. Thus, in maintenances, attentions
should be paid to the vulnerable parts, especially the power
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TABLE 5. Strong association rules of communication transmission
equipment.

TABLE 6. Strong association rules for channel interface devices.

plug-ins andCPUplug-ins. Furthermore, the rule 3 shows that
when there are defects in RPD itself, most of the defect parts
cannot be accurately located. Therefore, the data collection
should be more specified, for the operation and maintenance
personnel.

(2) According to rule 8-13 in Table 4, the main reason for
the weakness parts of RPD itself is the poor manufacturing
quality. Therefore, in order to improve the reliability of the
RPDs, it is necessary to improve the design, use high quality
parts, and strengthen the relative maintenance.

(3) The rule 14 in Table 4 shows that the confidence of
defects of RPD itself caused by the poor manufacturing qual-
ity is 68.3%. The confidence of defects of RPD itself caused
by the non-human factor is 10.0% according to rule 15. Thus,
different measures should be taken. Devices with defects due
to poor manufacturing quality should strengthen the man-
agement and control of the manufacturer. The non-human
reason is related to the overdue service of RPDs, thus, special
operation andmaintenance strategies should be carried out for
the RPDswith long service time. In detail, the overdue service
functional plug-ins should be maintenance and replaced in
time.

(4) Rule 19 in Table 5 shows that the defects of the
communication transmission equipment mainly lies on opti-
cal cable, with the confidence 71.6%, so it is the vulnerable
part. At the same time, rules 20 and 21 in Table 5 show that
the defects related to optical cable are generally classified
as serious or critical defects. Therefore, the manufacturing
quality, maintenance and timely replacement of optical cables
should be improved pertinently.

(5) Similarly, rules 22 and 23 in Table 6 show that interface
plug-ins and linkers are vulnerable parts of channel interface
equipment. Furthermore, according to rule 24, 25 and 26,

TABLE 7. Strong association rules of merging unit and intelligent
terminal.

TABLE 8. Other strong association rules.

the defects of interface plug-ins are mainly caused by poor
manufacturing, and the defects of linkers are mainly caused
by poor operation and maintenance or poor manufacturing.
The quality of interface plug-ins and linkers in the channel
interface equipment should be improved pertinently, and the
level of operation, maintenance and timely replacement of
linkers should be improved at the same time.

(6) The rules 30, 31 and 32 in Table 7 show that the
defects of the merging unit and the intelligent terminal are
mainly caused by the poor manufacturing quality. Therefore,
the quality of merging unit (MU) should be improved.

(7) The rule 33 in Table 8 shows that defects caused by poor
operation and maintenance are generally defined as critical
defects with a confidence of 39.8%. Therefore, the trained
level of operation and maintenance personnel needs to be
strengthened through training.

(8) According to rules 34, 35, 36 and 37, poor
manufacturing quality is embodied in four aspects,
i.e., plug-in damage, principle defect, internal communica-
tion interruption and device crash, thus, they should be paid
more attention in operation.

B. ANALYSIS OF DIFFERENT MANUFACTURERS
By applying the proposed method to the data related to three
different manufacturers, the corresponding comparison result
can be obtained, as shown in Table 9.

Table 9 shows that the ARs of different manufacturers
share the common characteristics. (1)The confidence of CPU
plug-ins from three manufacturers is 40.5%, 25.0% and
34.1% respectively; the confidence of power plug-ins is
13.4%, 14.1% and 20% respectively, which are far greater
than the preset confidence threshold, therefore CPU plug-ins
and power plug-ins are the common defect prone parts of the
three manufacturers’ RPD itself. And the design and quality
of CPU plug-in and power plug-ins should be improved. (2)
Manufacturers A, B and C have 63%, 66.9% and 79.9%
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TABLE 9. Comparison table of three manufacturers’ partial association
rules.

confidence in defect about optical cables respectively. Thus,
the quality of optical cables also should be improved.

Furthermore, in case of defects in RPD itself, the
manufacturer A and C engage with high confidence related
to CPU plug-ins, while the manufacturer C engages with high
confidence relative to the power plug-ins and communication
systems.

In case of defects in communication transmission
equipment, with respect to optical cable, the manufacturer
C engages with the highest confidence.

In case of defects in the channel interface equipment, with
respect to the linker, the manufacturer C engages with the
highest confidence, while the manufacturer A and B are small
than the preset minimum confidence threshold.

Therefore, from the viewpoint of manufacturers, the confi-
dence of CPU plug-in defects of manufacturer A is higher
than the average level of the three and special attentions
should be paid. For manufacturer C, the confidence of power
plug-ins, communication systems, optical cables and connec-
tors is higher than that of other manufacturers, and the above
family characteristics of defects need special attention.

V. CONCLUSIONS AND REMARKS
In this paper, based on the analysis of the characteristics of
RPD defect data, a method using Apriori algorithm to analyze
the dependence between data is established, which includes
the selection of dimension features and attribute features.
By analyzing the results of defect data mining, the following
conclusions are obtained:

(1) When the mining dimension is focused on the whole
data, this method can effectively explore the common char-
acteristics of defects, including the potential dependence
among different categories of PRDs, such as defect parts and
defect causes which can be used to guide the operation and
maintenance management of RPD.

(2)When themining dimension is concentrated in different
manufacturers, this method can effectively mine the fam-
ily defect features of different manufacturers’ devices.

According to these features, the manufacturing quality of
devices can be improved in the early stage of production.

It is worth noting that this paper only retains rules larger
than the preset support and confidence threshold, and more
general screening rules need further study.
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