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ABSTRACT Liver cancer is one of the world’s largest causes of death to humans. It is a difficult task and time
consuming to identify the cancer tissue manually in the present scenario. The segmentation of liver lesions in
CT images can be used to assess the tumor load, plan treatments predict, and monitor the clinical response.
In this paper, the Hybridized Fully Convolutional Neural Network (HFCNN) has been proposed for liver
tumor segmentation, which has been modeled mathematically to resolve the current issue of liver cancer.
For semantic segmentation, HFCNN has been used as a powerful tool for liver cancer analysis. Whereas
the CT-based lesion-type definition defines the diagnosis and therapeutic strategy, the distinction between
cancer and non-cancer lesions is crucial. It demands highly qualified experience, expertise, and resources.
However, a deep end-to-end learning approach to help discrimination in abdominal CT images of the liver
between liver metastases of colorectal cancer and benign cysts has been analyzed. Our method includes the
successful extraction of features from Inception combined with residual and pre-trained weights. Feature
maps have been consistent with the original image voxel features, and The importance of features seemed
to represent the most relevant imaging criteria for every class. This deep learning system shows the concept
of illumination portions of the decision-making process of a pre-trained deep neural network, through an
analysis of inner layers and the description of features that lead to predictions.

INDEX TERMS Liver cancer detection, deep learning, fully convolutional neural network.

I. INTRODUCTION

Hepatocellular carcinoma(HCC) is worldwide the other lead-
ing impact of cancer-related deaths and is the most com-
mon primary cause of hepatocellular cancer to humans [1].
Incidence rates for HCC continue to increase, unlike many
other types of cancer [2]. HCC can be quickly and accurately
identified and diagnosed for these patients earlier on in care
with better results [3]. The need for invasive diagnostic bio-
sophies has decreased since the quality and availability of
cross-sectional imaging have enhanced and driven imaging
to a more central role with a unique status, especially for
primary liver tumors [4]. The liver is one of the most normal
organs for CT, and metastases are a standard method for
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identification, diagnosis, and control of liver lesions. Liver
diseases are the most common [5]. The pictures are taken
before and after the injection of a competing agent with
optimum lesion identification in the portal phase image [6].
Such procedures require information on lesions * scale, shape,
and accuracy [7]. Manual diagnosis and segmentation is a
time-consuming process that the radiologist has to check via a
3-Dimensional Computed Tomography scan that can involve
many lesions [8].

Furthermore, the scope of this challenge illustrates the
need for computerized analytics to help clinicians diagnose,
detect, and evaluate hepatic metastases in CT tests [9]. Due
to the various contrast actions of hepatic and parenchymatic
lesions, automatic identification and segmentation have been
extremely challenging [10]. Besides, due to individual vari-
ances in perfusion and scan time, the image contrast between
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FIGURE 2. (a) Normal Abdominal CT scan [20] (b) Liver Lesion Image [21].

these materials can below. Figure 1 demonstrates the ultra-
sound imaging for liver cancer detection.

Deep learning is usually a simple way to normalize the
pixels of an image to the same level. The extracted images,
therefore, can reflect the features of the images themselves
for pre-processed images, the nature of the extracted features
dictates the exactness of the task [12] significantly. In the
final step, it has concluded that the object category in the
picture is the core element of deep learning, and this is
the subject of most current work [13]. Machine learning
algorithms have achieved better radiological efficiency and
may resolve this gap in the radiological classification of
different diseases [14], [15]. FCNNs (Fully Convolutional
Neural Network) do not need a definition of certain radiolog-
ical features to recognize images, and, unlike other machine
learning approaches, they can even discover certain features
that do not yet exist in current radiological practice [16].
FCNN has achieved excellent performance in various tasks,
including visual recognition of the object, image classifica-
tion hand-written identification of character, and more [17].
In this study, fully convolutional neural network architecture
has been used to segment the liver and detect liver metastases
for CT tests [18]. In the multiples sclerosis lesion segmenta-
tion, the fully convolutional architecture has recently used for
medical sectors [19] (Figure 2).

Hybridized Fully convolutional networks (HFCNN) will
take arbitrary inputs and generate the correct output with
a corresponding efficient inference and learning. The loss
function with this system is evaluated over the whole image
segmentation object, as does patch-based approaches. The
network handles complete images instead of patches, reduc-
ing, and need to pick reproductive patches, for avoiding
redundant estimation when patches overlap, thus increasing
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image resolution [22]. Besides, different scales are merged
by adding links that mixtures the last detection with lower
layers with finer measures [23]. Such fusion can be mixed in
various sizes. A lesion heat map used to diagnose is the result
of this procedure [24].

The significant contribution of this paper is,

o To propose the Hybridized Fully Convolutional Neural
network for liver cancer detection and segmentation.

« Designing the ensemble segmentation algorithm using
a deep learning system for efficient segmentation and
classification of liver tumors.

o The experimental results show that proposed HFCNN
achieves high performance using the dataset from

The remainder of the paper discussed as follows:
section 1 and section 2 discussed the introduction and back-
ground study of liver cancer detection. In section 3, the
hybridized fully convolutional neural network has been pro-
posed for liver cancer detection and segmentation. In section
4, the experimental results have been discussed. Finally,
section 5 concludes the research study.

Il. BACKGROUND SURVEY AND IMPORTANCE FEATURE
OF THIS RESEARCH

Bai et al. [25] proposed the Multi-scale candidate generation
(MCQG) for the liver tumor segmentation approach on CT
images. They utilized as an active contour model and 3D frac-
tal residual network in a coarse to fine-tune the liver cancer
cells. First, the liver is segmented by 3D U-Net and tumor
candidates, which are identified using the MCG method.
They suggest 3D FRN in respect of the candidate class. This
paper proposes a variation of the superpixel segmentation
approach in multiple scales and information in the neighbor-
hood to produce candidates for segmenting the liver tumor
that can require more detailed tumor data in the candidate
area. It enhances the sensitivity of the network to liver tumor
specifics and decreases the computational difficulty arising
from redundant data. They have performed 3DIRCADD seg-
mentation tasks, the experiment results, and comparisons
with the associated research show that their advanced system
can achieve a high segmentation efficiency.

Das et al. [26] suggested Watershed Transform and Gaus-
sian mixture model (WT-GMM) for liver cancer recognition
based on deep learning. This approach relies on the marker-
controlled transformation of the watershed and the Gaussian
blend model for reliable detection. The algorithm proposed is
tested with clinical data from various patients in the clinical
set-up in real-time. The essential advantage of this automated
detection is that the deep-neural network classifier produced
the best precision of 99.38 percent with negligible validation
loss. The first method of application for detecting liver tumors
is the use of the DNN model in the detection process. The
proposed method is analyzed using an efficient way to iden-
tify the region of cancer from liver CT images that will be
beneficial for the early diagnosis of symptoms in clinical and
decision-making process. The estimation of the volumetric
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size of the lesion is the key limit of the job, which can be
constructed from various image slices in a three-dimensional
mesh structure.

Ben-Cohen et al. [27] introduced a Fully convolutional
network for liver and lesion recognition. They are investigat-
ing the FCN by way of contrast on a relatively small dataset
with patch-based classification systems for CNN and sparsity.
They have CT scans of 20 patients, each with a minimum
of 67 lesions and 42 livers in a single slice and 22 patients with
complete 3D segmentation of the liver. They have carried
out 3 times cross-validation, and the results show that the
FCN is superior to all other test methods. They have obtained
real positive rates of 0.85 and 0.7 false-positive per case using
our fully automatic algorithm that is extremely promising and
clinically relevant results.

Kim and Park [28] initialized the Hybrid Feature Selection
approach (HFS) based on neural network and cross-validation
for liver cancer with microarray. The p-value of aptamer array
response to 82 liver cancer patients and 312 healthy persons
is confirmed by our system based on the artificial intelligence
and 10-fold cross-validation of the neural network. Similar to
the one-way ANOVA approach, the proposed method is the
precision, number of features, and computation time required
to identify the feature set. An increase in the number of char-
acteristics dramatically improves diagnostic accuracy for 2 to
10 elements of both methods.

To overcome these issues, in this paper, the Hybridized
Fully Convolutional Neural Network has been proposed for
liver tumor detection and segmentation. Many approaches
involving state-of-the-art sparse dictionary classification
methods and patch-based Convolutional Neural Network
have been checked. The outcomes show that the HFCNN has
the best results, with data augmentation neighboring slices
addition, and acceptable class weight. A small dataset and a
three-fold cross-validation check have been carried out. The
findings of the detection are positive.

1Il. HYBRIDIZED FULLY CONVOLUTIONAL NEURAL
NETWORK (HFCNN)

In this paper, the Hybridized Fully Convolutional Neural
Network has been proposed for liver tumor detection and seg-
mentation. The system involves a training phase and a testing
process for each neural network. The collected CT data has
improved through some methods known as data augmenta-
tion during the training phase. In the neural network system,
the enhanced knowledge, called input data, is then entered
to obtain a qualified framework. In our feature extraction
process, the testing of various layers of CNNss has tried to find
a better feature extraction network. To address the limitations
that are not entirely used by modern spatial 3d knowledge
in the identification of neural networks. In the Proposal pro-
cess for the field, the suggestions have been drawn from a
pyramid structure to capture different sizes of lesions. The
plan is called ROI. Whereas In this step, a texture classifier
has been established to distinguish ROIs into normal and
abnormal hepatic lesions. The abstract functionalities have
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FIGURE 3. Pipeline for liver lesion detection using the proposed HFCNN.

been utilized for separating hepatocellular carcinoma (HCC),
liver cysts, and hemangiomas irregular hepatic lesions at the
classification detection stage. During the training phase for
this project, to conducted several iterations to achieve a better
model structure. In the testing stage, eventually tested the sys-
tem based on the results using another batch of CT imaging.
Figure 3 shows the pipeline for detecting liver lesions.

The study used CT images of the liver over three times
(enhanced, arterial, and delayed, non-contrast agent) in a
clinical retrospective study. The form of the lesion cannot
be determined by a mass that only occurs in a given period.
Therefore, a diagnosis must be validated in comparing the dif-
ference in contrast injection between times. In the extraction
process, a range of traditions has been used, well-represented
in the field of computer vision extraction functions. As the
number in the deep-learning network has a significant impact
on final classification and recognition performance, the usual
way of designing the network is as deep as possible—a
false positive reduction of lung CT nodule classification
CNN-based classification system. A 2D CNN-based classi-
fication system has been developed for classifying the lung
nodule candidates as positive lung nodules and negative
non-nodules to reduce the false positives of the initially iden-
tified lung nodule candidates. Figure 4 shows the proposed
HFCNN classification system

A. MATHEMATICAL ANALYSIS USING PREPOSITION 1:

AUTOENCODER MODELING
An encoder is an unsupervised feed-forward nonrecurrent
neural network. Let’s consider an input layer y = (y1, . .. yim)

of dimension m, the autoencoder objective is a reconstruct y
by the output y’ through transforming y via successive hidden
layers. Tanh is used as the activation function between the
input layer y and the output layer x for given layer j. That’s
the following:

x =f; (y) = tanh (Sjy + a)) €]

As shown in equation (1) where y and x are two vectors of
size e and g correspondingly, and S; is weight matrix of size
g X e, aj an intercept vector of size q and S;y gives a vector
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FIGURE 4. The proposed HFCNN classification system.

of size q. An autoencoder with 1 layers y’ then expressed as,
Y =Fioi ) =fi - i) 2

As shown in equation (2) where flil 1) = fi—1(iky)) is
the composed function of f;_; with f;. The goal is to find
the different weight vectors S; to reduce a specific objective
function to train an autoencoder. As an objective function to
choose log loss, which measures the error between the y input
and the y’ output:

logloss (v, )=y _ (vilog (3}) + (1 =y log (1 = 7))
3)

K regularization penalty has been added, 8, on the weight
vector S; and an K; regularization penalty 8, on the nodes,
activities to control overfitting ', ; (). Therefore, the objec-
tive function can be expressed as,

K (y,Y')=logloss (y,Y) +Z (ﬂw|S |45 | F1mj 0] )
4)

An autoencoder implemented with three hidden layers. The
Bwand Bpvalues of 0.0001 and 0.001 have been set. Even-
tually, the gradient descent algorithm has been used to train
the autoencoder at 10 epochs and 50% dropout. Epoch here
is the iteration of the learning algorithm through the whole
training dataset. During a cycle, each training data instance is
processed once by the learning algorithm.

B. MATHEMATICAL ANALYSIS USING PREPOSITION 2:
SPARSE NON-NEGATIVE MATRIX FACTORIZATION

Sparse non-negative matrix factorization (SNMF), using the
sparse of every pixel in all images as a mixing degree. The
sparseness function of each pixel is the norm of k1. The goal
role shall be described by:

minp, . DF||F+/SZ

As shown in equation (5) where matrix D and matrix F are
coefficients image and Dj is the row vector of D. matrix size

IDj|I, stD,F=0 (5
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Bis M x N, N is the number of dynamic images, and M is the
number of pixels in the image. Frobenius norm has been used
to constrain the problem in the case of the non-uniqueness of
the solution in optimization. The objective role is:

D|* 4l FI3, stD,F=0
(6)

minp, Fy IIB DF||F+,BZ =1 I

As shown in equation (6) where o > 0 is the attribute to
suppress ||F |I% and 8 > 0 is a regularization attributes to
balance the trade-off between the precision of estimation and
spareness of D.

The goal function is overcome by the alternative less
square (ANLS) non-negative algorithm. With the F initial-
ization and non-negative values, the sparse NMF (SNMF)
algorithm begins. The following ANLS is then iterated until
convergence:

miny, HD (F\/,EeLxl) — (BoLxl)Hi, s1.D=0 (7)

As shown in equation (7) where ep x| € TL%1 is a column
vector with all components equal, Orx; € REXT is a zero
vector and,

ming ”FR (DValr) — (BRONxL)Hi, stF>0 (8)
As shown in equation (8) where J7 is an identity matrix of size
L x L and Oy x 1, is a zero matrix of size N x L. Figure 5 shows
the Sparse Non-Negative Matrix Factorization on tumor CT
images.

As shown in algorithm 1 the ensemble segmentation algo-
rithm for liver tumor detection and lesion segmentation has
been analyzed. For different slices and imaging modalities,
the presence of organs or structures can differ and may, there-
fore, require different segmentation algorithms. The proposed
ensemble segmentation algorithm achieves high accuracy in
detecting liver tumor detection. To classify the lesion with
image features has been extracted.
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FIGURE 5. Sparse Non-Negative Matrix Factorization on tumor CT images.

Algorithm 1 Ensemble Segmentation Algorithm
Input: j,i,Lk

Output: Q, Y

For (i=0)

x =f; (y) = tanh(S;y + a;)
I':or G=20) . .

y =F14(©y) =f1- . -fl_lfl(.Y)
For (1=0)

X = Zu ge_E("’g)

If (k= 0)

IOES SI I

Else

q(uj=1lg) =p b +>;88)
k>1)

Qe . &) = (=2 e l¢")) e 6. &)
End if

End for

End for

End for

End

Return

C. MATHEMATICAL ANALYSIS USING PREPOSITION 3:
FULLY CONVOLUTIONAL NEURAL NETWORK
The conceptual neural network is confined to a two-layer
structure in that the visible stochastic binary unit U is associ-
ated with the stochastic hidden layer unit g in which relations
are formed between the levels. The hidden units are trained
to identify associations of higher-order information found in
a visible unit.

The visible and hidden unit joint configuration (u,g) of has
energy expressed as,

E —_ bii— o — T
(. 8) jevisible 4 Ziehidden i8i Zj,i Hj8isji
)
As shown in equation (9) where b; and a; are their biases and
sj; is the weight, u; are the binary states of visible unit j and

the hidden unit i. Through this energy function the network
allocates a likelihood to any pair of a visible and hidden
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layer:

1 k£
— o Ewg 10
q(u.g) = e (10)
As shown in equation (10) where the summing over all pos-
sible pairs of hidden and visible vectors partition function X
is given:

X = Zu‘g e Ee) (11)

Summing all possible hidden vectors the likelihood of the
network will assign to a visible vector u is given:

qu) = )l( Zg e Ews) (12)

The derivative of a training vector’s log-likelihood in terms
of weight is expressed by:

d log g(u)

3 = (Uj&i)data — (Uj&i) model (13)
Sji

As shown in equation (13), where Angle brackets shall be
used to signify the expectations of the subscript’s subsequent
distribution. (u;g;) dara indicates an expectation concerning the
data distribution and (u;g;) moder indicates an expectation con-
cerning the distribution stated by the model. This entails a
basic learning rule in the log-likelihood of the training data
for the stochastic steepest hike:

Asji = €{((Ujgi)dara — (Ujgi)model) (14)

As shown in equation (14), where € is a learning rate.

Because hidden units do not have direct connections,
objective (u;g;)dara Samples can easily be obtained. Given the
randomly choosing trained data, u, the binary state, g; of every
hidden unit, i is set to 1 with likelihood,

g =1l = p (a+ ) usy) (1s)

As shown in equation (15) where p (y) is the logistic sigmoid
function p (y) = 1/(1 + exp(—y)). u;g; is then an unbiased
sample.

Since there is no direct connection between visible units,
an objective study on the state of a visible unit with a hidden
vector is easy to obtain:

a(u=11g) = p (bi+ Y, 8i50) (16)

However, it is much more complex to get an unbiased sample
of (#;gi)moder In practice learning, the gradient of a various
goal function is approximated, called contrastive divergence.

This begins by putting a training vector on the states of the
observable units. Then, equation (15) is used to measure all
secret unit binary states in parallel. When binary states for the
hidden units are chosen, a reconstruction is made by setting
the u; to 1 with equation (16). Weight change is indicated by:

(ujgi)recon) a7
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FIGURE 6. Segmentation of liver and liver tumors by three-dimensional
and fully convolutional neural networks.

The fully connected convolutional neural network with k
layers models the joint distribution between observed vector
y and k hidden layer g’expressed as following,

0(vg' .. .g") = (]_[lezQ(g’ ’g’“)) 0 (¢ ¢)
(18)

As shown in equation (18) where y = go, Q(gl ‘ng) is a
visible, hidden layer conditional distribution in a fully convo-
lutional neural network with 1level of HECNN and Q(g*—! ¢%)
is the visible, hidden joint distribution in the FCNN.

Figure 6 shows the final segmentation of liver tumors by
three-dimensional and fully convolutional neural networks.
The majority of algorithms combine several techniques of
segmentation and use different image indicators to boost their
segmentation performance. Therefore, it may be challenging
to define an algorithm. In this paper, to describe and summa-
rize the algorithms currently available in three groups. Each
category has its proper fields of operation. Researchers will
combine the use of history and realistic criteria for a spe-
cific medical image segmentation task to develop appropriate
algorithms. All aspects should be considered: the accuracy,
complexity, effectiveness, and interactivity of the segmenta-
tion algorithm.

IV. EXPERIMENTAL RESULTS

Segmentation of liver tumor in Computed Tomography
scans, involving segmentation of the liver, generation of
a multi-scale candidate tumor, classification of active con-
tour model, and tumor candidate. There have been propos-
als for a wide variety of machine learning approaches for
segmentation liver tumors. Many CNN’s have been devel-
oped in the implemented application of liver and lesion
segmentation. The lesion detection data set has consider-
ably smaller than that of the liver segmentation since, for
this data set, manual segmentation masks have in 2D only.
is crucial if only a few samples of training are available
to train the network the necessary invariances and efficient
properties. Figure 7(a) shows the test image. To produce
0.8 to 1.2 scales as the size of the lesion can be modified.
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FIGURE 7. Liver tumor segmentation samples (a) test image (b) the
segmentation outcome by proposed HFCNN (c) Tumor identification with
lesion image.

The measurements are evenly sampled, and new photos are
re-sampled using a near-neighbor method. Figure 7(b) shows
the segmentation outcomes using the HFCNN method. Four
measurements have been generated on a different scale for
each image in our dataset. Figure 7 shows the liver tumor
segmentation. Figure 7(c) shows the tumor detection with
lesions.

A. TRAINING ACCURACY VS. VALIDATION ACCURACY
ROC is usually said to considerably increase the segmen-
tation accuracy of the lesion while setting the value of the
target pixels lower. The accuracy of segmentation for liver
and tumor, demonstrating the efficacy of the hybrid learn-
ing process. Once the blurred limits are well segmented,
large margins will boost the segmentation precision of high-
time data. The hybrid property benefits segment tumors;
the change is limited as small tumors are generally present
in fewer slices. Figure 8 shows the training and validation
exactness of the proposed HFCNN concerning the number of
periods (the blue curve reveals the accuracy of training and
the green curve suggests the accuracy of validation).

B. PRECISION ANALYSIS

Precision is the idea that patients are no longer treated
solely by histology of the tumor, by actioning targets unique
to tumor biology through a multi-omic approach. Preci-
sion medicine offers personalized attention to the machinery
behind the cancer of each patient to achieve improved results
for everyone. The proposed HFCNN method makes a high
precision ratio when compared to other MCG, WT-GMM,
FCN, HFS, and HFCNN methods. Figure 8 shows the pre-
cision ratio of the proposed HFCNN method.
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TABLE 1. Precision analysis determination.

No of MCG WT- FCN

Available GMM

dataset

10 20.4 22.5 26.8 28.3 30.7
20 30.6 34.2 36.2 38.6 40.9
30 40.3 44.1 46.9 48.9 50.4
40 50.2 54.3 56.7 58.4 60.7
50 60.7 64.8 66.7 68.8 70.2

Table 1 demonstrates the precision analysis determination
of the proposed HFCNN approach. Radiation therapy guide-
lines for liver cancer need to be met by a 3D CT scanner
or tumor tracking system, strict patient accuracy, immobi-
lization, individual image correction before radiation therapy
initiation, tumor-targeting capacity, and clear dose gradients
to spare tissue. The following standards need to be applied

C. DICE SIMILARITY COEFFICIENT

A common metric for assessing the precision of automated or
semi-automated segmentation methods is the Dice seamless-
ness coefficient (DSC). The thorough validation of automated
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FIGURE 10. Dice Similarity Coefficient.

and semi-automated image segmentation methods is of unde-
niable importance, as is their outcome. Even an evaluation of
image recording performance is carried out more and more by
evaluating the precision of the atlas segmentation, in which
the DSC is widely used.

Cc(Y,X) 21¥ N X] (19)

’ Y]+ IX|

As shown in equation (19) where |Y | indicates the cardinality
oftheset Y. C (Y, X) € [0, 1], with C (Y, X) = 0O if and only
if the sets are disjoint and C (Y, X) = 1 if and only if the sets
are identical.

DSC is a popular method for comparing binary segments
from an image with each other. The DSC is adapted to image
segmentation. Often a comparison is made with the results of
automated or semi-automatic segmentation methods between
the partition of the ground truth. A collection must be built for
each calculating the DSC between two parts. For example,
one region is identified as the foreground of each section.
Figure 9 shows the dice similarity coefficient analysis.

Table 2 demonstrates the dice similarity coefficient evalua-
tion of the proposed HFCNN method. A 3-D deep Multi-Task
CNN solve has been suggested these two problems together
to support hypotheses. Our dataset system has been tested
and achieved an average DSC of about 91% as Segmentation
Precise and an FP reduction score of almost 92%. Changes in
the segments have been shown and reduction of FP over two
guidelines as proof of our hypothesis.

D. RECEIVER OPERATING CHARACTERISTIC CURVE

There has two networks, one to segment the liver and the other
for lesion detection. The areas around the liver, involving
the various organ and tissues, has been neglected for the
lesion detection training Note that a lesion-and liver-trained
network has not used in our research because had two separate
datasets for each mission. The pixel-wise pixel-wise feature
with various weights for every class pixel has been calcu-
lated. The ROC of the proposed HFCNN has been shown
in figure 10 reflects the achievement of a true positive and
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TABLE 2. Dice similarity coefficient evaluation.

No of epochs  Training Testing data HFCNN
data

10 0.55 0.44 0.6
20 0.66 0.51 0.7
30 0.68 0.49 0.76
40 0.7 0.61 0.79
50 0.73 0.65 0.8
60 0.74 0.66 0.83
70 0.77 0.65 0.87
80 0.79 0.7 0.88
90 0.8 0.74 0.83
100 0.81 0.76 0.9

Receiver Operating Characteristic

1.0 1
0.9
-]
n
-4
g 0.8
S
3
o
g 0.7 1
=
0.6 1
— AUC =0.96
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

FIGURE 11. ROC curve analysis.

false positive rate algorithm, with a ROC of 0.96 given in the
proposed algorithm.

E. VOLUME ERROR ANALYSIS

The volume error has been used to measure the method’s
sensitivity to the number of liver types. The error is sta-
ble in about 14 training forms, not at optimum value when
about 23 training forms are used. The tumor burden estimate
of varying image noise and patient location shows significant
improvements in the precision of the segmentation of the liver
even for the extreme cases of cancer. Comparative findings
before and after the correction of type. Cases with extreme
segmentation errors improved volume errors from 28.9% to
6.6%, whereas those with tumors improved volume error
from 17.0% to 5.2%. Figure 11 shows the volume error of
the proposed HFCNN method.

The network output is the likelihood of the central pixel
in the input patch (target pixel). The network has two output
neurons. One is the likelihood of a non-tumor (0~1); the
other is the probability of a tumor (0~1). The output will be
(0, 1 if the target pixel is tumor labeled, while the target pixel
is tumor-free (1, 0) when the objective pixel is tumor-free.
A cross-entropy function is used to measure the precision
of the learning as a loss function. The proposed method has
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less complexity when compared to other existing methods.
This function has been utilized to measure weight and weight
loss error.

V. CONCLUSION AND ITS FUTURE OUTCOMES

This paper presents the Hybridized fully convolutional neu-
ral network (HFCNN) method for liver cancer and lesion
identification and segmentation. Various layers in the neural
network are utilized to extract features of medical images
to improve the accuracy of the detection of medical images.
2D feature maps are combined with several slices in the
feature-extraction process. The algorithm showed very accu-
rate liver volume measurements of 97.22%. The study
showed a high accuracy of the segmentation method had an
average Dice coefficient of 0.92. The results show that the
FCN produces the best results with data changes, adjacent
slices, and appropriate class weights. Note that a limited
dataset and testing have been done 3 fold cross-validation.
A Convolutional Neural Network is trained to identify tumors
and healthy voxels on all base-line liver maskings. CNN is
used to generate the follow-up segmentation of tumors as a
voxel classifier. The segmentation leaks are then eliminated
in the resulting segmentation so that the final results can be
obtained. The proposed HFCNN method has high accuracy
in terms of identifying liver tumors.
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