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ABSTRACT Physical layer security (PLS) provides an additional protection layer to the conventional
encryption in the presence of an active eavesdropper (Eve). The detection of pilot contamination attack (PCA)
on legitimate nodes by the active Eve is vital in order to mitigate the effect of the attack. In this work,
we propose a novel PCA detector for the nodes, which intend to establish secure communication in time
division duplex (TDD) mode over a frequency selective channel. We devise binary hypothesis from the
decision directed channel estimate for PCA detection by exploiting observations of pilot sequence and
random data in pilot and data phases, respectively. We also provide performance analysis of the proposed
method. The comparison of simulation results and analysis demonstrates the accuracy of the analysis.
The proposed detector has low probability of detection error as compared to the existing high complexity
sub-space based PCA detector.

INDEX TERMS Active eavesdropping, physical layer security, pilot contamination attack, PCA detection.

I. INTRODUCTION
Wireless communication networks are widely used in mili-
tary and civilian applications and have become an integral
part of our lives. The security of future wireless communi-
cation systems is a key concern due to the broadcast nature
of wireless channel [1]–[3]. Traditionally, the security of a
communication system is achieved by conventional encryp-
tion methods at application layer, which have well-known
weaknesses [4], [5]. For instance, ciphers, which were con-
sidered unbreakable in the past are now vulnerable due to
exponential growth of the computational power [4], [6].
In recent years, physical layer (PHY) security has emerged
as an effective approach to provide additional security at
the top of conventional encryption [4], [6], [7]. Physical
layer security approaches exploit characteristics of wireless
channel to prevent eavesdropping [8]. Seminal work in [9]
introduces secrecy capacity for wiretap channel at PHY. Fol-
lowing the work in [9], extensive research has been conducted
to ensure secure transmission using physical layer security,
such as cooperative relaying [10]–[12], interference manage-
ment [13]–[15] and artificial jamming [16]. The precoder
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design and impact of PCA on secrecy capacity of massive
multiple input multiple output (MaMIMO) is investigated
in [17]–[21]. Encryption using secret key generated from
the randomness of reciprocal wireless channel is investigated
in [22]–[28] and references therein to secure communication
from passive Eve. Similarly, secret key generation at PHY in
the presence of an active Eve is investigated in [29].

The PCA poses severe security threat to the legitimate
nodes due to the fact that the transmission protocol, the pilot
sequences and the frame structure of communication stan-
dards are known to the legitimate nodes and eavesdroppers.
An active eavesdropper can impair the channel estimation
process by sending the training sequence of the legitimate
user under attack in the pilot phase [30], [31]. Thus, under
PCA, the legitimate node acquires sum of the channels of
the legitimate user and active Eve. The legitimate user can’t
separate the multi-path component of legitimate node from
the sum of the two channels. Consequently, a precoder design
steers partial beam towards active Eve [32]. Furthermore, as a
result of PCA, the correlation between the channel estimates
at legitimate nodes significantly decreases, which causes
higher key disagreement between legitimate nodes [33], [34].
The PCA detection is vital to take proper measures to secure
physical layer communication from eavesdropping.
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Work in [35] employs the signal power distribution for
PCA detection without theoretical derivation of the decision
threshold. In [35], the authors also propose PCA detection
with the cooperation between the legitimate users under the
assumption that Eve contaminates both the downlink and
uplink transmissions. The signal power based PCA detection
is thoroughly investigated in [36]. In [36], the authors pro-
posed an energy ratio based PCA detector, which exploits
the fact that an active eavesdropper introduces added power
in the uplink phase. Consequently, the legitimate node loses
significant portion of received power in the downlink phase
due to precoder design from contaminated channel state infor-
mation. However, the training symbols required in both the
downlink and uplink transmission makes it more complex
in practical situations. Another approach in [37] detects the
presence of an active eavesdropper by exploiting the received
power at the legitimate node under the assumption of the
closed-loop power control. The method in [38] uses likeli-
hood ratio test by exploiting the prior knowledge of both
the channel and noise covariance. Another group of PCA
detectors introduce additional randomness in the pilot phase.
The additional randomness can neither be replicated nor pre-
dicted by an active eavesdropper [37], [39]–[41]. However,
introduction of additional randomness degrades the channel
estimation of other users in the wireless network due to loss of
orthogonality of pilots. In [41], the authors introduced a PCA
detector by using the modified PSK symbols in the training
phase for channel estimation. The presence of an active eaves-
dropper can be detected by examining the phase difference
between the selected PSK signals. However, the detection
regions and performance of the proposed method is not opti-
mal as discussed in [41]. A subspace-based method proposed
in [37] improves the performance of random PSK symbols
method. Themotivation behind the subspace-basedmethod is
to exploit the ratio between the largest and the second largest
eigen values of received covariance matrix in the pilot phase.
The ratio is compared to a predefined threshold to detect the
presence of PCA. However, work in [37] lacks the criterion
to compute threshold of the detector.

Works in [40], [42]–[44] use minimum description
length (MDL) method for source enumeration in pilot
phase observations. The sub-space method in [40], [42]–[44]
involves estimation of second-order statistics and computing
the eigen values, which is computationally extensive. Further-
more, the transmission of random data in pilot phase impairs
the channel estimate at the legitimate nodes due to inter-
ference from random data. The performance of sub-space
approaches is poor in low signal-to-noise ratio (SNR)
regimes [45].

Motivation of our work stems from the fact that existing
PCA detection methods transmit additional waveform in the
pilot phase for PCA detection [39], [41], [46]. Furthermore,
modified pilot waveform impairs channel estimation and
PCA detectors have high complexity [39]–[41]. We propose
two low complexity novel PCA detectors to combat Eve
without modifying pilot signal.We assume that Eve is passive

in data phase, which is inline with assumption in [47]. In the
first method, we formulate pilot assisted binary hypothe-
sis (PABH) from the observations in pilot phase to detect the
presence of the active Eve. The pilot phase is followed by
the payload, which is random symbol sequence. The second
method builds upon PABH, which exploits random data to
formulate decision directed binary hypothesis (DDBH) for
PCA detection. The proposed PABH provides coarse PCA
detection, whereas DDBH achieves enhanced performance
by combining observations of pilot and data phases. The
proposed detectors have low complexity and do not impose
any constraint on the training length contrary to sub-space
based methods such as MDL [40], [42], [43].

In DDBH, we estimate channel of the legitimate node by
using estimated data symbols as a reference signal. Then,
we remove the signal of the legitimate user from the observa-
tion in the pilot phase. We use residual signal to estimate the
channel of active Eve. Finally, we formulate binary hypothe-
ses from the channel estimate of the active Eve for PCA
detection.

The major contributions of this manuscript are:

• We present two novel low-complexity PCA detec-
tors using the contaminated pilot observations and
decision-directed channel estimate by exploiting ran-
dom payload data. The proposed detectors are simple
and do not require additional feedback as compared to
the existing works in [41] and [36], respectively.

• We present analysis of impact of bit error rate on the
decision directed channel estimation using normalized
mean square error (NMSE) as a performance metric.

• We provide performance analysis of the probability
of error PE and complexity of the proposed PCA
detectors. The comparison of analytical and simula-
tion results verifies the accuracy of the analysis. The
simulation results demonstrate that the proposed meth-
ods achieve low probability of detection error and
low NMSE of the channel estimation of legitimate
user.

• We also compare performance of the proposed method
with self-contamination based MDL method [43].

The rest of the manuscript is organized as follows.
In Section II, we introduce the system model for PCA.
Section III formulates our problem to illustrate the issue of
PCA. In Section IV, we present performance analysis of
the proposed PABH and DDBH detectors and discuss the
complexity of the proposed methods in Section V. Next,
we present simulations in Section VI in order to provide the
efficiency of our proposed PCA detectors before concluding
in Section VII.
Notations: Boldface upper-case and lower-case letters

denote matrices and vectors, respectively. For any matrix A,
we use AH , AT and A† to denote its Hermitian, transpose
and Penrose-Moore pseudo-inverse, respectively. IN denotes
N × N identity matrix while E{A} stands for the expectation
operator of A. Tr(A) represents the trace of matrix A.
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FIGURE 1. System model of pilot contamination attack for frequency
selective channels.

II. SYSTEM MODEL
In this work, we consider a typical three node communication
system over a frequency selective channel under OFDM sig-
naling as shown in Fig. 1. The legitimate nodes Alice and
Bob establish secure communication and an active eaves-
dropper (Eve) intends to decode private messages of Alice
and Bob. Each node in the communication link is equipped
with single antenna. Both legitimate nodes communicate in
TDD manner by exploiting the property of channel reci-
procity. The L-path wireless channel from Bob to Alice hu =√
βu h̃u ∈ CL×1 and Eve to Alice he =

√
βe h̃e ∈ CL×1 are

uncorrelated if they are separated by more than half a carrier
wavelength λ

2 [48], where βu and βe represent the large scale
fading coefficients for shadowing and path loss [49]. The
elements of small-scale fading coefficients vectors h̃e and h̃u
are independent and identically distributed (i.i.d) with zero
mean and variance 1

L .
An OFDM waveform with Ns subcarriers converts single

frequency selective channel into Ns parallel sub-channels
[50], [51]. The legitimate node (Bob) transmits pilot sequence
to Alice for channel estimation in pilot phase. Alice exploits
channel reciprocity and designs precoder using channel esti-
mate to focus data transmission towards Bob. The pilot
sequence sent by Bob to Alice is publicly known and an
active Eve contaminates pilot phase observations of Alice by
transmitting the pilot sequence of Bob to Alice in order to
impair channel estimation and alter precoder design. As a
direct consequence of PCA, Alice estimates the sumHu+He,
where Hu = Fhu, He = Fhe, and F ∈ CNs×Ns is Fast Fourier
Transform (FFT) matrix. The precoder design from the esti-
mate of the sum Hu +He alters the beam in data phase from
Alice to Bob. Thus, private information leaks towards Eve.
The PCA detection, which is helpful to mitigate the impact
of PCA, is imperative to achieve secure communication.
In the next section, we present the proposed PCA detection
method.

III. PROBLEM FORMULATION
In this section, we present low-complexity PABH and DDBH
PCA detectors for the detection of attack by an active Eve.
In the pilot phase, Bob transmits training sequence to Alice
and Alice acquires CSI to design precoder to transmit secure
data from Alice to Bob. The matrix model of the received

signal Yp in frequency domain is

Yp =
√
Pn HuxTp + Ie

√
Pe HexTp +Wp, (1)

where xp ∈ Cτ×1 is the training sequence, Ie ∈ {0, 1} is
an indicator function, Wp ∈ CNs×τ is the AWGN matrix
with elements having zero mean and variance σ 2. Note that
Pn and Pe are the powers of Bob and Eve, respectively. The
energy of the pilot sequence ‖xp‖2 = τ is the `2-norm of
the pilot sequence xp of length τ . The binary hypotheses H0
(Eve is not active) and H1 (Eve is active) using pilot phase
least square (LS) channel estimate Ĥp

u from Bob to Alice is

H0 : Ĥp
u = Yp

x∗p
‖xp‖2

=

√
Pn HuxTp

x∗p
‖xp‖2

+
Wpx∗p
‖xp‖2

=

√
Pn Hu +

Wpx∗p
τ

.

H1 : Ĥp
u = Yp

x∗p
‖xp‖2

=

√
Pn HuxTp

x∗p
‖xp‖2

+

√
Pe He

xTp x
∗
p

‖xp‖2
+

Wpx∗p
‖xp‖2

=

√
Pn Hu +

√
Pe He +

Wpx∗p
τ

. (2)

Notice that the channel estimate under H0 consists of modi-
fied noise and legitimate channel. Whereas, underH1, obser-
vation consists of one more term, which is Eve’s channel.
In addition, the major interference signal under H1 is the
contaminated pilot signal from Eve instead of the error in
channel estimation due to noise.

OFDM transforms L-path frequency selective channel
into Ns flat-fading channels. Thus, in frequency domain,
each path-gain has zero mean and variance σ 2

H =
βu
Ns
.

Therefore, distributions of Ĥp
u under hypothesis H0 and H1

are Ĥp
u|H0 ∼ CN

(
0, (PnβuNs

+
σ 2

Nsτ
)INs

)
and Ĥp

u|H1 ∼

CN
(
0, (PnβuNs

+
Peβe
Ns
+

σ 2

Nsτ
)INs

)
, respectively. Furthermore,

time domain channel estimate can be obtained by apply-
ing inverse FFT (IFFT) operation FH on the frequency
domain channel estimate Ĥp

u as ĥpu = FH Ĥp
u. The time

domain channel hpu has L flat-fading paths, where gains
are i.i.d. with Gaussian distribution of zero mean and vari-
ance σ 2

h =
βu
L . Thus, distributions of ĥpu under hypoth-

esis H0 and H1 are ĥpu|H0 ∼ CN
(
0, (PnβuL +

σ 2

Lτ )IL
)

and ĥpu|H1 ∼ CN
(
0, (PnβuL +

Peβe
L +

σ 2

Lτ )IL
)
, respectively.

In PABH detector, we formulate binary hypothesis using
channel estimate ĥpu from Bob to Alice. Next, we present
binary hypotheses for data-aided PCA detection. In data-
aided PCA detection phase, we use pilot assisted channel
estimate to decode data.

The pilot phase is followed by payload data in data phase
from Bob to Alice and Eve remains silent in the payload
data phase. The assumption that Eve remains silent in the
payload data phase is inline with [47]. The motivation behind
PCA stems from the fact that an active Eve contaminates
the channel estimate of legitimate node to steer valuable
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information towards the eavesdropper. The best strategy for
Eve is to remain silent during the data phase as transmission
of random jamming symbols in data phase also increases
self-interference at the eavesdropper. The self-interference
degrades the signal to interference plus noise ratio (SINR)
resulting in lower information rate of Eve. In addition,
the probability of Eve detection significantly increases when
Eve remains active in the data phase [52]. Since channels
from Bob to Alice and Eve to Alice are independent, con-
taminated channel estimate Ĥp

u in pilot phase can decode
payload data. We use decoded data as reference to further
improve pilot phase channel estimate Ĥp

u from Bob to Alice.
The matrix model of the received signal Yd of Alice in data
phase is

Yd =
√
Pn HuxTd +Wd , (3)

where xd ∈ Cγ×1 is the random data sequence and Wd ∈

CNs×γ is AWGN matrix with mean zero and covariance
matrix σ 2I. The coherent estimate of data vector xd using
pilot phase channel estimate is

x̂Td =
(
Ĥp
u
)† Yd = α

(√
Pn Hu +

√
Pe He +

Wpx∗p
τ

)H
(√

Pn HuxTd +Wd

)
= αPn‖Hu‖

2xTd + w̃d , (4)

where

w̃d = α
√
PnPeHH

e HuxTd +
α
√
Pn
τ

xTpW
H
p HuxTd

+α
√
PnHH

u Wd + α
√
PeHH

e Wd +
α

τ
xTpW

H
p Wd (5)

and α = ‖
√
Pn Hu +

√
Pe He +

Wpx∗p
τ
‖
−2. Due to central

limit theorem, w̃d ∈ Cγ×1 is AWGN matrix with mean
zero and covariance matrix σ̃ 2

d Iγ . The estimate x̂d of data
symbols is reliable due to poor correlation between Hu and
He (ε = HH

u He). We use hard decision x̃d = dec(̂xd ) as
reference to estimate Hu in data phase. In moderate and high
SNR regimes, x̃d = xd . Thus, decision directed LS estimate
of Hu is

Ĥd
u =

Yd x̃d
γ
=
√
Pn Hu +

Wd x̃d
γ

. (6)

The estimate of the signal from Bob to Alice in pilot phase
observation in (1) is

Ŷpu = Ĥd
u xTp =

(√
Pn Hu +

Wd x̃d
γ

)
xTp . (7)

We can estimate the contribution of Eve to the observation of
Alice in pilot phase by subtracting the estimate of Bob Ŷpu
from (1) as follows:

Ŷpe =
√
Pe IeHexTp +Wp +

Wd x̃dxTp
γ

. (8)

We assume that in moderate and high SNR regime, x̃d = xd .
Then, the binary hypothesis from the LS estimate of the Eve’s
channel using residue signal Ŷpe is

H0 : Ĥd
e = Ŷpe

xp
‖xp‖2

=
Wpxp
τ
+

Wdxd
γ

,

H1 : Ĥd
e = Ŷpe

xp
‖xp‖2

=

√
Pe He +

Wpxp
τ
+

Wdxd
γ

. (9)

The distribution of Ĥd
e under hypothesis H0 is Ĥd

e |H0 ∼

CN
(
0, ( σ

2

Nsτ
+

σ 2

Nsγ
)INs

)
. Similarly, the distribution of Eve’s

channel estimate Ĥd
e under hypothesis H1 is Ĥd

e |H1 ∼

CN
(
0, (PeβeNs

+
σ 2

Nsτ
+

σ 2

Nsγ
)INs

)
. Note that under H0,

the estimate of Eve’s channel consists of noise terms (Eve’s
channel estimation error), which is function of noise variance,
training length τ in pilot phase and payload data length γ in
data phase used for channel estimation of LU. Note that under
H1 in (9), the Eve’s channel estimate has significant term,
which corresponds to Eve’s channel He. The distributions
of time domain channel estimate ĥde under hypothesis H0

and H1 for DDBH are ĥde |H0 ∼ CN
(
0, ( σ

2

Lτ +
σ 2

Lγ )IL
)
and

ĥde |H1 ∼ CN
(
0, (PeβeL +

σ 2

Lτ +
σ 2

Lγ )IL
)
, respectively.

A. IMPACT OF CHANNEL LENGTH
Now, we evaluate the variance σ̃ 2

d of the elements of effec-
tive noise w̃d , which affects data decoding (bit errors) and
channel estimation error. The elements of channel vectors
Hu and He are independent and identically distributed with
mean zero and variance 1

L . The correlation term HH
e Hu =

L∑
i

H∗e (i)Hu(i) in w̃d is a random variable, which is the sum

of L random variables. Note that H∗e (i)Hu(i) has zero mean
and variance 1

L2
. Due to central limit theorem, the distribution

of correlation HH
e Hu converges to normal distribution with

mean zero and variance 1
L . For two point constellation, only

real part of correlation affects the bit errors. Thus, variance of
real component is R{HH

e Hu} =
1
2L . The elements of Wp are

also i.i.d. with zero mean and variance σ
2

L . The product vector
WH

p Hu ∈ Cτ×1 is vector of i.i.d. random variable of mean

zero and variance σ
2

L each. Thus, random variable 1
τ
xTpW

H
p Hu

has mean zero and variance σ 2

τL . The variance of real com-

ponent R{ 1
τ
xTpW

H
p Hu} is σ 2

2τL . Due to central limit theorem,
distribution of HH

u Wd and HH
e Wd also converges to normal

distribution with mean zero and variance σ 2

2L . Furthermore,
each element of vector of random variables 1

τ
.xTpW

H
p Wd has

normal distribution with zero mean and variance σ 4

2τL . Using
variance of each term of w̃d , the variance of each element of
vector of random variables w̃d is

σ̃ 2
d =

1
2L
+
σ 2

2L
+

σ 2

2τL
+
σ 2

2L
+

σ 4

2τL

=
1
2L

(
1+ 2σ 2

+
σ 2

τ
+
σ 4

τ

)
. (10)

The variance σ̃ 2
d of the elements of effective noise vector w̃d

is inversely proportional to the channel taps L. In high SNR

regime, lim
σ 2→0

σ̃ 2
d →

1
2L

causes BER and NMSE floor. For

large L, either due tomuli-path components or large antennas,
‖Hu‖ → 1 and HH

e Hu→ 0.
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The following proposition describes the impact of the bit
errors on the normalized mean square error (NMSE) of the
user channel estimate.
Proposition 1: The NMSE of the decision directed least

square channel estimate under probability of bit error p is

NMSEγ =
∑γ

k=0

(
4k2

γ 2
+

σ 2

γ

)(
γ
k

)
pk (1− p)γ−k , (11)

where γ is block size of the decoded bits x̃d = dec(̂xd ) used
as reference for decision directed channel estimation.

Proof: The performance of decision-directed channel
estimation depends on the number of errors in the decoded
data x̃d used as a reference to estimate user channel Hu.
We assume that each bit in the decoded data is independent
from the other bits in the decoded block. In moderate SNR
regime, probability of error is low and probability that all bits
in the frame are erroneous is almost zero for large block size
γ . Let p be probability of bit error. Thus, the probability of k
errors pr (k) in γ independent bits using Bernoulli distribution
is

pr (k) =
(
γ

k

)
pk (1− p)γ−k , k = 0, 1, · · · γ, (12)

where
(
γ
k

)
=

γ !
k!(γ−k)! . The decision-directed LS channel

estimate of legitimate user under bit error is

Ĥd
u =

Yd x̃d
γ
=

√
Pn HuxTd x̃d

γ
+

Wd x̃d
γ

, (13)

where xd is the transmitted data vector and x̃d is the decoded
data vector. The length of decoded vector x̃d used as reference
for training is γ . The channel estimation error for error free
decoding (k = 0) is

1H(0) = Hd
u − Ĥd

u = w̃. (14)

The NMSE of the channel estimation for k = 0 errors is
NMSE(0) = σ 2

γ
. For one error, xTd x̃d = γ − 2. The channel

estimation error in the presence of k = 1 error is

1H(1) = Hd
u −

(γ − 2)Hd
u

γ
− w̃ =

2Hd
u

γ
− w̃. (15)

The NMSE of the channel estimation for k = 1 error is
NMSE(1) = 4

γ 2
+

σ 2

γ
. The channel estimation error in the

presence of k = 2 error is

1H(2) = Hd
u −

(γ − 4)Hd
u

γ
− w̃ =

4Hd
u

γ
− w̃. (16)

In general, the channel estimate in the presence of k errors
can be expressed as

1H(k) = Hd
u −

(γ − 2k)Hd
u

γ
− w̃ =

2kHd
u

γ
− w̃. (17)

The NMSE of the channel estimation for k errors is

NMSE(k) =
4k2

γ 2 +
σ 2

γ
. (18)

Thus, the weighted NMSE from (12) and (18) is

NMSEγ =
γ∑
k=0

(
NMSE(k)

)
pr (k)

=

γ∑
k=0

(
4k2

γ 2 +
σ 2

γ

) (
γ

k

)
pk (1− p)γ−k . (19)

�
In Section VI, Fig. 5, we present comparison of analytical and
Monte Carlo NMSE. Next, we present our proposed PABH
and DDBH PCA detectors and provide performance analysis.

B. PCA DETECTION
Now, we present the proposed PABH and DDBH detectors.
We treat PCA detection as a binary hypothesis problem
using likelihood ratio test. The proposed PABH and DDBH
detectors use pilot assisted channel estimate Ĥp

u in (2) and
Eve’s channel estimate Ĥe by fusing pilot and data phase
observations in (2) and (9), respectively. The binary vector
hypotheses in (2) and (9) haveGaussian distribution with zero
mean and differ in variances. For simplicity and without loss
of generality, we consider σ 2

0 and σ 2
1 as the variances under

hypotheses H0 and H1, respectively. For PABH detector,

σ 2
0 =

Pnβu
L
+
σ 2

Lτ
and σ 2

1 =
Pnβu
L
+
Peβe
L
+
σ 2

Lτ
. (20)

Similarly, in the case of DDBH,

σ 2
0 =

σ 2

Lτ
+
σ 2

Lγ
and σ 2

1 =
Peβe
L
+
σ 2

Lτ
+
σ 2

Lγ
. (21)

We consider z = ĥpu and z = ĥde for PABH and DDBH,
respectively. The distributions of z under hypothesis H0 and
H1 are [53]

fz|H0 (z) =
1√

(2πσ 2
0 )
L
exp

(
−
‖z‖2

2σ 2
0

)
,

fz|H1 (z) =
1√

(2πσ 2
1 )
L
exp

(
−
‖z‖2

2σ 2
1

)
. (22)

The likelihood ratio test for binary detection is

1√
(2πσ 21 )

L
exp

(
−

E
2σ 21

)
1√

(2πσ 20 )
L
exp

(
−

E
2σ 20

) H1

R
H0

ν, (23)

where ν = p1
p0
= 1 is the ratio of a-priori probabilities p0 =

0.5 and p1 = 0.5 ofH0 andH1. Note that E = ‖z‖2 is the `2-
norm of the channel estimate fromBob toAlice for PABH and
channel estimate from Eve to Alice for DDBH.We write (23)
as

−
L
2
ln
(
σ 2
1

)
+
L
2
ln
(
σ 2
0

)
−

E

2σ 2
1

+
E

2σ 2
0

H1

R
H0

0. (24)
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After re-arranging (24), we have

E
H1

R
H0

η = L
(
σ 2
0 σ

2
1

σ 2
1 − σ

2
0

)
ln
(
σ 2
1

σ 2
0

)
. (25)

The proposed detectors compare the norm of the estimated
channel at the legitimate receiver with the threshold in (25) to
detect the presence of PCA. For PABH detector, σ 2

0 =
Pnβu
L +

σ 2

Lτ and σ
2
1 =

Pnβu
L +

Peβe
L +

σ 2

Lτ . Thus, PCAdetection threshold
for PABH detector is

ηp =
1

Peβe

(
Pnβu +

σ 2

τ

)(
Pnβu + Peβe +

σ 2

τ

)
×ln

(
Pnβu + Peβe + σ 2

τ

Pnβu + σ 2

τ

)
. (26)

Similarly, for DDBH σ 2
0 =

σ 2

Lτ+
σ 2

Lγ and σ 2
1 =

Peβe
L +

σ 2

Lτ+
σ 2

Lγ .
The PCA detection threshold for DDBH detector is

ηd =
1

Peβe

(
σ 2

τ
+
σ 2

γ

)(
Peβe +

σ 2

τ
+
σ 2

γ

)

×ln
(Peβe + σ 2

τ
+

σ 2

γ

σ 2

τ
+

σ 2

γ

)
. (27)

Note that in high SNR regime, for PABH, lim
σ 2→0

ηp =

Pnβu(Pnβu+Peβe)
Peβe

ln
(Pnβu+Peβe

Pnβu

)
= 1.386 for Pn = Pe = 1

and βu = βe = 1. Whereas, lim
σ 2→0

ηd = 0 for DDBH detec-

tor. The detection thresholds ηp and ηd are independent of
degrees of freedom L. Next, we provide performance analysis
of the proposed PCA detectors in terms of the probability of
error.

IV. PERFORMANCE ANALYSIS
Now, we present the performance analysis of proposed detec-
tors in terms of probability of error PE . The norm of the
estimated channel χ = ‖z‖2 is chi-square random variable
of degrees 2L. Let E0 = E|H0 and E1 = E|H1 be the
instantaneous norms of channel estimates under hypothe-
sis H0 and H1, respectively. An event of "miss detection"
occurs when PCA detector fails to detect the presence of pilot
contamination attack on Alice [54]. The probability of miss
detection PM for PABH is

PM = P
(
E1 = E|H1 < ηp =

1
Peβe

(
Pnβu+

σ 2

τ

)
×

(
Pnβu+Peβe+

σ 2

τ

)
ln
(
Pnβu+Peβe+ σ 2

τ

Pnβu+ σ 2

τ

))
. (28)

Similarly, an event of "false detection" occurs when PCA
detector detects Eve in the absence of PCA on Alice [54].
The probability of false alarm PF for PABH is

PF = P
(
E0 = E|H0 > ηp =

1
Peβe

(
Pnβu+

σ 2

τ

)
×

(
Pnβu+Peβe+

σ 2

τ

)
ln
(
Pnβu+Peβe+ σ 2

τ

Pnβu+ σ 2

τ

))
. (29)

The probability of miss detection PM for DDBH is

PM = P
(
E1 = E|H1 < ηd =

1
Peβe

(
σ 2

τ
+
σ 2

γ

)

×

(
Peβe +

σ 2

τ
+
σ 2

γ

)
ln
(Peβe + σ 2

τ
+

σ 2

γ

σ 2

τ
+

σ 2

γ

))
. (30)

The probability of false alarm PF for DDBH is

PF = P
(
E0 = E|H0 > ηd =

1
Peβe

(
σ 2

τ
+
σ 2

γ

)

×

(
Peβe +

σ 2

τ
+
σ 2

γ

)
ln
(Peβe + σ 2

τ
+

σ 2

γ

σ 2

τ
+

σ 2

γ

))
. (31)

Now, we derive the probability of miss PM and probabil-
ity of false alarm PF for PABH and DDBH as a function
of detection threshold η. The probability density functions
fχ |H0 (x) and fχ |H1 (x) under hypothesesH0 andH1 for PABH
and DDBH have Gaussian distribution. Note that η = ηp
in (26) and η = ηd in (27) are detection thresholds for
PABH and DDBH, respectively. Furthermore, σ 2

0 and σ 2
1 for

PABH and DDBH are given in (20) and (21), respectively.
The probability of miss PM is

PM =
∫ η

0
fχ |H1 (x)dx =

∫ η

0

2n x
n
2−1

σ n1 2
n
20( 12n)

exp

(
−
x

σ 2
1

)
dx

= 1− exp

(
−
η

σ 2
1

)
L−1∑
k=0

1
k!

(
η

σ 2
1

)k
. (32)

Similarly, the probability of false alarm as a function of
threshold η can be evaluated as:

PF =
∫
∞

η

fχ |H0 (x)dx =
∫
∞

η

2n x
n
2−1

σ n0 2
n
20( 12n)

exp

(
−
x

σ 2
0

)
dx

= 1−
∫ η

0

2n

σ n0 2
n
20( 12n)

x
n
2−1exp

(
−
x

σ 2
0

)
dx

= 1−

1− exp

(
−
η

σ 2
0

)
L−1∑
k=0

1
k!

(
η

σ 2
0

)k
= exp

(
−
η

σ 2
0

)
L−1∑
k=0

1
k!

(
η

σ 2
0

)k
. (33)

The general form of the detection threshold

η = L
(
σ 2
0 σ

2
1

σ 2
1 − σ

2
0

)
ln
(
σ 2
1

σ 2
0

)
(34)

minimizes the probability of PCA detection error

PE =
1
2
(PF + PM ) =

1
2
exp

(
−
η

σ 2
0

)
L−1∑
k=0

1
k!

(
η

σ 2
0

)k

+
1
2
−

1
2
exp

(
−
η

σ 2
1

)
L−1∑
k=0

1
k!

(
η

σ 2
1

)k
, (35)
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FIGURE 2. Comparison of expected channel norms Ea
0 under

hypothesis H0, expected channel norm Ea
1 under hypothesis H1 and

detection threshold ηp of PABH for τ = 24 and L = 8..

of the PCA under binary hypotheses H0 and H1. Next,
we provide the performance comparison in terms of channel
norms for proposed PABH and DDBH detectors.

A. CHANNEL NORM
The proposed PABH and DDBH detectors compare detec-
tion threshold with the norm-square of the estimated chan-
nels ĥpu and ĥde , respectively. The expectation of the channel
norm-square under the PABH hypotheses H0 and H1 are

Ea0 = E
[
zHz|H0

]
= E

[
Tr{zzH |H0}

]
= Pnβu +

σ 2

τ
and

Ea1 = E
[
zHz|H1

]
= E

[
Tr{zzH |H1}

]
=Pnβu+Peβe +

σ 2

τ
,

(36)

respectively.
Fig. 2 provides comparison of analytical and simulation

channel norm-square underH0 andH1 and detection thresh-
old ηp. In the simulation setup for Fig. 2, we consider Pn =
Pe = 1, βu = βe = 1, the number of training symbols τ = 24
and channel length L = 8. It is clear from Fig. 2 that the simu-
lation results agree with the analytical results. The asymptotic
(high SNRwhen σ 2

→ 0) values ofEa0 andE
a
1 are lim

σ 2→0
Ea0 =

1 and lim
σ 2→0

Ea1 = 2, respectively. Similarly, asymptotic value

of detection threshold lim
σ 2→0

ηp = 1.386. The expectation of

the channel norm-square under theDDBHhypothesesH0 and
H1 are Ea0 =

σ 2

τ
+
σ 2

γ
and Ea1 = Peβe+ σ 2

τ
+
σ 2

γ
, respectively.

Fig. 3 compares analytical and simulation norm-square under
H0 and H1 and detection threshold ηd for DDBH. In the
simulation setup for Fig. 3, we also consider Pn = Pe = 1,
βu = βe = 1, the number of training symbols τ = 24 and
channel length L = 8. Fig. 3 shows that the simulation results
agree with the analytical results. The asymptotic (high SNR
when σ 2

→ 0) values of Ea0 and Ea1 are lim
σ 2→0

Ea0 = 0 and

FIGURE 3. Comparison of expected channel norms Ea
0 under hypothesis

H0, expected channel norm Ea
1 under hypothesis H1 and detection

threshold ηd of DDBH for τ = 24, γ = 12 and L = 8 .

lim
σ 2→0

Ea1 = 1, respectively, for DDBH. Similarly, asymptotic

value of detection threshold lim
σ 2→0

ηd = 0.

V. COMPLEXITY
In this section, we discuss the computational complexity of
the proposed PCA detectors and comparison with the com-
putational complexity of the self-contamination based MDL
method in [43]. We express the computational complexity
in terms of the upper bound on floating point operations
(FLOPs). Note that each FLOP denotes one scalar com-
plex multiplication or addition. For the sake of simplicity,
we don’t distinguish between the complex and real-valued
multiplications.

First, we calculate the computational complexity of the
self-contamination (SC) basedMDLmethod. SC basedMDL
method uses signal and noise sub-spaces to detect the pres-
ence of PCA and requires only uplink training. The MDL
method constructs covariance matrix from the observation
and performs eigen value decomposition of the covariance
matrix, which requires O(N 2

s τ ) + O(N 3
s ) FLOPs. There are

Ns iterations in SC-based MDL method to detect PCA from
the eigen values of the covariance matrix. The complexity
of Ns iterations is NsO(log(Ns)) + NsO(Ns) FLOPs. Thus,
computation complexity of the SC based MDL PCA detector
is O(N 2

s τ )+O(N 3
s ).

Now, we calculate the computational complexity of pro-
posed PABH and DDBH methods. The proposed PABH
based PCA detector uses observation of the training symbols.
The proposed PABH method performs vector multiplication
in (2), therefore requiring O(Nsτ ) FLOPs. The proposed
DDBH method exploits additional payload data for PCA
detection. In DDBH method, we first estimate the payload
data x̂d in (4) which performs O(Nsγ ) multiplications. Next,
the DDBH estimates the channel of legitimate node using the
hard decision estimated data as reference in (6). The complex-
ity of decision directed channel estimate is O(Nsγ ). Next,
we estimate the signal of the legitimate user in (7), which
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FIGURE 4. Bit error rate (BER) of hard decision data estimate by varying
pilot length τ , data length γ and degrees of freedom L.

consumesO(Nsτ ) FLOPs. The channel estimate of Eve using
the residual signal in (9) consumes O(Nsτ ) FLOPs. Thus,
the computational complexity of the proposedDDBHmethod
is O(Nsτ ) + O(Nsγ ). The above complexity expressions
reveal that for a given τ and γ , the computational complexity
of MDL increases exponentially by a factor of N 3

s , whereas
the complexity of the proposed PABH and DDBH method
increase linearly with Ns.

VI. NUMERICAL RESULTS
In this section, we present the performance of proposed
PABH and DDBH detectors in comparison with MDL detec-
tor. We also provide comparison of analytical and simula-
tion results of the proposed methods. The impact of training
length and data length on the performance of the proposed
PCA detectors is also investigated. In our simulation setup,
the small scale fading channels from Bob to Alice and Eve
to Alice are modeled as Rayleigh fading and the elements of
channel vector are i.i.d. The samples drawn from Gaussian
random variable for channel realization have zero mean and
the variance 1

L . In addition, the large-scale fading coefficients
βu and βe are considered as 1, i.e. βu = βe = 1.
First, we present the performance of the coherent data

estimate using the contaminated pilot phase channel estimate
in (4) in terms of bit error rate (BER). Fig. 4 shows that the
hard decision data estimate using contaminated pilot based
channel estimation approaches the true payload data. That
is, dec(̂xd ) → xd as SNR approaches 0 dB under the large
number of channel paths. However, BER suffers from severe
error floor when the number of channel paths L are small.
The problem of error floor is caused by the correlation among
the legitimate and Eve channels Hu and He, respectively.
The performance of the hard decision data estimate directly
impacts the performance of the proposed channel estimation
method.

Fig. 5 presents the performance of proposed channel
estimation method at legitimate nodes in terms of NMSE.

FIGURE 5. NMSE versus SNR for proposed channel estimation method by
varying training length τ , data length γ and degrees of freedom L.

The simulation results in Fig. 5 demonstrate that pro-
posed data-aided channel estimation effectively estimates
the channel of legitimate node even in the presence of
PCA. Furthermore, we compare NMSE of Cramer-Rao lower
bound (CRLB) with the NMSE of the proposed channel
estimation method [55]. Note that NMSE for CRLB is σ 2

γ
.

Fig. 5 shows that NMSE of the proposed method approaches
CRLB in moderate to high SNR regime for large channel
paths. Moreover, performance of the proposed method can
be improved at low SNR regime by increasing the number
of payload data. Note that the NMSE suffers from error floor
when the number of channel paths L are small. The error floor
in terms of NMSE is the direct consequence of error floor
in hard decision data estimate due to correlation between
legitimate node’s channelHu and Eve’s channelHe as shown
in Fig. 4. For large channel length, L = 32 and 64, small
correlation between legitimate channel and Eve’s channel
results in subtle gap between CRLB and simulation results.
Next, we present probability of PCA detection error of the
proposed pilot assisted PCA detector (PABH detector) and
comparison with analytical results using τ = 24 training
symbols.

Fig. 6 presents performance of PABH detector for L =
8, 16 and 32 degrees of freedom. The probability of detec-
tion error of PABH method decreases by increasing SNR.
Note that probability of detection error of PABH method
suffers from error floor in high SNR regime. The asymp-
totic performance (SNR → ∞) improves by increasing
the degrees of freedom (channel path L). The comparison
of Monte Carlo results of probability of error with analysis
in (35) in Fig. 6 validates the accuracy of the analysis. In
Fig. 7, we evaluate performance of the proposed PABH PCA
detector as a function of training length τ ranging from 1 to
25 symbols and number of channel paths L = 8 and 16.
From Fig. 7, we observe that more training symbols improve
probability of error. However, transmission of very long train-
ing results into error floor due to the fact that large training
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FIGURE 6. Comparison of PABH analytical and Monte Carlo PE for pilot
length τ = 24.

FIGURE 7. Impact of Training Length τ on PABH probability of error PE .

length lowers variance of estimation error σ
2

τ
and variance of

PABH hypothesesH0 andH1 becomes independent of noise
variance σ 2.
In Fig. 8, we illustrate the receiver operating characteris-

tic (ROC) curve, which is a function of probability of false
alarm PF and probability of detection PD. In Fig. 8, we set
the training and contamination power of Bob and Eve to 1,
that is, Pn = Pe = 1. We present ROC curves by varying the
number of pilot bits τ = 4, 24 and 48 and channel lengths
L = 8 and 16. We observe from Fig. 8 that the proposed
method can detect PCA with good accuracy. In addition,
larger number of training bits can improve the performance
of the proposed method.

Fig. 9 presents the impact of threshold η on the perfor-
mance of the proposed PABH method in terms of probability
of error at SNR = −5dB. Fig. 9 shows that PE is a convex
function of threshold η. Note that the threshold from exhaus-
tive search, which minimizes probability of error agrees with
threshold η using (26). In addition, the probability of error

FIGURE 8. ROC of the proposed PABH for training length τ = 24 and 48
and L = 8 and 16.

FIGURE 9. Probability of Error of proposed PABH as a function of Eta η for
SNR = −5dB.

decreases by increasing channel length L for a given threshold
η. The detection threshold η changes by changing the number
of pilot symbols in the training phase. The performance of the
proposed method has error floor in high SNR regime.

The pilot phase is always followed by payload data.
We decode payload data using the contaminated channel
estimate due to the fact thatHu andHe are independent. Thus,
contribution ofHe in Ĥu in (2) has subtle impact on the decod-
ing of payload data. We use decoded data as reference to
estimate Hu and estimate Eve’s channel to formulate DDBH
for PCA detection. Now, we provide performance of DDBH
PCA detector in terms of probability of error, ROC curve and
comparison with MDL method. We also provide comparison
of simulation and analytical results.

We present the impact of the training and payload length on
PE of the proposed DDBH PCA detector in Fig. 10. In simu-
lation setup, we use Pn = Pe = 1 and L = 32. Fig. 10 shows
that probability of error improves by increasing pilot length
and payload data length. However, gain in the performance
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FIGURE 10. Impact of training length τ and data length γ on DDBH PE for
L = 32.

FIGURE 11. Comparison of analytical and Monte Carlo DDBH PE for
various training lengths τ , data length γ and channel length L.

does not increase linearly with training or payload size. For
example, for payload γ = 12, there is marginal performance
gain by increasing training length from τ = 24 to τ = 48.

Fig. 11 demonstrates accuracy of the analysis of the pro-
posed DDBH PCA detector. The comparison of the exact
analysis in (35) withMonte Carlo results verifies the accuracy
of the analysis.

ROC curve is a commonly metric used to evaluate the
performance of a detection method. We compare ROC curve
of the proposed PABH and DDBH PCA detectors in Fig. 12.
In simulation setup, Bob and Eve transmit unit power in
training and data modes (Pn = Pe = 1), τ = 48 and
γ = 24. From Fig. 12, we observe that the proposed DDBH
PCA detector can accurately detect PCA in low SNR regime.
Furthermore, fewer payload symbols significantly improve
the performance of PCA detector.

Fig. 13 presents the impact of threshold η on the perfor-
mance of the proposed DDBHmethod in terms of probability
of error at SNR = −8dB. Fig. 13 depicts that PE is a convex

FIGURE 12. ROC comparison of PABH and DDBH for training length
τ = 48 and data length γ = 24 at SNR= −4, and 8 and L = 8 and 16 at
SNR = −8dB.

FIGURE 13. Probability of error of proposed DDBH as a function of Eta η
for SNR = −8dB.

function of threshold η. We also notice that the optimal value
of the threshold ηd , which achieves minimum probability of
error PE agrees with analytical threshold in (27). Further-
more, the probability of error decreases by increasing the
channel length L and threshold ηd is not function of channel
order L. Now, we compare performance of the proposed
PABH and DDBH detectors with sub-space based MDL
detector in [43] in terms of probability of detector error PE
and probability of detection PD.

Fig. 14 compares probability of error PE of the proposed
PCA detectors with self contamination based MDL method,
which uses sub-space approach for PCA detection. In simu-
lation setup, we use Pe = Pn = 1. From Fig. 14, it is clear
that the proposed DDBH PCA detector has lower probability
of error as compared to the existing MDL method and PABH
PCA detector in all SNR regimes. The performance of the
proposed PABH method is better than existing MDL method
in low SNR regime. Note that sub-space based approaches
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FIGURE 14. Probability of error comparison of PABH and DDBH detector
with MDL method.

FIGURE 15. Probability of detection comparison of PABH and DDBH
detector with MDL method.

have higher computational complexity as compared to PABH
and DDBH PCA detectors, which have linear complexity.

In Fig. 15, we compare probability of detection PD for
PABH,DDBHandMDLPCAdetectors as a function of SNR.
As depicted in Fig. 15, the proposed DDBH PCA detector
achieves significant performance gain in all SNR regimes
over the self-contamination based MDL detector. Clearly,
MDL approach achieves better performance as compared
to PABH PCA detector in moderate and high SNR regime.
However, in low SNR regime, PABH PCA detector performs
better than MDL approach.

So far, we have presented the performance of proposed
detectors using Pn = Pe = 1. However, transmit power of
Eve is not limited to unity. Therefore, in Fig. 16, we eval-
uate the impact of user and Eve power on bit error rate of
hard-decision directed data estimate. In the simulation setup,
we fix SNR of Eve to Pe

σ 2
= 5dB and evaluate bit error rate

by varying Pn
σ 2

from −10dB to 15dB. Fig. 16 demonstrates

FIGURE 16. Bit error rate of hard-decision data estimate by varying user
power for Pe

σ2 = 5dB.

FIGURE 17. Probability of error comparison of PABH and DDBH detector
with MDL method.

that proposed decision directed data estimate is reliable even
when Eve attacks with more power than Bob.

In Fig. 17, we evaluate probability of error by varying
transmit power of Eve. In simulation setup, we fix SNR
of Bob to Pn

σ 2
= 10dB and evaluate probability of error

PE by varying Pe
σ 2

from −20dB to 20dB. The simulation
results demonstrate that DDBH PCA detector performs better
that MDL approach and PABH PCA detector. The existing
MDL detection method [40] is better than PABH detection
in all SNR regimes. Fig. 17 suggests that the probability of
detection error decreases by increasing the power of Eve for
the fixed noise variance. Eve spends more power on pilot
contamination attack, the performance degrades drastically.
In low SNR regime, the eigen values corresponding to the
noise sub-space are comparable to the eigen values of signal
subspace. Consequently, MDLmethod has poor performance
in low SNR regime.

Finally, Fig. 18 compares the performance of proposed
detectors in terms of probability of detection as a function
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FIGURE 18. Probability of detection comparison of PABH and DDBH
detector with MDL method.

of Pe
σ 2

by fixing Pn
σ 2
= 10dB. From Fig. 18, we observe

that our PABH PCA detector achieves performance gain in
low SNR regime as compared to self-contamination based
MDL approach. It is worth noting that MDL approach offers
performance gain as compared to PABH detector in moderate
and high SNR regimes. However, the proposed DDBH PCA
detector outperforms MDL method in all SNR regimes.

VII. CONCLUSION
In this work, we presented two novel PABH and DDBH PCA
detectors for frequency selective channels, which exploit the
pilot and data phase observations. The proposed detectors
have low complexity as compared to the existing sub-space
based MDL detector. Furthermore, the proposed DDBH
method estimates the channels of the legitimate user and
Eve for PCA detection, which is useful for precoder design
to enhance secrecy capacity. We also provided performance
analysis of the proposed PCA detectors. The comparison of
simulation results and analysis verified our analysis. The
simulation results demonstrated that the proposed DDBH
PCA detector outperforms sub-space based MDL detector,
especially in low SNR regime.
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