
Received June 3, 2020, accepted June 23, 2020, date of publication July 1, 2020, date of current version July 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3006285

Stochastic Model Predictive Control for
Dual-Motor Battery Electric Bus Based
on Signed Markov Chain
Monte Carlo Method
MINGJIE ZHAO 1, RUHUI ZHANG1, CHENG LIN 1,2, HUI ZHOU3, AND JUNHUI SHI3
1National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
2Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing 100081, China
3BIT Huachuang Electric Vehicle Technology Company Ltd., Beijing 100081, China

Corresponding author: Mingjie Zhao (zhaomingjie@bit.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 51975049, and in part by the National
Key Technology Research and Development Program of China under Grant 2017YFB0103801.

ABSTRACT With the increasing demand for battery electric buses, the dual-motor coupling power-
train (DMCP) shows great advantages, but it makes the energy optimization problemmore complex. To solve
the hybrid system optimization problem, a stochastic model predictive control (SMPC) method is proposed
to exploit the potential performance of DMCP, where the most critical issue is to improve the prediction
accuracy and handle the uncertainties. After analyzing the typical velocity profiles, statistical properties
are used to develop a novel Signed Markov Chain Monte Carlo (SMCMC) method that can enhance the
accuracy of velocity prediction by more than 50%, compared to conventional Markov Chain methods.
Next, considering the uncertainties present in various driving scenarios, the development of driving cycle
recognition model based on fuzzy logic control (FLC) is introduced; this method permits to identify the
current category of driving cycle rapidly. Then, dynamic programming (DP) is adopted to solve the rolling
optimization problems in each finite horizon online, including necessary constraints of dynamic response.
Finally, simulation results demonstrate that the proposed energy management strategy can address various
daily driving cycles well, and can improve the energy performance by 6% under a generalized combination
of driving conditions compared to preliminary rule-based control.

INDEX TERMS Energy management strategy, dual-motor coupling powertrain, driving cycle recognition,
signed Markov chain Monte Carlo method, stochastic model predictive control.

I. INTRODUCTION
With the increasing concerns of environment protection
and fossil fuel shortage problems, battery electric vehi-
cles (BEVs) play a more and more prominent role, especially
in the public transportation field. To further improve the com-
prehensive performance of BEVs, dual-motor coupling pow-
ertrain (DMCP) has been widely used recently, to coordinate
the output power of two propulsion units to enhance the over-
all system efficiency and dynamic response [1]. Compared to
the conventional single-motor architecture, simulation anal-
ysis under various typical driving cycles demonstrates that
DMCP has a higher efficiency of electricity utilization [2]
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and can extend the BEV’s driving range by 9% [3]. Though
a single motor equipped with a multi-speed transmission
can respond to varying load conditions, the improvement is
always limited by the single propulsion component, espe-
cially in the crowded city driving scenario [4]. On the other
hand, the DMCP can easily achieve an uninterrupted gear
shifting process to improve ride comfort benefiting from its
capability of continuous allocation of two motors’ torque [5].
Of course, the additional motor will also increase the com-
plexity of the related control, so an efficient energy man-
agement strategy of power split and mode-switch should
be developed to achieve the promising potential of BEVs
propelled by two motors.

The existing literature does not offer many results on this
subject, as the DMCP architecture is still under development.
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In general, one can think of a DMCP as a hybrid powertrain,
in which the combustion engine is replaced by another elec-
tric motor. Generally, the mathematical formulation of the
power split problem in a DMCP system looks very similar
to that in a hybrid electric vehicle (HEV), since they both
have more than one power controller [5]. Hence, one can
leverage the wealth of knowledge in the HEV energy man-
agement [6], [7]. Deterministic rule-based strategies, such as
empirical heuristic schedules and fuzzy logic control (FLC),
have been used to rapidly design a practical control
strategy [8], [9]. These methods have satisfactory online
response performance with a low computational burden
and are flexible enough to adjust and modify although the
calibration process is quite demanding. However, as the
DMCP is always designed as a multi-mode driveline, namely
it is a hybrid systemwith discretemode and continuous power
split ratio variables, it is hard to map out a rational schedule
directly. In fact, rule-based strategies always need plenty
of previous engineering experience and recalibration exper-
iments afterward, which are time-consuming procedures.

The HEV energy management and of related optimization
problems have been the subject of many studies that have
used optimal control methods such as dynamic program-
ming (DP) [10], and numerical optimization methods like
simulated annealing (SA) [11], particle swarm optimization
(PSO) [12] and so on. These methods can solve complete
optimization problem but are typically not well suited to
online implementation because of computational cost and
the need to know the future. The former problem can be
solved by proper extraction methods, which can transform
the online optimization problem to optimized control rules
according to the offline global optimal results [13], [14].
In this way, energy management strategies for electric city
buses, whose daily routes are always determined in advance,
can be devised rapidly [15]. However, considering the inter-
city transportation demands with various driving patterns,
the online instantaneous optimization method has attracted
more and more attention. Stochastic optimal control algo-
rithms are widely used to tackle such online problems and
have been proved to be effective, such as stochastic dynamic
programming (SDP) [16] and stochastic model predictive
control (SMPC) [17], [18]. With high robustness and flexibil-
ity, the conventional MPC methods are very prevalent in han-
dling industrial and engineering problems. Moreover, SMPC
provides a probabilistic framework for MPC with stochastic
uncertainty [19], indicating the random process of forecasting
the future driving velocity profile in this case [20]. Thus,
without the consideration of an expensive telematics-based
approach, a proper prediction model capturing accurately
and promptly the driving intention or future velocity change
sequence is at the heart of SMPC [21].

Reviewing recent research on SMPC for vehicle energy
management problems, various prediction models have been
investigated. H. Borhan et al. assumed that the power demand
of a vehicle increased exponentially over the prediction
horizon and designed an intuitive exponentially velocity

varying predictor [22]. H. He et al. designed a radial basis
function neural network (RBF-NN) to forecast the passen-
ger load variation, which proved to be an excellent time
series prediction tool with real bus route data [23]. Markov
chain (MC)methods are also widely adopted to solve velocity
profile modeling [24]–[26]. C. Sun et al. summarized several
effective velocity prediction methodologies and affirmed the
value of MC and artificial NN methods [27]. However, some
researchers questioned the reliability of the original data and
the prediction results need to be further smoothed [24], [28].
In addition, facing the challenge of increasingly complex
transportation scenarios, an adaptive velocity prediction
method is necessary. S. Di Cairano devised a framework
that combined the onboard learning of Markov Chain with
transition probabilities that represent the driver behavior [29].
The simulation results seem reasonable, but the flexibil-
ity of the models still needs to be improved. In summary,
though many approaches of SMPC have been developed,
there is still much room left for improvement considering
the accuracy of the velocity prediction results and the flex-
ibility of the practical implementation facing various driving
features.

To ameliorate the performance above, an online power
management strategy based on SMPC with novel MCMC
strategy and driving pattern recognition method is proposed.
The main contributions of this study are as follows. Firstly,
SMPCmethodwith rational constraints has been successfully
applied to solve the integrated energy management problem
for an electric bus with DMCP. Secondly, in the velocity
forecast process, a novel improved piecewise MC transition
probability matrix is built to make the predictive velocity
sequences more reasonable after analyzing the velocity pro-
file distribution features. Then, intercity routes, including
different typical driving cycles are considered and adopted in
a systematic SMPC-based framework with a proper driving
pattern recognition model. Eventually, simulation tests are
conducted to validate the performance of the entire strategy.

This paper is organized as follows. In Section II, a novel
piecewise MCMC method for velocity prediction is intro-
duced and compared to conventional procedures. Section III
demonstrates the DMCP model and the relevant energy man-
agement strategy based on SMPC. Analysis and recognition
processing of generalized intercity driving cycles applied
in SMPC are illustrated in Section IV. Simulation results
and comparison study are performed in Section V. A brief
conclusion is drawn in the last section.

II. VELOCITY PREDICTION BASED ON IMPROVED
MARKOV CHAIN METHOD
A. BASIC MCMC METHOD
As noted above, the velocity prediction model is the core part
of SMPC used to solve the instantaneous energy management
problem of DMCP system. Benefiting from its stability and
practicability, Markov Chain (MC) method has been prover-
bially implemented in modeling driving velocity profile in
a certain future horizon. Considering the Markov process
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assumption, namely that the velocity variation is a random
process whose future changes are determined by its most
recent values, the basic idea of this method is to use the
past data to determine the next status according to specific
probability distributions [30]. The detailed procedures can be
summarized as follows.

Step (1): For a typical driving cycle, the velocity variation
is regarded as a time series corresponding to the Markov
process. Round the fractional values v to finite discretized
stages vk which are divided by p intervals ranging from
minimum to the maximum velocity as shown in (1).dve ∈

{
v1, v2 . . . vk . . . vN

}
N =

dvmax − vmine
p

(1)

Step (2): Construct the state transition probability matrix
Tv ∈ RN

∗N of velocity varying according to the statistical
sampling results. Suppose the current velocity value is vi =
dv (qck )e, then the current time step in the profile can be found
as {qc1, qc2. . . qck . . .qcn}. List each value of the next steps in
the velocity profile and identify whether dv (qck+1)e equals
to vk . Calculate the sampling frequency as the probability Pi
denoting that from vi transiting to vk and repeat the process
to get the entire matrix Tv as shown in (2).

[Tv]ij =
[⌈
v(qck + 1)

⌉
= vj

∣∣∣⌈v(qck )⌉ = vi
]

i, j ∈ {1, 2, . . . ,N } (2)

Step (3): At each stage, convert the real current velocity
to the nearest neighbor value from the discretized velocity
set. Then based on the pretreated velocity and the tran-
sition probability matrix, the next velocity prediction can
be obtained by comparing the corresponding probability
distribution, namely the most probable velocity value
can be determined. Recursively running this first-order
Markov Chain model by inputting the latest value,
a sequence of enumerated velocity can be eventually
forecasted.

The primary MC method is easy to realize and will not
lead to uncertain mutations. However, the limitation is also
evident due to its monotone state transition principle. The real
velocity is a series of random decimal values, but the forecast-
ing results derived from MC are always some deterministic
regular variables. Namely, theMCmethod has inherent errors
and is easy to result in directional deviations. In order to
approach the original characteristics, Monte Carlo simula-
tion, which is a powerful statistical analysis tool, is always
combined to form the so-called Markov Chain Monte Carlo
(MCMC) method [31]. Its essential idea is using randomness
to eliminate the possible deterministic elements in principle,
which can compensate for the lack of MC. As the probability
is processed, the following steps are only to draw a proper
number of random samples from the posterior probability
distribution, and then calculate the sample mean of those as
the reliable estimation value.

Here we take the typical Chinese city bus driving
cycle (CCBC) as the original dataset to show details of the
prediction process above. According to theMCmethod steps,
it is easy to construct the state transition probability matrix,
as shown in Fig. 1. We can see that in most states, there
would be a dominating distribution that can capture the major
transferring features, which accounts for the rationality of the
basic MC method. However, it is also clear that MC would
ignore other factors and be hard to deal with the uniform dis-
tribution situation, which is the necessity for the Monto Carlo
simulation process. To evaluate the prediction accuracy, root
mean square error (RMSE) under each horizon is calculated,
and the prediction results are illustrated in Fig. 2, where the
value of MC method is obviously higher and more fluctuant.
Namely, the effect of MCMC is better than MC but still
not ideal enough. After increasing the number of samples,
the predictions from MCMC perform a changeless trend in
many horizons like results of zero-order hold (ZOH). This
phenomenon will be analyzed and improved in the following
parts.

FIGURE 1. Total state transition probabilities under CCBC cycle.

FIGURE 2. Results of the velocity prediction by (a) Markov Chain (MC)
method; (b) Markov Chain Monte Carlo (MCMC) method.
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B. FEATURES OF TYPICAL PROFILE ANALYSIS
Considering the intuitionistic features of the CCBC velocity
profile, as shown in Fig. 3, the change of velocity seems
like a combination of many repeating speed segments with
a similar rise and fall trends. Suppose the current veloc-
ity is 40 km/h, we can easily find the velocities of next
states, which are pairs of increasing and decreasing values.
Complying with the conventional MCMCmethod introduced
above, the transition probabilities with an interval of 1 km/h
is [42(50%), 38(25%), 37(12.5%), 39(12.5%)] km/h. Then
the next velocity should be 42 km/h based on MC principle,
whereas the mathematical expectation should be 40 km/h
assuming the number of samples in the MCMCmethod tends
to infinity. This example provides an intuitive explanation of
why the MC method always results in deterministic regular
predictions with specific deviation and why the results of the
MCMC method always remain constant.

FIGURE 3. Intuitive features of the velocity trend under CCBC cycle.

Fig. 4 demonstrates the distribution of current velocity
and its variation in the next state under the CCBC cycle
from a statistical perspective. We can see that the velocity
variation shows symmetrical distribution features. Namely,
at each velocity state, the probabilities of tending to increase
or decrease are equivalent. Also, the magnitudes of change to
both sides seem to be symmetrical. Hence it could be better
to separate the positive and negative parts and calculate them
individually to avoid equalizing each other.

C. PIECEWISE MCMC METHOD
1) PIECEWISE STATE TRANSITION PROBABILITIES
Due to the velocity variation symmetrical distribution,
an improved piecewiseMCMCmethod could be devised. The
basic idea is to separate the original state transition prob-
ability matrix into two individual matrices representing the
transferring trends in the accelerating and braking process,
respectively. As shown in Fig. 5, the valid probabilities are
all biased to only one side of the diagonal plane, which means
the next valuewill keep itsmonotonic trend. Comparing to the
distribution in Fig. 1, half of themisleading information could
be avoided by the piecewise matrices. A proper acceleration
state predictionmodel should be established to identify which

FIGURE 4. Statistical features of the velocity trend under CCBC cycle.

FIGURE 5. State transition probabilities under CCBC cycle (a) in
accelerating process; (b) in braking process.

matrix the current velocity belongs to.We canmerely classify
all the acceleration states in the future horizon by current
acceleration since it does not frequently change in a certain
period, and this method could be called Classified MCMC.
On the other hand, we can also present a Signed MCMC
method indicating a forecast of the signs of acceleration in
each state.

2) ACCELERATION SIGN PREDICTION MODEL
There are two salient characteristics in an acceleration
sequence: it is a typical stationary time series and will
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be affected by additional external inputs. Thus, the non-
linear autoregressive neural network with exogenous inputs
(NARX-NN) model seems to be one of the best choices to
predict the sign of acceleration. NARX is a kind of dynamic
recurrent neural network (RNN) that is good at discrete time
series prediction [32]. The NARX can not only employ the
past values of the same series but also take the current and
past values of externally determined series that influences the
series of interest into account. Here 70% of the driving cycle
data is utilized for training, and 15% of the data is used to
validate and test the network performance during and after
the training process, respectively. Mathematically, the output
value at k+ 1 state can be represented as:

y(k + 1) = F[y(k), y(k − 1), . . . y(k − do);

X (k + 1),X (k) . . .X (k − di)] (3)

where y(k) is the previous values of the target itself and X (k)
is the exogenous associated series; di and do are the input
and output lags respectively. As shown in Fig. 6, using proper
activation functions f∗ (· ) and biases b∗ the output result can
be expressed as (4).

y(k + 1) = fo

[ Nh∑
i=1

woi · fh

( di∑
i=0

wxiX (k + 1− i)

+

do∑
i=0

wyiy(k − i)+bh

)
+ bo

]
(4)

FIGURE 6. The architecture of NARX neural networks.

To determine the most approximated weight factors above,
there are two efficient training methods called Leven-
berg Marquardt (LM) algorithm and Bayesian regularization
(BR) [33]. The training performance can be estimated by
error autocorrelation, which can detect non-randomness in a
data set and describes how the prediction errors are related in
time. The basic idea is to calculate the correlation coefficient
of a time series with itself, shifted in time, as shown in (5),
and the value will be higher when those two periods resonate

with each other.

lag(Xi, t) = Xi−t ; corr(X ,Y ) =
cov(X ,Y )

std(X )std(Y )
autocorr(e, t) = corr[e, lag(ei, t)]

=

N∑
i=1
(ei − ē) (ei−t − ē)

N∑
i=1
(ei − ē)2

(5)

For perfect training results of the prediction model, there
should only be one nonzero value of the autocorrelation
function, and it should equal to the mean square error at zero
lag. The results are illustrated in Fig. 7. Here we can see that
the correlations of BR, except for the one at zero lag, fall
approximately within the 95% confidence limits around zero.
Indeed, the BR performed better than the LM in terms of both
prediction accuracy and insensitivity and is found to be far
more robust and efficient. After selecting a suitable training
method and further parameter adjustment, a reasonable neural
networks prediction model could be established.

FIGURE 7. Error autocorrelation by different training methods.

3) IMPROVED PREDICTION AND COMPARATIVE STUDY
The prediction results from improved MCMC methods are
shown in Fig. 8, from which we can see that the predictive
trajectories coincide with the real velocity values well. It is
worth noting that the directional changes of predictive veloc-
ity could move towards the same trend as that of the real
velocity. Namely, it will cause less unreasonable contrary to
power demands in the future horizons.

The significantly improved parts are easy to understand
since there is a premised assumption in most basic time
series prediction models, indicating that the data should be
a strong stationary sequence. However, observing the data
trend in Fig. 3, especially when it comes to the sign of accel-
eration, shows a noticeable seasonality feature which means
the data experiences regular and predictable changes that
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FIGURE 8. Results of velocity prediction by (a) Classified Markov Chain
Monte Carlo (CMCMC); (b) Signed Markov Chain Monte Carlo (SMCMC)
method.

recur every specific interval. And the piecewise pretreatment
process can capture this feature to improve the results.

The detailed comparison of different prediction methods
introduced above is demonstrated in Fig. 9. The predictive
value could move towards the opposite direction in the basic
MC method, which might cause a harmful influence on the
further decision. The results from the MCMC method are
compelled to be average with many simulation samples. The
improved MCMC methods can overcome the shortcomings
above and show a satisfactory performance without obvi-
ous fluctuations. Moreover, in terms of the inflection points,
the SMCMC can adhere well to the real velocity trajectory
due to the prediction of the acceleration sign.

FIGURE 9. The detailed comparison of velocity prediction results by
different methods.

Table 1 performs a quantitatively comparative evaluation
of these four methods. Here we can see that with the help
of the Monto Carlo simulation process, the maximum RMSE
can be reduced remarkably, which means that the extremely

TABLE 1. RMSE evaluation of various prediction methods.

monotonic deviation can be limited. The average prediction
error can be improved by more than 50% by the proposed
piecewise methods due to the elimination of mutual inter-
ference. Also, the RMSE of that forecasted by the SMCMC
method is merely about 1 km/h, which is acceptable enough
in practice.

III. ENERGY MANAGEMENT BASED ON SMPC METHOD
A. DMCP CONFIGURATION DESCRIPTION
The structure diagram of the aforementioned DMCP system
with a 2-speed coupler is illustrated in Fig. 10, where an aux-
iliary motor (AM) and a traction motor (TM) are arranged at
either end of the coupler, which is a planetary gear train (PGT)
box. With an electrified bidirectional actuator, the PGT could
work in two statuses, which is fixing the ring gear to the
gearbox housing or locking the ring gear together with the
carrier respectively. Both motors are the permanent magnet
synchronization type and can operate in electric motor or
generator mode alternatively.

FIGURE 10. The architecture of the DMCP system.

Since these two propulsion units are placed in a coaxial
series way, they could output and intensify the traction torque
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on the driving axle at the same time. That is to say, the total
torque demands of the vehicle could be responded to by the
cooperation of the two motors and the status of the PGT,
by which the comprehensive power performance can be fur-
ther improved. The target vehicle in this study is a lightweight
12-meter bus, and the main parameters are listed in Table 2.

TABLE 2. Main parameters of the DMCEB specification.

The critical problem in theDMCP configuration is to deter-
mine the output power of the two motors and the working
status of the PGT, respectively. To describe this problem,
the longitudinal dynamics of the bus is considered, and the
mathematical model can be expressed as follows.

Twh,req = (TTM + TAM · i
gear
g · η

gear
g ) · ia · ηd

+Tbrk (gear = 1, 2)

Tbrk =

{
0 Treq ≥ 0
Treq −max((TTM + TAM ) ,Tebrk,max) Treq < 0

igearg =

1+ kp gear = 1

1 gear = 2

(6)

where Twh,req is the total required torque at wheel side,
TTM and TAM is the torque of TM and AM respectively,
ηd and ηgearg is the general efficiency of driveline and PGT
respectively, ig and ia is the gear ratio of the PGT and
drive axle respectively, kp is the characteristic factor of PGT,
Tebrk,max is the threshold value of the torque capacity in
braking regeneration, Tbrk is the total mechanical braking
torque on the wheels.

Twh,req = r · [δgearm
du
dt
+ mg sinα

+mgfr cosα +
AwCDu2

21.15
] (7)

where r is the dynamic radius of the wheel,m is the bus mass,
u is the bus velocity, δgear is the coefficient of rotating mass
in a different status, g is the local gravity, α is the slope, fr is
the rolling resistance factor, Aw and CD is the frontal area and
air drag coefficient respectively.

According to the operating principle, the rotation speeds
of TM and AM are both relative to the wheel speed

corresponding to the bus velocity. Focusing on the energy
management problem, an efficiency model of TM and AM
realized by lookup tables can be established, where the elec-
trical consumption can be determined by the current rotation
speed and output torque [34]. Besides, a simple but effective
equivalent open-circuit voltagemodel with internal resistance
can be adopted to describe the energy performance [35].

B. OPTIMIZATION PROBLEM FORMULATION
The optimization goal of DMCP energymanagement strategy
is to find the optimal power split between the two motors and
the proper operating status of the PGT coupler. Meanwhile,
the real-time driving torque request and physical constraints
should be responded to appropriately. As introduced before,
SMPC is suitable for such online instantaneous optimizing
problems. It can search for the optimal control sequences in
a specific finite horizon derived from the prediction model
and then repeat the rolling optimization and updating of the
state variables in each step. The necessary online solving
procedures are as follows:

1) Predict the acceleration sign by the trained NARX
neural networks within a proper finite horizon hp;

2) Select the relative velocity state transition probability
matrix according to the current acceleration sign, then
predict the velocities by SMCMC within the same
horizon hp;

3) According to the prediction results and bus current state
(e.g., state of charge, current gear), a proper optimiza-
tion algorithm like DP can be implemented to calculate
the best control sequence over the finite horizon con-
sidering the constraints.

4) Apply the first value in the predictive control sequence
as the current control command to the vehicle, then
update the history data in the prediction models and
repeat the procedures (1) to (4).

The general structure of the strategy above is summarized
as shown in Fig. 11. Like all the optimization problems,
we need to formulate the target cost function, the relevant
state variables, control variables and necessary constraints.
The discrete model can be described as:

xk+1 = f (xk , uk ,wk ) (8)

where xk is the state variable including state of charge (SOC),
the output torque of two motors and current gear status
of PGT as xk = [SOCk , TTM , TAM , geark ], uk is the control
variable including power split ratio (PSR) and shift command
as uk = [PSRk , shiftk ], wk is the stochastic torque demands
with disturbance as wk = Treq. Therefore, the cost function
in a certain period can be formulated as:

J (t0, tk ) =
∫ tk

t0
L(x, u,w)dt

=

∫ tk

t0

[
Pbat (u, x,w)+ ϕ1 |1gear| + ϕ21T 2

TM

+ϕ31T 2
AM

]
dt (9)
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FIGURE 11. The workflow chart of energy management based on SMPC.

where the power consumption of battery Pbat , the amplitude
variation of the motor torque 1T∗ , and shifting frequency
1gear with an adjustable penal factor ϕ∗ are considered.

C. ROLLING OPTIMIZATION SOLVING BY DP
Dynamic programming can be used to solve the online rolling
optimization problem since the entire velocity profile is avail-
able in the finite horizon hp. After implementing the dis-
cretized model, as shown in (8) to the cost function, the target
to be minimized in each step can be determined as:

J∗k = min
u(tk )

k+hp∑
tk=k

L(x(tk ), u(tk ),w(tk ))

 (10)

According to the DP algorithm, (10) can be solved by
deriving to recursive subproblem sequence and optimizing
them backward then applying forwards to get the final opti-
mal results [25]. Namely, at step tk = k + m (0 ≤ m < hp),
the subproblem can be regarded as:

J∗k (k + m) = min
u(k+m)

[L(x(k + m), u(k + m),

w(k + m))+ J∗k (k + m+ 1)] (11)

Additionally, to obtain the applicable control command
regarding the engineering concerns, some reasonable con-
straints should be complied with in the solving process

as follows:

ω∗,min ≤ ω∗,k ≤ ω∗,max

T∗,min (ω∗,k , SOCk ) ≤ T∗ ≤ T∗,max(ω∗,k , SOCk )∣∣T∗,k+1 − T∗,k ∣∣ ≤ τmot
k+lg∑

ik=k+1

∣∣shiftik ∣∣ = 0 if shiftk 6= 0

(12)

where ω∗,k and T∗,k is the current rotation speed and the
output torque of TM or AM respectively, shiftk is the shifting
command of the PGT, τmot is the upper limit of the torque
response rate and lg is the rational threshold of the time
interval between each shifting process.

IV. PRACTICAL APPLICATION WITH DRIVING CYCLE
RECOGNITION
A. ANALYSIS OF VARIOUS DRIVING CYCLES FOR
INTERCITY BUS
The application of the method above is under the premise
that the target bus is always running over a deterministic
route, i.e., it is merely feasible for the situation of a city bus
without additional conditions. However, to meet the needs of
intercity buses and avoid the uncertainty with adverse effects
from unknown cycles, the driving cycle recognition (DCR)
should be conducted in advance. Like general recognition
problems, the critical factor of the DCR process is to find
typical features that can distinguish the cycles from each
other. Many researchers are inclined to use the preset max-
imum velocity as the indicator experientially [36]. However,
such an instantaneous single value is not reliable from an
engineering perspective, and it is hard to design appropriate
nonlinear criteria.

To determine the typical features reasonably, we analyzed
the typical driving cycles of transit buses as shown in Fig. 12,
where the dotted lines are used to show the most remark-
able peak value of each area. Since the driving behavior of
buses is quite steady in most of the situations (e.g., peri-
odic stops in cities, changeless velocity in highways), it is
rational and appropriate to recognize the traffic scenarios.
Also, the MCMC process is only sensitive to the change of
velocities. Hence, we can classify the driving cycles into city,

FIGURE 12. Statistical features of typical driving cycles for transit buses.
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suburbs, and highway groups according to the distribution of
velocity and acceleration respectively. Here the velocity dis-
tribution is explicit and the general peak points, as the green
lines illustrated in Fig. 12, constitute a series of thresholds to
distinguish the cycles. Moreover, the acceleration distribution
also presents a noticeable difference between the highway
and the other driving cycles. Therefore, these features can
capture the driving cycle patterns accurately and can provide
quantitative criteria for the DCR problem.

B. DRIVING CYCLE RECOGNITION BY FUZZY LOGIC
As analyzed above, the task is to determine the driving
cycle scenarios by proper classification parameters. Hence,
the fuzzy logic control (FLC) could be an effective method to
establish a link between these two items. The basic idea is to
convert the input to fuzzy variables so that they can be used
to distinguish the various patterns by preset fuzzy rules. The
procedures can be summarized as four main steps.

First, the crisp variables, which take on a precise input as
opposed to the fuzzy membership between 0 to 1, should be
converted into fuzzy values and each of them is assigned a
linguistic label by the membership function. This procedure
needs high human expertise, which is one of the drawbacks as
the accuracy depends on the fuzzification knowledge greatly.
However, according to the analysis results in Fig. 12 the
fuzzification boundaries can be determined easily, as shown
in Fig. 13, whose key parameters and trends can be obtained
from the peak points, intersected points, and distribution
features, respectively.

FIGURE 13. Membership functions of the crisp variables.

Second, formulate the fuzzy rule database by assigning a
relationship between fuzzy inputs and desired outputs. The
rule database is displayed in Table 3, where [Low, Middle,
High] and [Flat, Gentle, Sharp] is the fuzzy description of the
velocity and acceleration features, respectively. The numbers
are the additional weights which can be tuned manually to
refine the outputs accurately.

Third, locate the fuzzy output and merge them by applying
fuzzy approximate reasoning. Here the reasoning process is
based on the Mamdani fuzzy theory since the desired output

TABLE 3. Rule database for the driving cycle recognition.

is a certain numerical result. From the rules established in
step 2, a corresponding fuzzy relation matrix can be obtained,
as shown in Fig. 14.

FIGURE 14. The fuzzy relation matrix between the input and output
variables.

Finally, the defuzzification process is initiated to form the
desired crisp outputs. Namely, the fuzzy variables results
should be further converted to the familiar driving cycle
candidates according to the maximummembership principle.

Besides a rational FLC model, the online monitor is
another crucial factor that will influence the effect of prac-
tical application, which is often ignored and set intuitively.
Generally, when the bus is running, it is easy for the vehicle
control unit (VCU) to monitor and record the speed, and then
calculate the mean velocity and acceleration at each discrete
step size. A time-based monitor is adopted in the previous
research, whose macro time scale is set to 100 seconds empir-
ically [36]. However, such formulation is unreasonable when
the possible driving cycles have huge differences between
each other. It is noteworthy that the energy consumption,
which is the goal of the optimization, is significantly related
to the distance rather than the time. Besides, the stochastic
stop time, especially in city cycles, could badly confuse the
time-based monitor. Therefore, an improved distance-based
monitor is proposed to overcome the disadvantages above.

As performed in Fig. 15, two typical driving cycles with
different features are taken as an example to show the exact
effect of the monitors. It is obvious that the time-based
monitor with a 100-second scale may be interfered by the
stops and is unnecessarily too big for the highway situation
resulting in inevitable energy loss. Namely, such a solution
will be caught in a dilemma that a uniform time scale is hard
to be determined. It should be noted that after transforming
the variables from the time domain to the distance domain,
all the characteristics can retain perfectly, and the stochastic
influence of stop time can be eliminated. Moreover, in the
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FIGURE 15. Comparison of time and distance-based monitors in different
cycles.

distance domain, it is easy to set a proper distance scale to
balance the accuracy and energy loss. To reduce the online
information storage and calculation burden, here a 500-meter
distance scale is suitable, indicating the FLC will function in
every 500 meters forward moving.

V. SIMULATION RESULT AND EVALUATION
A. PREDICTION RESULTS OF PRACTICAL DRIVING CYCLES
As mentioned above, the operating principle of the online
adaptive SMPC-based energy management strategy consists
of four main parts. First, collect and analyze the original
data from a statistical viewpoint to formulate the basis of
the prediction and recognition model. Second, distinguish the
scenarios of the current driving cycle by FLC-based DCR
model. Then according to the current driving cycle, choose
the corresponding trained neural networks of acceleration
sign prediction and state transition probability matrices of
SMCMC to forecast the future velocity change in a finite
horizon. Finally, using DP as the solver to obtain the optimal
control sequence considering the constraints and repeat the
process at each step. To validate the effect of the proposed
method, here a combination of various driving cycles is estab-
lished, as shown in Fig. 16, assuming that the transit bus runs
between the city and suburbs.

The driving cycle recognition results are illustrated
in Fig. 17 in the time domain. The accuracy of the recognition
seems excellent in terms of city and highway scenarios, where
the driving features can be captured by the FLC model cor-
rectly. It is notable that partial results in the suburb portion
will be classified to the city group by mistake. After care-
ful observation, we can find that these phenomena occurred
when the velocity value in the monitor range is small contain-
ing stops. Considering the probability-based state transition
process in MC, such deviations are acceptable and have no
adverse impact on the further velocity prediction since the
probability distributions are similar in these situations.

FIGURE 16. Prediction results of the combination of driving cycles for the
transit bus.

FIGURE 17. Recognition results of the combination of driving cycles.

It should be noted that the constraints of the optimization
mainly consist of the shift frequency and output torque whose
response time is usually less than one second. Therefore,
the prediction horizon hp could be set as 5 seconds, which
is an adequate size and can avoid cumulative errors. The final
prediction results can be found in Fig. 16. With the help of
driving cycle recognition, all the predictive velocities can
converge around the real velocities in each horizon like the
results in single cycle prediction. In detail, some prominent
deviations appear in the area where the velocity is fluctu-
ating obviously, e.g. the reference value like that at around
200 seconds in Fig. 16 HWFET highway cycle. The main
reason is that at these points, the acceleration is changing fre-
quently surrounding zero with low amplitude, which means
it is hard for the neural networks to reveal the sign of acceler-
ation. However, such occasional errors could be covered due
to the rolling optimization and feedback effect of SMPC.

B. CONTROL STRATEGIES VALIDATION AND
COMPARISON STUDY
To validate the energy-saving performance, an offline
DP based strategy and a preliminary online rule-based strat-
egy is adopted, respectively. Fig. 18 demonstrates the SOC
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FIGURE 18. SOC variation trends of different strategies.

variation trends of these three strategies. It is obvious that the
DP based result ranks first since it can search for the global
optimal solution assuming all the information is known in
advance. Also, the result from the proposed SMPC strategy
approaches to the benchmark of DP closely and seems much
better than the preliminary strategy.

To show the practical implementation ability, the detailed
output torque of the two motors and gear status of PGT
are illustrated in Fig. 19. We can see that the gear shifting
frequency is constrained appropriately with the minimum
interval of 10 seconds. In the city condition, the gear is
optimized to retain at low to handle the low speed and high
torque demands of frequent start-up situations. And in the
highway scenario, the gear is set to high to make it available
for flexible torque allocation of the two motors. Moreover,
there is no extreme output torque, namely the two motors
can cooperate harmoniously to propel the bus, which is the
expected benefits of DMCP.

FIGURE 19. Dynamic performance of the powertrain under SMPC strategy.

Table 4 gives a quantitive comparison of the results from
different strategies. Considering online application perfor-
mance, the improvement of the SMPC strategy is noteworthy
where the SOC can save approximately 2% in the total
round trip. That means the SMPC based controller can make
the mileage of the transit bus extend by about one-third of
the whole trip with a full charge. The intuitionistic reason
for the improvement can be found in Fig. 20. The rolling
optimization function in SMPC can successfully manage the

TABLE 4. Electricity consumption performance under different strategies.

working points to concentrate on the most high-efficiency
area to achieve a better energy consumption performance.
Namely, the proposed strategy can take full advantage of the
potential of DMCP system in any practical driving cycle.

FIGURE 20. Distribution of the working points under different strategies
(a) of TM; (b) of AM.

Fig. 21 illustrates the results from a statistical perspective,
which can give a more objective evaluation of the effect of
different strategies. To eliminate the interference from the
original motor efficiency, the max motor efficiency, mean
motor efficiency, and the mean efficiency of the working
points are listed together to display the utilization proportion.
We can see that the preliminary strategy is poor at exploiting
the potential of both motors, whereas the DP strategy can
reach higher efficiency than the average level. The SMPC
can align the working points of TM to the high-efficiency
area as possible with a sacrifice of partial utilization of AM.
Considering the gear shifting constraints, as shown in Fig. 19,
this phenomenon is because the gear status is fixed in city
cycles, which restricts the allocation of AM. In summary,
the proposed SMPC-based strategy can achieve excellent
energy consumption results with the inclusion of online
implementation facing various unknown driving cycles.
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FIGURE 21. Utilization proportion of the working points under different
strategies (a) of TM; (b) of AM.

VI. CONCLUSION
In this paper, an adaptive energy management strategy based
on SMPC is performed for a dual-motor battery electric bus.
Various MC-based prediction models to solve the velocity
forecasting problem are established and compared. The main
findings and contributions can be summarized as follows:

(1) After analyzing the statistical distribution features of
typical velocity profiles, a novel signed MCMC with an
acceleration sign prediction model by NARX neural network
is proposed. The predictive results match the real velocity
quite well, and the average RMSE performance is signifi-
cantly improved by 59.82%, compared with the conventional
MC method.

(2) A DP-based rolling optimization method under the
SMPC framework is devised and implemented successfully
for the DMCP system, considering the shifting frequency and
motor torque dynamic response limits.

(3) Taking different driving scenarios into account,
an FLC-based DCR model is built to identify the current
driving patterns. A systematic design process of the core
factors based on statistical analysis and a reasonable
distance-based monitor are proposed, respectively.

The simulation results show that the SMPC strategy can
handle the practical cycle combination correctly and can
improve the energy performance by approximately 6% with
an acceptable dynamic response compared to the prelimi-
nary rule-based strategy. Namely, the improved strategy can
increase the electric-only range by 13.46 km on a full battery
charge.

While the route profile of a transit bus is generally known
ahead of time, calibration and experimental validation will
still be required. Future work will focus on updating the state
transition probabilities and the rules in FLC online adaptively
to enhance the robust performance under various operating
conditions.
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