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ABSTRACT This article addresses the subject for bottom-following control of underactuated unmanned
undersea vehicles (UUVs) with input saturation in the presence of unknown model uncertainties and
unknown external disturbances. A robust adaptive dynamic surface bottom-following control scheme is
developed based on the recursive sliding mode with nonlinear gains and neural networks, which can steer
an underactuated UUV to precisely follow the bottom profile at a constant altitude as a basic feature. The
bottom-following guidance law is derived based on the Serret-Frenet frame, the line of sight (LOS) and
Lyapunov’s direct technique. Then, the bottom-following controller is designed based on the recursive sliding
mode and dynamic surface control (DSC), to stabilize the bottom-following errors. The radial basis function
neural networks (RBF NNs) are employed to online approximate the uncertain dynamics of underactuated
UUVs, while the adaptive laws are introduced to estimate the bounds of the RBF NN approximation errors
and unknown environmental disturbances. Additionally, an auxiliary dynamic system (ADS) is presented to
handle the effect of input saturation. The uniform boundedness of all the closed-loop signals is guaranteed
via Lyapunov analysis. The simulation results are presented to verify and illustrate the effectiveness of the
proposed control scheme.

INDEX TERMS Underactuated unmanned undersea vehicle, bottom-following, recursive sliding mode,
input saturation, model uncertainties.

I. INTRODUCTION
Unmanned undersea vehicles (UUVs) have be used for a
broad range of marine scientific, marine commercial and
marine military applications [1]–[4], as they can perform
the dull, dirty and dangerous tasks (3D tasks). Nowadays,
UUVs are mainly applied to seafloor mapping, ocean survey,
submarine pipeline inspection, exploration and exploitation
of resources, undersea search, etc. [1]. The bottom-following
is a typical motion control problem of underactuated UUVs,
which is concerned with the design of control strategies that
steer an UUV to sail on such a desired path relies on the
bottom terrain at a constant altitude. In practical engineer-
ing, the reference path for the bottom-following is planned
online by fitting the measurement information of the seabed
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terrain to the task requirements. Then, the underactuated
UUV is driven by the bottom-following controller, to track
the reference path. In this work, a solution to the problem
of the bottom-following control for underactuated UUVs is
presented.

The motion control actuators of UUVs, considering
propulsion efficiency, cost and displacement, are usually
set to underactuated mode, that is, the number of the
actuators is less than degrees of freedom (DOF). For the
bottom-following control problem of underactuated UUVs,
it is essential that the efficient and robust motion controller
is developed to force them to follow the seabed profile at
a constant altitude as a basic feature. However, the bottom-
following control of underactuated UUVs faces huge chal-
lenges such as second-order nonholonomic constraints with
drift items, model uncertainties, unknown ocean currents, and
input saturation [5], [6].
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In view of the demand for the precise motion-control
of underactuated UUVs in practical application, schol-
ars devoted themselves to study this topic in recent
decades. For underactuated UUVs, motion controllers are
developed based on the following controller-design meth-
ods, including backstepping technique [7]–[9], sliding
mode control (SMC) [5]–[7], [10]–[14], adaptive con-
trol [8], [15]–[19], neural network [19]–[24], fuzzy logic
control (FLC) [25]–[27]. To ensure UUV sailing at a con-
stant altitude from the seabed, several related literatures have
been published [13], [14], [28], [29]. The bottom-following
problem for the INFANTEAUVwas transformed into the sta-
bilized problem of a discrete-time error space dynamics, and
then the preview controller based on the linearmatrix inequal-
ities andD-methodologywas designed to stabilize it [28]. The
bottom-following problem of underactuated AUVs was given
a solution based on the nonlinear iterative sliding mode [14].
For a low cost UUV, the output feedback controller based on
nonlinear output regulation theory and Fourier series theory
was developed to solve the bottom-following problem [29].
Yan et al. proposed a robust bottom-following controller
using integral-terminal sliding mode control (ITSMC), which
steers the under-actuated UUV to follow the bottom profile at
a constant altitude as a basic feature [13].

For the aforementioned control schemes, the dynamics
of underactuated UUVs must be accurate or that there is
only parameter perturbation with known supremum, while
all bottom-following controllers are based on the assump-
tion of unconstrained motion-control actuators. However,
an accurate dynamic model cannot be obtained in practice
to parameter perturbations and high-order unmolded dynam-
ics. For a practical perspective, any motion control actua-
tors of UUVs cannot implement unlimited force or moment
due physical constraints, namely input saturation. Therefore,
the performance of the bottom-following control does not
satisfy in presence of non-accurate models and input sat-
uration, based on the above-mentioned control strategies.
Sliding mode control is widely applied to solve the problem
of controller-design for various nonlinear systems, which can
deal with control problems under model uncertainties, distur-
bances and so on [30]–[32]. Therefore, SMC-class controllers
are also widely used for the motion control of underactuated
UUVs.

Inspired by the above considerations, this work develops
the adaptive RBF NN-DSC-based recursive sliding mode
control scheme for the bottom-following of the underac-
tuated UUV with uncertainties and input saturation. The
bottom-following control scheme is made up two segments,
including the bottom-following guidance law and dynamic
controller. Based on the LOS and Lyapunov’s direct tech-
nique, the guidance law is derived. Meanwhile, the dynamic
controller is developed by using the recursive sliding mode
with nonlinear gains and neural networks. The RBF NNs
are applied to online approximate the uncertain dynamics
of underactuated UUVs, while the adaptive laws are intro-
duced to estimate the bounds of the RBF NN approximation

errors and unknown environmental disturbances. Addition-
ally, an auxiliary dynamic system (ADS) is presented to
handle the effect of input saturation. It is known that all the
closed-loop signals are uniform boundedness via Lyapunov
analysis.

This approach is able to effectively solve the contradiction
of possess high control accuracy and good transient perfor-
mance at the same time in the presence of input saturation
and the designed controller is non-fragile to the perturbation
of its own parameters. The main contributions of this work
are summarized as follows:

(1) This work proposes a robust adaptive RBF-NN-DSC
bottom-following control scheme using ‘‘small-error large-
gain and large-error small-gain’’ idea, which can deal with
the balance between the control gain and performance.

(2) The recursive sliding mode with nonlinear gains is
developed to the dynamic controller to deal with the parame-
ter perturbation caused by DSC.

(3) The RBF NN technique is applied to online approx-
imate the model un unknown model uncertainties and
unknown external disturbances, which can enhance the
robustness of the proposed bottom-following controller.

The organization of this paper is as follows. Section II
presents the kinematics and dynamics of underactuated
UUVs and problem formulation. In section III, the bottom-
following guidance law is developed based the LOS and Lya-
punov’s direct technique. The dynamic controller is designed
based the adaptive RBF NN-DSC-based recursive sliding
mode in section IV. Section V provides the numerical sim-
ulation results and analysis, which validate the effectiveness
and robustness of the proposed controller. In section VI, brief
conclusions are drawn.

II. PROBLEM FORMULATION
A. UUV KINEMATICS AND DYNAMICS
In this section, the kinematics and dynamics of underactuated
UUVs are presented, which can be described using the inertial
coordinate frame {n} and the body-fixed coordinate frame {b},
as shown in Fig.1. The research object is a neutrally buoyant
UUV with three principal planes of symmetry. In view of this
study is the bottom-following, the sway, yaw and roll motions
of underactuated UUVs are negligible, namely v = 0, y = 0,
p = r = 0 and φ = ψ = 0. Then, the kinematic equations
of underactuated UUVs in the vertical plane are written as
follows [7], [13], [28], [29]

ẋ = u cos θ + w sin θ
ż = −u sin θ + w cos θ
θ̇ = q

(1)

where, x and z are the position coordinates of UUVs in {n};
θ is the pitch angle; u and w denote the surge and heave
velocity in {b}; q represents the pitch angular velocity. For the
bottom-following case, the surge velocity u can be assumed
to be never equal zero. The angle of attack is equal to α =
arctan(w/u). To facilitate the design of the bottom-following

120490 VOLUME 8, 2020



H. Yu et al.: Bottom-Following Control of Underactuated UUVs With Input Saturation

FIGURE 1. The bottom-following schematic of an underactuated UUV.

controller, the flow frame (FF) {W } is introduced by rotating
{b} around the yb−axis through α in the positive direction.
Therefore, the kinematics can be described as [13]:

ẋ = vt cos θW
ż = −vt sin θW
θ̇W = q− α̇

(2)

where, θW = θ − α; and vt denotes the total speed of UUV,
i.e., vt = ‖vt‖ =

√
u2 + w2.

For a practical UUV, its mass distribution is usually
assumed to be homogeneous. To facilitate the design of the
motion controller, the order of the hydrodynamic drag terms
is lower than two. Considering the parameter perturbation,
unmodeled dynamics and unknown external disturbances,
the dynamics of underactuated UUVs in the vertical plane can
be simplified as:

m11u̇ = −m22wq− Xuu− Xu|u|u |u| + τu +1fu
m22ẇ = m11uq− Zww− Zw|w|w |w| +1fw
m33q̇ = (m22 − m11)uw−Mqq−Mq|q|q |q|

−(zGW − zBB) sin θ + τq +1fq

(3)

where, m11 = m − Xu̇, m22 = m − Zẇ and m33 = Iy − Mq̇
are the combined inertia and added mass terms. X{·}, Z{·} and
M{·} denote the hydrodynamic coefficients.1fu,1fw and1fq
indicate the model uncertainties (including the parameter per-
turbation and unmodeled dynamics).W and B are the gravity
and buoyancy of an underactuated UUV, and B = W = mg.
zG and zBmean the zb−component of the center of gravity and
buoyancy in {b}, respectively. τu and τr are the input force
and torque that are applied to the UUV, which exist inherent
actuator saturation [33]. Therefore, these control inputs are
presented below:

τi = sat(τ ci ) =


τmax
i , τ ci ≥ τ

max
i

τ ci , τmin
i < τ ci < τmax

i

τmin
i , τ ci ≤ τ

min
i

(4)

where, i = u, q. The term τ ci is the motion control signal.
τmax
i and τmin

i denote the maximum and minimum applicable
control signal, respectively.
Assumption 1: The velocity of underactuated UUV in

heave direction is passive bounded in the sense that
supt≥0 |w| < σw, where σw is a small positive constant.
Assumption 2: The external time-varying disturbance

caused by wave and ocean current is bounded.
Assumption 3: The pitch angle of underactuated UUV sat-

isfies |θ | < σθ ≤ 0.5π , such that its pitch angle is bounded.
Assumption 4: The motion states of this underactuated

UUV can be available for the feedback in real-time, including
positon, pitch angle and surge velocity.

B. ERROR DYNAMIC EQUATIONS
The bottom-following controller should perform the below
two objectives: 1) the origin ob of {b} coincides with the ref-
erence point P on the desired path, 2) the float angle θW of the
UUV equals to the tangential angle at the reference point P.
To achieve the aforementioned control objectives, the error
dynamic equations should be constructed. To facilitate the
construction of dynamic equations, a Serret-Frenet frame {F}
is introduced at the reference point P, which plays the role of
a ‘‘virtual target vehicle’’.

The posture of the virtual target vehicle is expressed as
pR = [xR, zR, θF ]T in P. The reference point P is an arbitrary
point on the desired path, which is stated by the curvilinear
abscissa s. The posture errors pe in {F} is expressed as

pe = RF
n (θF )(pn − pR) (5)

where, pe = [xe, ze, θe]T. θF denotes the rotation angle from
{n} to {F}, and its specific definition is as follows

θF = arctan
z′R
x ′R

(6)

The symbol (·)′ indicates the first derivative of the corre-
sponding variable with respect to the path parameter. The
pitch angular velocity of the ‘‘virtual vehicle’’ is defined as

qF = θ̇F = κ(s)ṡ (7)

where, κ(s) is the path curvature at the reference point P. The
rotation matrix RF

n (θF ) from {n} to {F} is defined as

RF
n (θF ) =

 cos θF − sin θF 0
sin θF cos θF 0
0 0 1

 (8)

where, RF
n (θF ) ∈ SO(3). SO(3) denotes the third-order spe-

cial orthogonal group. The rotation matrix RF
n (θF ) satisfies

the following condition:

ṘF
n (θF ) = RF

n (θF )S(θF )θ̇F = θ̇FS(θF )R
F
n (θF ) (9)

where the matrix S(θF ) is as follows

S(θF ) =

 0 −1 0
1 0 0
0 0 0
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Taking the time-derivative of the error equation (5),
the dynamic equations regarding the posture errors are
obtained  ẋeże

θ̇e

 =
−κ(s)ṡze + vt cos θe − ṡκ(s)ṡxe − vt sin θe

q− α̇ − κ(s)ṡ

 (10)

C. CONTROL OBJECTIVES
For the bottom-following of the practical UUV, its control
objectives can be formulated as follows:

Consider a sufficiently smooth reference path with a
constant altitude, which can be obtained by fitting the mea-
surement information of the seabed terrain to the task require-
ments. The underactuated UUV with the motion model (2)
and (3) can be steered to the reference path under the
designed bottom-following controller. In other words, the
posture errors xe, ze and θe under the guidance laws βu, βs
and βq can converge to arbitrarily small neighborhoods of the
origin, i.e.

lim
t→∞
|x − xR| ≤ ε1, lim

t→∞
|z− zR|≤ε2, lim

t→∞
|θ − θR| ≤ ε3

where, ε1, ε2 and ε3 are arbitrarily small positive constants.
Then, the following error variables are defined[

ue
qe

]
=

[
u− βu
q− βq

]
(11)

Under the designed bottom-following controller, the velocity
errors ue and qe are stabilized to arbitrarily small neighbor-
hoods of the origin, i.e.

lim
t→∞
|ue| ≤ ε4, lim

t→∞
|qe| ≤ ε5

where, ε4 and ε5 are arbitrarily small positive constants.

D. PRELIMINARIES
To improve the dynamic performance of the bottom-
following controller, a continuously differentiable nonlinear
gain function$ (x) is developed as follows [34], [35]:

$ (x) =

{
x, |x| ≤ ℘
α(|x|0.5 − 0.25α)sgn(x), |x| > ℘

(12)

where, α is a positive constant and ℘ = 0.25α2. ∀x ∈ R. The
gain function$ (x) satisfies the following properties:
Property 1: The gain function $ (x) is strictly monotone

increasing and continuously differentiable. The gain function
$ (x) reflects ‘‘small-error large-gain and large-error small-
gain’’ idea.
Property 2: The first derivative of the gain function $ (x)

is as follows

d$ (x)
dx

=

{
1, |x| ≤ ℘
α

2
|x|−0.5 , |x| > ℘

(13)

The following nonlinear function is developed

L(x) =
1
2

[
d$ (x)
dx

x +$ (x)
]

(14)

and it satisfies the following properties:

Property 3: The nonlinear function L(x) is strictly increas-
ing and satisfies following condition

x × L(x) =
1
2

[
d$ (x)
dx

x2 + x ×$ (x)
]
≥

1
2
x ×$ (x)

(15)

Further, the third nonlinear function is defined as follows

N (x) =

1, |x| ≤ ℘
L(x)
x
, |x| > ℘

(16)

For any continuous function f (x) : Rn
→ Rwithin a compact

set � ⊂ Rn, it can be approximated with any arbitrary
accuracy by the RBF NN [36], that is to say

f (x) = W∗Th(x)+ ε, ∀x ∈ � (17)

where ε is the approximation error with an assumption |ε| ≤
εM .W ∗ denotes the ideal weight vector and is defined as the
value of W that minimizes the that minimizes the deviation
|ε| for all x ∈ �, that is

W∗ , arg min
W∈Rm

{
sup
x∈�

∣∣∣f (x)−WTh(x)
∣∣∣} (18)

where WTh(x) is the radial basis function neural network
(RBF NN) and can approximate a continuous function fN (x)
within a compact set � ⊂ Rn. W = [w1, . . . ,wm]m ∈
Rm (m > 1) is the weight vector of the RBF NNs,
x = [x1, . . . , xn]T ∈ � is the input vector, and h(x) =
[h1(x), . . . , hm(x)]T ∈ Rm is the basis function vector. hj(x)
is the Gaussian kernel function as follows

hj(x) = e
−
‖x−µj‖

2

2σ2j , j = 1, . . . ,m (19)

where µj = [µj,1, . . . , µj,n]T is the center of the Gaussian
kernel function and σj is the width of the Gaussian kernel
function.

III. GUIDANCE LAW DESIGN
The guidance can continuously provide the desired surge
velocity, pitch angular velocity and the change rate of the
curvilinear abscissa s associated with the achievement of
motion control objectives [7]. The input of the guidance
law is the position coordinates of the reference path. The
bottom-following guidance law is developed based on the
line-of-sight (LOS) and the tracking differentiator [13], [37].

A. THE POSITION AND ATTITUDE GUIDANCE
The reference path of UUV for the bottom-following is
parameterized by the curvilinear abscissa s with a globally
defined update law [13], [17]. The bottom-following errors
xe, ze and θe are well defined for each curvilinear abscissa s.
Thus, the update law of the curvilinear abscissa s is set to an
extra degree of freedom in the design of the motion controller.
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Consider the Lyapunov function Vkin1 = (x2e + z
2
e)
/
2.

Then, its first-order derivative with Eq. (10) can be calculated
as

V̇kin1 = xeẋe + zeże = vtxe cos θe − vtze sin θe − ṡxe

The update law ṡ is chosen as

βs = ṡ = vt cos θe + ksxe (20)

where ks is an adjustable positive gain parameter. Then, the
first-order derivative V̇kin1 become

V̇kin1 = −vtze sin θe − ksx2e (21)

Next, the attitude guidance is developed based on the LOS
guidance principle [38]. The LOS approach angle is designed
as follows [13]

δθ = arcsin(
kθ ze√
z2e +12

) (22)

where kθ is an positive gain parameter. 1 = 2l −
lsat(kc |κ(s)|), where kc > 0, sat(·) denotes saturation func-
tion, andlis the vehicle total length. The LOS approach angle
is instrumental in shaping transientmaneuvers during the path
approach phase [17].
Theorem 1: Consider the kinematic model of an underac-

tuated UUV described in Eq. (2) and the dynamic equations
regarding the posture errors described in Eq. (10). The posi-
tion and attitude guidance is designed as follows{

βs = vt cos θe + ksxe
βq = α̇ + κ(s)ṡ+ δ̇θ − k

q
1L(θe − δθ )

(23)

so that the posture errors can be guaranteed to converge to a
specified compact set around the origin. kq1 is an adjustable
positive gain parameter.

Proof: The slidingmode surface with respect to the pitch
angle error is defined as follows:

S1 = θe − δθ (24)

Its first time-derivative according to Eq. (10) is obtained as
follows

Ṡ1 = θ̇e − δ̇θ = q− α̇ − κ(s)ṡ− δ̇θ (25)

To analyze the convergence of the pitch angle error,
the Lyapunov function is chosen as follows

Vkin2 =
1
2
S1$ (S1) (26)

Obviously, the Lyapunov function Vkin2 is positive definite.
Then, its first-order derivative is calculated as

V̇kin2 =
1
2
Ṡ1($ (S1)+

d$ (S1)
dS1

S1)

= (q− α̇ − κ(s)ṡ− δ̇θ )L(S1) (27)

It is straightforward to indicate that the desired pitch angular
velocity

βq = α̇ + κ(s)ṡ+ δ̇θ − k
q
1L(S1) (28)

makes V̇kin2 = −k
q
1L(θe − δθ )

2
≤ 0. Therefore, the Lya-

punov function V̇kin2 is a positive definite and monotonically
decreasing function up to a well-defined limit

lim
t→∞

Vkin2 = γ0 (29)

Its second-order derivative V̈kin2 can be calculated as

V̈kin2 = 2kqL(S1)2
dL(S1)
dS1

(30)

Based on Corollary of Barbalat’s Lemma (CBL) [13], the fol-
lowing results can be obtained

lim
t→0

V̇kin2(t) = 0

That is

lim
t→0

θe = δθ |t→0 (31)

The motion system of an underactuated UUV can asymptoti-
cally follow the desired pitch angler error defined in Eq.(22).
Therefore, the trajectories of the UUV system are asymptot-
ically converging to an invariant set

{�nav|(xe, ze) ∈ R2, θe = δθ } (32)

Next, the convergence of the position errors is analyzed.
When the trajectories of the UUV system converge to
the invariant set �nav, the pitch angle error θe equals δθ .
Then, the first-order derivative V̇kin1 satisfies the following
conditions

V̇kin1 = −vtze sin θe − ksx2e = −kθ
vtz2e√
z2e +12

− ksx2e

≤ −2min(kθ
vt√

z2e +12
, ks)Vkin1 ≤ 0 (33)

Similarly, the Lyapunov function Vkin1 is bounded.Moreover,
it is straightforward to show that V̈kin1 is also finite. Then,
the CBL indicates for the conclusion that limt→∞ V̇kin1 =
0. which implies limt→∞ xe(t) = 0 and limt→∞ ze(t) = 0
((xe, ze) = (0, 0)is the unique equilibrium point in the set
�nav). From the definition (22), limt→∞ ze(t) = 0 indicates
limt→∞ θe = limt→∞ θLOS = 0 within �nav. Wherefore,
all trajectories of the underactuated UUV can asymptotically
converge to an invariant set

{�path|(xe, ze) = 02} (34)

Based on the LaSalle’s Invariance Principle [13], the proof
indicated that the arbitrary initial error [xe, ze]T ∈ R2 can
asymptotically converge to �nav. The rest of proof showed
that the largest invariant set �nav can asymptotically con-
verge to �path. This indicates that the arbitrary initial error
[xe, ze]T ∈ R2 asymptotically converge to the origin. �
To achieve high-quality tracking response and satisfactory

differential performance from virtual desired control com-
mands, the desired pitch angular velocity βq is introduced to a
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first order low-pass filter to obtain its derivative β̇q. The low-
pass filter is employed as following on the basis of dynamic
surface control: {

Tq
˙̂
βq + β̂q = βq

β̂q(0) = βq(0)
(35)

where Tq is the positive filter time constant. From Eq. (35),
the desired pitch angular acceleration β̇q is

˙̂
βq =

βq − β̂q

Tq
(36)

The filtering error is defined as: β̃q = β̂q − βq.

B. THE SURGE VELOCITY GUIDANCE
To avoid set-point jump, the nonlinear tracking differentia-
tor [13], [37], which can arrange the excessive process of the
surge velocity of the vehicle. The tracking differentiator is
provided as followsβ̇u = βu̇β̇u̇ = −ϑsgn(βu − uR +

βu̇ |βu̇|

2ϑ
)

(37)

where βu and βu̇ are the desired surge velocity and acceler-
ation, respectively. uR is reference surge velocity and input
signal to be differentiated. ϑ is the supremum or infimum of
β̇u̇, i.e.,

∣∣β̇u̇∣∣ ≤ r . The details of the tracking differentiator are
shown in the literature [37].

IV. THE DYNAMIC CONTROLLER DESIGN
In this section, the bottom-following dynamic controller
is divided into two subsystems, namely the surge velocity
control and pitch control. To improve the bottom-following
performance and convergence despite the uncertainties,
the recursive sliding mode control is employed. Meanwhile,
an anti-windup compensator is introduced to eliminate the
influence of input saturation. The detailed designing and
deriving process are presented as follows.

A. THE PITCH CONTROLLER DESIGN
Step1. The recursive sliding mode with the pitch angular
velocity error qe = q− β̂q is defined as follows

S2 = cq1S1 + qe (38)

where cq1 is positive definite parameter. The first derivative of
the sliding surface S2 is calculated as

Ṡ2 = cq1Ṡ1 + q̇e
= cq1Ṡ1 + ((m22 − m11)uw−Mqq−Mq|q|q |q|

− (zGW − zBB) sin θ + τ cq +1fq)
/
m33 −

˙̂
βq (39)

The RBF NN is introduced to approximate the model
uncertainties 1fq (including the parameter perturbation and
unmodeled dynamics), that is

1fq = Ŵ
T
qhq(q)+1f̃q (40)

where, Ŵq is the estimate of the ideal weight vectorW∗q and
the updated law for Ŵq is set to

˙̂Wq = 0q(L(S2)hq(q)− σqŴq) (41)

where 0q and σq are adjustable positive gain parame-
ters. 1f̂q is the estimated value of the model uncertainties
1fq, and 1f̃q = 1fq − 1f̂q. Consider the initial system
errors, the approximation error and the external disturbances,
the nonlinear reaching law is employed to this sliding mode
control strategy

Ṡ2 = −
cq2S2 + k

q
2L(S2)+ L(S1)

/
N (S2)+4qδ̂q

m33
(42)

where cq2 and k
q
2 are adjustable positive gain parameters. 4q

is designed as follows

4q = tanh(
L(S2)
ζq

) (43)

where tanh(·) is the hyperbolic tangent function. ζq is an
adjustable positive gain parameter. The approximation error
εq and the external disturbances τqex are bounded, that is∣∣∣1f̃q∣∣∣ + ∣∣τqex ∣∣ ≤ δq, where δq is bounded function. The

adaptive updated law for δ̂q is designed as follows

˙̂
δq = γq(4qL(S2)−3q(δ̂q − δ0q)) (44)

where γq and3q are adjustable positive gain parameters. δ0q is
prior estimate δq (including the approximation error and the
external disturbances). Then, the pitch dynamic controller is
eventually designed as follows

τ cq = (m11 − m22)uw+Mqq+Mq|q|q |q|

+ (zGW − zBB) sin θ + m33
˙̂
βq − c

q
1m33Ṡ1 − Ŵ

T
qhq(q)

− cq2S2 − k
q
2L(S2)− L(S1)

/
N (S2)−4qδ̂q (45)

Remark 1: The hyperbolic tangent function 4q is intro-
duce to eliminate chattering. The term N (S2) is employed
to eliminate coupling terms. δ̂q is applied to compensate
neural network approximation error and external environment
disturbance.

Step2. To compensate the saturation of the motion control
actuators, the following anti-windup compensator is intro-
duced to the pitch dynamic controller [39], that is

χ̇q =


−λqχq

−

∣∣L(S2)1τq∣∣+0.5(1τq)2∣∣χq∣∣2 χq+1τq,
∣∣χq∣∣ ≥ lq

0,
∣∣χq∣∣ < lq

(46)

where, λq is positive definite parameter. 1τq = τ cq − τq.
Remark 2: In fact, the defined anti-windup compensator is

an auxiliary design system used to reduce effects of the input
saturation. Only when1τq 6= 0, the compensator is activated
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to compensate the input error. Then, the constrained pitch
dynamic controller is redesigned as

τq = (m11 − m22)uw+Mqq+Mq|q|q |q|

+ (zGW − zBB) sin θ + m33
˙̂
βq − c

q
1m33Ṡ1 − Ŵ

T
qhq(q)

− cq2S2 − k
q
2L(S2)− L(S1)

/
N (S2)−4qδ̂q + bqχq

(47)

where, bq is positive definite parameter.
Theorem 2: Consider the dynamics of an underactuated

UUV described in Eq. (3) and the attitude guidance (28).
The pitch angular velocity error qe under the pitch dynamic
controller is guaranteed to converge to a specified compact
set around the origin by appropriately tuning those design
parameters, the solutions of the closed-loop system is uni-
formly ultimately bounded.

Proof: Taking into account of the pitch angle error, pitch
angular velocity error, filtering error and the adaptive error
of RBF NN, the following Lyapunov function candidate is
chosen as follows

Vdyn1 =
1
2
S1$ (S1)+

1
2
m33S2$ (S2)

+
1
2
W̃

T
q0
−1
q W̃q +

1
2
γ−1q δ̃2q +

1
2
β̃2q +

1
2
χ2
q (48)

where, W̃q = Ŵq−W∗q is the estimated error of the RBF NN
weight vector, and δ̃q = δ̂q − δq is the estimated error of the
adaptive law. Calculating the time-derivative of the Lyapunov
function (48), the result is obtain as follows:

V̇dyn1 = Ṡ1L(S1)+ m33Ṡ2L(S2)

+ W̃
T
q0
−1
q
˙̂Wq + γ

−1
q δ̃q
˙̂
δq + β̃q

˙̃
βq + χqχ̇q (49)

According to Eqs. (27), (28) and (38), Ṡ1L(S1) can be
obtained as follows:

Ṡ1L(S1) = (q− α̇ − κ(s)ṡ− δ̇θ )L(S1)

= (−kq1L(S1)+ S2 − c
q
1S1 + β̃q)L(S1) (50)

Consider the input saturation, the time-derivative of the slid-
ing mode surface S2 can be rewritten as follows:

Ṡ2 = cq1Ṡ1 + q̇e
= cq1Ṡ1 + ((m22 − m11)uw−Mqq−Mq|q|q |q|

− (zGW − zBB) sin θ + τq +1τq +1fq)
/
m33 −

˙̂
βq

(51)

According to Eq. (51) and (47), Ṡ2L(S2) can be obtained as
follows:

m33Ṡ2L(S2) = (1fq − Ŵ
T
qhq(q)− c

q
2S2 − k

q
2L(S2)

−L(S1)
/
N (S2)−4qδ̂q+bqχq +1τq)L(S2)

≤ (−W̃
T
qhq(q)−c

q
2S2−k

q
2L(S2)−L(S1)

/
N (S2)

−4qδ̂q + δq + bqχq +1τq)L(S2) (52)

From Eq. (44), the result can be given as

γ−1q δ̃q
˙̂
δq = γ

−1
q δ̃qγq

[
4qL(S2)−3q(δ̂q − δ0q)

]
= δ̃q4qL(S2)−

3q

2
(δ̂q − δq)2 −

3q

2
(δ̂q − δ0q)

2

+
3q

2
(δq − δ0q)

2

≤ δ̃q4qL(S2)−
3q

2
γqδ̃qγ

−1
q δ̃q +

3q

2
(δq − δ0q)

2

(53)

According to Eq. (36), the time-derivative of the filtering
error β̃q is

˙̃
βq=

˙̂
βq−β̇q = −

β̃q

Tq
− α̈ − κ(s)s̈− κ̇(s)ṡ− δ̈θ + k

q
1 L̇(S1)

(54)

Consider two compact sets {51|(S1, β̃q) ∈ R2, S21 + β̃
2
q < 0}

and {52|(δθ , δ̇θ , δ̈θ ) ∈ R3, |δθ |
2
+
∣∣δ̇θ ∣∣2 + ∣∣δ̈θ ∣∣2 < I }, where

0 and I are the designed positive constants. Then, it is easily
known that51×52 is also compact set, and there exists non-
negative continuous function η(·) satisfies∥∥∥∥∥ ˙̃βq + β̃qTq

∥∥∥∥∥ ≤ η(S1, β̃q, δθ , δ̇θ , δ̈θ ) (55)

and its maximum ηmax within the compact set51×52 exists.
Thus,

β̃q
˙̃
βq = −

β̃2q

Tq
+ β̃q(

˙̃
βq +

β̃q

Tq
) ≤ −

β̃2q

Tq
+
µq

2
β̃2q +

η2max

2µq
(56)

where µq is a positive definite parameter. From Eq. (46), it is
obtained as follows

χqχ̇q = χq(−λqχq −

∣∣L(S2)1τq∣∣+ 0.5(1τq)2∣∣χq∣∣2 χq +1τq)

= −λqχ
2
q −

∣∣L(S2)1τq∣∣− 0.5(1τq)2 + χq1τq (57)

According Eq. (50) to Eq. (57), the time-derivative of the
Lyapunov function Vdyn1 can be rewritten as follows:

V̇dyn1 ≤ (−kq1L(S1)+ S2 − c
q
1S1 + β̃q)L(S1)

+ (−W̃
T
qhq(q)− c

q
2S2 − k

q
2L(S2)− L(S1)

/
N (S2)

−4qδ̂q + δq + bqχq +1τq)L(S2)+ W̃
T
q0
−1
q
˙̂Wq

+ δ̃q4qL(S2)−
3q

2
γqδ̃qγ

−1
q δ̃q +

3q

2
(δq − δ0q)

2

−
β̃2q

Tq
+
µq

2
β̃2q +

η2max

2µq
− λqχ

2
q −

∣∣L(S2)1τq∣∣
−

1
2
(1τq)2 + χq1τq (58)

According to the nature of the hyperbolic tangent function,
the following inequality holds

0 ≤ |A| − A tanh(
A
ε
) ≤ 0.2785ε, ∀ε > 0 and ∀A ∈ R
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Thus, the following results can be obtained

(−4qδ̂q + δq)L(S2)+ δ̃q4qL(S2)

= (−4qδ̂q + δq)L(S2)+ (δ̂q − δq)4qL(S2)

= δq(L(S2)−4qL(S2)) ≤ 0.2785ζqδq (59)

The following inequalities are obvious:

1τqL(S2) ≤
∣∣1τqL(S2)∣∣ , χq1τq ≤

1
2
χ2
q +

1
2
1τ 2q

β̃qL(S1) ≤
1
2
L2(S1)+

1
2
β̃2q ,

bqχqL(S2) ≤
bq
2
L2(S2)+

bq
2
χ2
q

cq1S1L(Si) ≥
1
2
cq1S1$ (Si) (i = 1, 2),

σqW̃
T
q Ŵq ≥

σq

2

∥∥∥W̃q

∥∥∥2 − σq
2

∥∥∥W∗q∥∥∥2
Then, the time-derivative of the Lyapunov function Vdyn1
satisfies

V̇dyn1 ≤ −
cq1
2
S1$ (S1)−

cq2
2
S2$ (S2)

−
3q

2
γqδ̃qγ

−1
q δ̃q −

σq

2
(
∥∥∥W̃q

∥∥∥2 − ∥∥∥W∗q∥∥∥2)
+ (

1
2
−

1
Tq
+
µq

2
)β̃2q + (

1
2
+
bq
2
− λq)χ2

q

+ (
1
2
− kq1 )L

2(S1)+ (
bq
2
− kq2 )L

2(S2)

+
3q

2
(δq − δ0q)

2
+ 0.2785ζqδq +

η2max

2µq
(60)

Let 2kq1 = 1, bq = 2kq2 , 2λq > bq + 1 and 1 + µq < 2
/
Tq,

Eq. (60) becomes as follows:

V̇dyn1 ≤ −
cq1
2
S1$ (S1)−

cq2
2m33

m33S2$ (S2)

−
σq0q

2
W̃

T
q0
−1
q W̃q −

3q

2
γqδ̃qγ

−1
q δ̃q

− (
1
Tq
−

1+ µq
2

)β̃2q −
2λq − bq − 1

2
χ2
q

+
3q

2
(δq − δ0q)

2
+ 0.2785ζqδq

+
η2max

2µq
+
σq

2

∥∥∥W∗q∥∥∥2
≤ −µqVdyn1 + Cq (61)

where,

µq=min{cq1,
cq2
m33

,σq0q,3qγq,2(
1
Tq
−
1+µq

2
), 2λq−bq−1}

Cq =
3q

2
(δq − δ0q)

2
+ 0.2785ζqδq +

η2max

2µq
+
σq

2

∥∥∥W∗q∥∥∥2
From Eq. (61), the result can be obtained as follows:

Vdyn1(t) ≤
Cq
µq
+ (Vdyn1(0)−

Cq
µq

)e−µqt (62)

where Vdyn1(0) is the initial value of the Lyapunov function
Vdyn1. From Eq. (62), the Lyapunov function Vdyn1 is uni-
formly ultimately bounded. Then, it is known that S1, S2,
W∗q, δq and β̃q are bounded. Moreover, the parameters can
be chosen to ensure the attitude tracking error converge the
origin. �

B. THE SURGE CONTROLLER DESIGN
In this subsection, the control torque of propellers for an
underactuated UUV to achieve the desired surge velocity uR
is calculated.

Step1. A Lyapunov function candidate with the surge
velocity error ue = u− βu:

Vdyn2 =
1
2
m11u2e (63)

Differentiating Eq. (63) along Eq. (3), the calculation result
yields

V̇dyn2 = (u− βu)(−m22wq− Xuu
−Xu|u|u |u| + τ cu +1fu − m11β̇u) (64)

The RBF NN is introduced to approximate the model
uncertainties 1fu (including the parameter perturbation and
unmodeled dynamics), that is

1fu = Ŵ
T
uhu(u)+1f̃u (65)

where, Ŵu is the estimate of the ideal weight vectorW∗u and
the updated law for Ŵu is set to

˙̂Wu = 0u(uehu(u)− σuŴu) (66)

where 0u and σu are adjustable positive gain parameters.1f̂u
is the estimated value of the model uncertainties 1fu, and
1f̃u = 1fu −1f̂u. The approximation error and the external
disturbances are bounded, that is

∣∣∣1f̃u∣∣∣ + |τuex | ≤ δu, where
δu is bounded function. The adaptive updated law for δ̂u is
designed as follows

˙̂
δu = γu(ue4u −3u(δ̂u − δ0u)) (67)

where, γu and 3u are adjustable positive gain parameters. δ0u
is prior estimate δu

4u = tanh(
ue
ζu
) (68)

where ζu is an adjustable positive gain parameter. The surge
dynamic controller is designed as follows

τ cu = m22wq+ Xuu+ Xu|u|u |u| − Ŵ
T
uhu(u)

−4uδ̂u + m11β̇u − kuue (69)

Step2: The following anti-windup compensator is intro-
duced to eliminate the input saturation

χ̇u =


−λuχu

−
|ue1τu| + 0.5(1τu)2

|χu|
2 χu +1τu, |χu| ≥ lu

0, |χu| < lu
(70)

where, λu is positive definite parameter. 1τu = τ cu − τu.
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Remark 3: In fact, the defined anti-windup compensator is
an auxiliary design system used to reduce effects of the input
saturation. Only when1τu 6= 0, the compensator is activated
to compensate the input error.

Then, the constrained pitch dynamic controller is
redesigned as

τu = m22wq+ Xuu+ Xu|u|u |u| − Ŵ
T
uhu(u)

−4uδ̂u + m11β̇u − kuue + buχu (71)

where, bu is positive definite parameter.
Theorem 3: Consider the dynamics of an underactuated

UUV described in Eq. (3) and the surge velocity guid-
ance (37). The surge velocity error ue under the surge
dynamic controller is guaranteed to converge to a specified
compact set around the origin by appropriately tuning those
design parameters, the solutions of the closed-loop system is
uniformly ultimately bounded.

Proof: The Lyapunov function candidate is chosen as
follows

Vdyn3 =
1
2
m11u2e +

1
2
W̃

T
u0
−1
u W̃u +

1
2
χ2
u +

1
2
γ−1u δ̃2u (72)

where, W̃u = Ŵu−Wu is the estimated error of the RBF NN
weight vector, and δ̃u = δ̂u − δu is the estimated error of the
adaptive law. The first time-derivative can be calculated as

V̇dyn3 = m11ueu̇e + W̃
T
u0
−1
u
˙̂Wu + χuχ̇u + γ

−1
u δ̃u
˙̃
δu

= ue(−m22wq− Xuu− Xu|u|u |u| + τu +1τq

+1fu − m11β̇u)+ W̃
T
u (uehu(u)− σuŴu)

+χu(−λuχu −
|ue1τu| + 0.5(1τu)2

|χu|
2 χu +1τu)

+ δ̃u(ue4u −3u(δ̂u − δ0u))

= ue(−kuue + buχu −4uδ̂u + δu +1τu)− W̃
T
uσuŴu

− λuχ
2
u − |ue1τu| − 0.5(1τu)2 + χu1τu

+ δ̃u(ue4u −3u(δ̂u − δ0u)) (73)

The following inequalities are obvious:

ue1τu ≤ |ue1τu| , buχuue ≤
bu
2
χ2
u +

bu
2
u2e,

χu1τu ≤
1
2
χ2
u +

1
2
1τ 2u , 2W̃uŴu ≥

∥∥∥W̃u

∥∥∥2 − ∥∥W∗u∥∥2
Then, the time-derivative of the Lyapunov function Vdyn3
satisfies

V̇dyn3 ≤ −(ku −
bu
2
)u2e −

σu

2

∥∥∥W̃u

∥∥∥2 − 2λu − bu − 1
2

χ2
u

−
3u

2
γuδ̃uγ

−1
u δ̃u +

σu

2

∥∥W∗u∥∥2
+
3u

2
(δu − δ0u)

2
+ 0.2785ζuδu (74)

Let 2ku > bu and 2λu > bu+ 1, Eq. (74)becomes as follows:

V̇dyn3 ≤ −µuVdyn3 + Cu (75)

where,

µu = min{2ku − bu, σu0u, 2λu − bu − 1,3uγu}

Cu =
σu

2

∥∥W∗u∥∥2 + 3u

2
(δu − δ0u)

2
+ 0.2785ζuδu

From Eq.(75), the result can be obtained as follows:

Vdyn3(t) ≤
Cu
µu
+ (Vdyn3(0)−

Cu
µu

)e−µut (76)

where Vdyn3(0) is the initial value of the Lyapunov function
Vdyn3. From Eq.(76), the Lyapunov function Vdyn3 is uni-
formly ultimately bounded. Then, it is known that W∗u and
δu are bounded. Moreover, the parameters can be chosen to
ensure the surge velocity error converge the origin. �

V. NUMERICAL SIMULATIONS
In this section, the numerical simulation results are presented
to validate the effectiveness and robustness of the proposed
bottom-following control strategy. The dynamic equations
of underactuated UUVs are provided for this simulation
by referring to [13], which is assumed that the vehicle is
equipped with propellers to generate force and moments in
the surge and pitch DOF. The action of the control laws have
been simulated for a UUV of mass m = 185 kg, given by the
following model parameters: m11 = 215 kg, m22 = 265 kg,
m33 = 80 kg · m2, Xu = 70 kg · s−1, Xu|u| = 100 kg · m−1,
Zw = 100 kg · s−1, Zw|w| = 200 kg ·m−1,Mq = 50 kg ·m2

·

s−1,Mq|q| = 100 kg ·m2, zG = 0.01 m, zG = −0.01 m, B =
W = 1813kg·m

/
s2. In the numerical simulation, the dynamic

motion model of an underactuated UUV is added the ±20%
parameter perturbation in all hydrodynamic coefficients. The
external time-varying disturbances are set to

τuex = 0.5 sin(0.1t)+ cos(0.1t + π/4)
τwex = 0.5 sin(0.1t)+ cos(0.1t + π/4)
τqex = 0.5 sin(0.2t)

(77)

The unmodeled dynamics and parameter perturbation of this
underactuated UUV are assumed to be
1fu = −m̃22wq− X̃uu− X̃u|u|u |u| + 10u3

1fw = m̃11uq− Z̃ww− Z̃w|w|w |w| + 10w3

1fq = (m̃22 − m̃11)uw− M̃qq− M̃q|q|q |q| + 100q3
(78)

where ∼ denote the parameter perturbation.
In this work, the saturation characteristic of the motion

control actuators is set to τumax = 700 N, τumin = 0 N,
τqmax = 100 N ·m, τqmin = −100 N ·m. The reference path
is characterized by the curvilinear abscissa s and is expressed
as follows:

xR(s) =


10 sin(0.05s)+ s0 ≤ s ≤ 400
s+ 9400 ≤ s ≤ 800
s+ 9800 ≤ s ≤ 1070
s+ 91070 ≤ s

(79)
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zR(s) =


0.1s0 ≤ s ≤ 400
2 sin(0.05s)+ 38400 ≤ s ≤ 800
−0.145s+ 155800 ≤ s ≤ 1070
01070 ≤ s

(80)

In this numerical simulation, the initial linear and angular
velocities are set to u(0) = 0m/s, w(0) = 0m/s and q(0) =
0rad

/
s. Meanwhile, the initial position and pitch angler is

x(0) = 0 m, z(0) = 0 m and θ (0) = 0 rad.
The gain coefficients of the designed bottom-following

controller is set as follows: kθ = 0.35, kc = 2, ks = 0.1,
kq1 = 0.5, kq2 = 0.5, kθ = 0.35, ϑ = 0.01, uR = 1, Tq = 0.1,
cq1 = 1, cq2 = 1, 0q = 0.1, σq = 10, ζq = 0.01, lq = 0.0001,
α = 1, ℘ = 1, γq = 500, 3q = 10−7, λq = 1.5, bq = 1,
δ0q = 0.1, ku = 1, 0u = 50, σu = 0.0001, ζu = 0.01,
lu = 0.0001, γu = 500, 3u = 10−7, λu = 1.2, bu = 1,
δ0u = 0.01. The center µj of the Gaussian kernel function
within the RBF NN is chosen from [−0.3, 0.3], and the width
σj of the Gaussian kernel function is 3. m = 61 indicates that
there exist 61 node of hidden layers. The update laws of the
RBF NN is designed as Eqs. (41) and (66).

We perform two cases in bottom following simulation:(a)
the controller without considering input saturation is marked
as Without SA in the simulation figures; (b) the controller
including the auxiliary system is marked as With SA. The
primary simulation results are provided in Figs. 2∼7 and
demonstrate that the performance with our proposed con-
trol is reasonably good. Fig.2 shows that the proposed
method (With SA) can force the UUV with uncertainties
and unknown disturbances to converge to the desired bottom
under the input constraints. Since the approach angle is intro-
duced to design the bottom following controller, the dynamic
performance of underactuated UUV in the initial tracking
stage is effectively improved.

FIGURE 2. The bottom-following of underactuated UUV.

The bottom following errors are shown in Fig.3 with
a small boundary, the designed controller (With SA) can
guarantee the bottom following errors converge to zero and
achieve precise bottom following control. Fig.4 shows the
surge velocity response curve of underactuated UUV, from

FIGURE 3. The position and pitch angler errors of the bottom-following
for underactuated UUV.

FIGURE 4. The surge velocity response of the underactuated UUV in the
total simulation.

FIGURE 5. The heave velocity, the pitch angular velocity and the pitch
angler response of the underactuated UUV in the total simulation.

which can be seen that the underactuated UUV can reach
the desired surge velocity accurately under the action of the
designed controller (With SA). Fig.5 presents the variation
curves of heave velocity, pitch velocity and pitch angle of
underactuated AUV. The heave velocity w ≤ 0.1m/s, which
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FIGURE 6. The surge force and pitch torque response of the
underactuated UUV.

FIGURE 7. Estimates and actual of the multiple uncertainties.

is less than the surge velocity and guarantee the boundary of
the surge velocity.

Fig.6 shows two control inputs curves. It can be observed
that the proposed controllers (With SA) can solve the problem
of actuator saturation. The inputs curve of the designed con-
troller (With SA) is relatively stable, which further verifies
the effectiveness of the design method in this paper. The
control inputs of unconstrained controller (Without SA) are
far beyond the operation condition of the actuators. This
means that it is not practical. The estimated performance of
the RBF neural network are shown in Fig.7. Based on the
above simulation results, it can be seen that the proposed
controller is more efficient and operable.

VI. CONCLUSION
This work propose a solution to the problem of the bottom-
following control for underactuated UUVs with input satu-
ration in the presence of unknown model uncertainties and
unknown external disturbances. The bottom-following con-
trol scheme has been developed based on the recursive slid-
ing mode with nonlinear gains and neural networks. The
proposed control scheme achieves a balance between the

feedback control gain and the system control performance
due to introducing a novel nonlinear function featured by
‘‘small-error large-gain and large-error small-gain’’ into vir-
tual and actual control laws. In addition, the ‘‘explosion
of terms’’ problems in this work is overcome by dynamic
surface control technique. By means of a newly constructed
non-quadratic Lyapunov function, the theoretical analysis
indicates that all signals in the closed-loop tracking control
system are uniformly ultimately bounded. The simulation
results validate the effectiveness and robustness of the pro-
posed controller.
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