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ABSTRACT Massive Multiple Input Multiple Output (MIMO) has great potential to improve spectrum
efficiency in the fifth generation (5G) wireless communication systems. However, the efficiency was
disastrously reduced by the heavy burden of overhead for device detection and channel estimation of the
large amount of small data packets in the uplink channel. In the paper, we proposed a novel transmission
scheme by superposing the training symbols for active device detection and channel estimation on the data
symbols in the uplink transmission to improve the efficiency. More specifically, in order to mitigate the cross
interference among the superposed signals, we proposed to split the transmission into the training phase and
the traffic phase. Then we superposed the training phase in the next transmission with the traffic phase in
the current transmission. Furthermore, we give the optimization of power allocation ratio between training
phase and traffic phase to obtain the optimal overall performance. The analytic and simulation results show
that, with the help of spatial isolation among devices, our proposed transmission scheme can significantly
improve the transmission efficiency compared with the existing schemes.

INDEX TERMS Many access, channel estimation, active device detection, superimposed training.

I. INTRODUCTION
The fifth generation (5G) system is expected to provide
high quality communication service. Compared with current
technologies (4G), 10 to 100 times increment of connected
devices is one of the 5G technical requirements [1]. In
5G, Multiple Input Multiple Output (MIMO) technology
is a key technology for achieving ultra-high system capac-
ity [2]. To make the full use of the spatial multiplexing gains
or array gains in MIMO, obtaining accurate channel state
information (CSI) [2]–[5] is important under massive con-
nections. Besides, in order to increase the capacity of 5G sys-
tems, a variety of non-orthogonal multiple access (NOMA)
schemes have been proposed [6]–[9]. The resource allocation
schemes of some NOMA methods (including the power
domain NOMA [6], code domain sparse code multiple access
(SCMA) [7]–[9]) also depends on accurate CSI.
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The training-based channel estimation is widely applied in
wireless communications. Massive connectivity for Internet-
of-Things (IoT) and machine-type communications (MTC)
is one of the most important characteristics of 5G communi-
cation systems. As the number of devices grows, the system
efficiency will be deteriorated because of the increasing train-
ing overhead [3], especially in the uplink channel. Though
the transmission request of small packets of each individual
device is fairly sparse, the massive connections of the system
will still result in very frequent transmission requests [10].
Since the training cost increases linearly with the number of
all potential online devices, the time-frequency resource set
aside for traffic data decreases greatly.

How to reduce the training cost has attracted significant
attention in recent years. Considering that only a small
fraction of potential devices are active in a massive device
connectivity scenario at any given time slot, joint active
device detection (ADD) and channel estimation (CE) based
on compressed sensing (CS) technology has been investi-
gated by many researchers [11]–[14]. Using CS technology,
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the length of the training sequence could be less than the
number of total online devices. Furthermore, the block sparse
structure of massive MIMO is especially well suited for
active device detection, thus the length of training symbols
can be further reduced. This block structure advantage of
MIMO has been studied in [15], [16]. Zvika Ben-Haim has
shown that block sparse methods are particularly successful
when the atoms within each block are nearly orthogonal in
paper [16]. However, this approach still requires dedicated
resources for channel estimation. To ensure the performance
of active device detection and channel estimation, the length
of training symbols should be larger than the number of active
devices. The number of active devices is large and growing
for many access system, thus the time frequency resources
reserved for training is unavoidably high and lead to low
overall efficiency of data transmission.

As an alternative method, superimposed training (ST)
scheme is proposed, where training symbols are superim-
posed with data symbols to reduce training costs [17]–[25].
No dedicated resource is necessarily reserved for training,
thus the transmission efficiency can be improved. In recent
years, a lot of works focus on study the application of ST
scheme in MIMO [22], [23], [26], [27]. The ST scheme
can outperform the traditional training-based scheme with
massive connectivity. This point has been discussed and
simulated completely in [23]–[25]. A few articles discussed
multi-user issues [18], [19], but they are limited to dozens
of devices. In [23], more devices can be supported, but the
number of supported devices is still less than the number of
antennas.

However, for many access scenario, the total number of
users N will far exceed the number of antennas M , even for
massive MIMO. In [10], the case of the number of active
devices being greater than M is studied, but the channel
information is assumed to be completely known. Massive
devices can cause tremendous mutual interference between
training symbols and data symbols. The continuous increase
of active devices may lead to the failure of traditional ST
scheme: the channel estimation error is still too huge, which
makes it difficult to eliminate the interference.

In this paper, to overcome the limitation of the traditional
ST scheme, we proposed a cross transmission superimposed
training (CTST) scheme combining active device detection
and superimposed training to accommodate more devices
creatively. In the scheme, we split the whole transmission
into 2 pipelined phases: the first phase is training phase,
and the second is traffic phase. Unlike the traditional ST
scheme, we superposed the training phase (training symbols)
of the next transmission with the data phase (data symbols)
of the current transmission to mitigate the cross interference
between the training symbols and data symbols of current
transmission. When recovering the current active device sig-
nal, we can detect the active devices for the next transmission
and estimate their CSI simultaneously.

The CSI of the current active devices has been estimated
accurately at the previous transmission. Once the data of

active device is correctly recovered, their impact on chan-
nel estimation can be eliminated, which makes it possible
to improve the performance of active device detection and
channel estimation. This in turn improves the performance of
data recovery.

The main contributions of our work are listed as follows:
1) Proposing the cross transmission superimposed

training scheme for mitigation of the cross interfer-
ence between data and training symbols in uplink
massive connection scenario.

2) Improving the performance and transmission effi-
ciency by power allocation optimization between
data phase and training phase.

Compared with the traditional ST scheme [22]–[27],
we first perform active device detection combined with
superimposed training. The new CTST scheme can elimi-
nate interference more effectively to support massive con-
nections where N � M . Compared with the joint channel
estimation and active device detection scheme [11]–[14],
we proposed a scheme combined with superimposed training,
so that data recovery and channel estimation can be conducted
simultaneously.

The rest of our paper is organized as follows: in Section II,
we describe the system model of superimposed training
scheme for uplinkmany accessMIMO. In Section III, the spe-
cific steps of Block Orthogonal Matching Pursuit (BOMP)
based active device detection and channel estimation are
given. Miss detection probability (MDP) of active devices,
mean square error (MSE) are analyzed. In Section IV,
we introduce the specific steps of iterative algorithm for data
recovery and channel estimation. The performance of data
recovery is analyzed. The signal to Interference plus Noise
Ratio (SINR) expression is analyzed. The optimal power allo-
cation factor to improve overall performance is also given. In
Section V, we present simulation results, which demonstrate
the effectiveness of our scheme, and verify the theoretical
analysis results. Finally, the conclusion of our paper is given
in Section VI.
Notations: In the paper, we use boldface letters to denote

matrices (upper case) and vectors (lower case). And (.)T ,
CM×N denote transpose, the set of complex-valued matrix
with dimension M × N , respectively. The operators (.)T ,
(.)H and ⊗ are the transpose, conjugate transpose and the
Kronecker product of matrix respectively. ||A||F and ||a||2
denote the Frobenius norm of matrix A and Euclidean norm
of vector a respectively.

II. SYSTEM MODEL
We consider uplink transmission of a single-cell massive con-
nectivity scenario in MIMO. A base station (BS), equipped
withM antennas, serves N single-antenna intelligent devices
simultaneously. The antennas at the BS, as well as the anten-
nas among devices, are sufficiently apart to yield spatially
independent channels.

Active devices are a small fraction of total number of
potential devices at any given time. The number of active
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devices in the current transmission Nc and in the next
transmission Nn is far less than N as shown in Fig. 1
(Nc � N ,Nn � N ). However, considering the rapid growth
of the number of active devices in future 5G system, it is
reasonable assumed that Nc > M ,Nn > M [10].

FIGURE 1. System model of superimposed training for many access
MIMO system.

For any device n ∈ [1,N ], we define its active indicator of
the current transmission as below

an=

{
1, if device n sends data at the current transmission
0, otherwise

This device sparse model is widely used in the joint scheme
of active device detection and channel estimation [11]–[14].

Define the indices set of active devices within the current
transmission as

I = {n : an = 1} , (1)

and |I | = Nc. hn ∈ CM×1 represents the channel coefficients
from the device n to the BS, and the elements of hn follow
independent and identically distributed (i.i.d.) complex Gaus-
sian distribution with zero mean and unit variance.

The channels are assumed to be block-fading: they remain
constant for a certain duration and then change indepen-
dently. We assume the channel response matrix HI :=[
hi1 ,hi2 , · · · ,hiNc

]
of active devices has been obtained in

the previous transmission period. HI = H̃I + 1HI . H̃I is
the estimation of the channel. 1HI is the channel estimation
error. Using the least square method, H̃I and 1HI can be
considered uncorrelated.

Similarly, for any given device n ∈ [1,N ] at the next
transmission, we define the active indicator bn as below:

bn =


1, if device n will send training sequence

at the next transmission
0, otherwise

Define the set of active devices within the next
transmission as

Ine = {n : bn = 1} , (2)

and |Ine| = Nn, where Nn is the number of active
devices at the next transmission. The channel response matrix
HIne :=

[
hj1 ,hj2 , · · · ,hjNn

]
are all unknown to the BS.

We assume that each frame of transmission consists of T
symbols. Let xtn ∈ C1×T denote the training symbols of
device n. Define Xt :=

[
xTt1, x

T
t2, · · · , x

T
tN

]T , which is all
known by BS. Specially designed sequence will be assigned
to each online device for channel estimation and active device
detection. The signal received by the BS only contains the
training sequences of the active devices. Define XtIne :=[
xtj,∀j ∈ Ine

]
as the training matrix of active devices at the

next transmission, which is used for least square method to
get the CSI of active devices.

Let sdi ∈ Cd×1 denote the data symbols from device i. We
view d as the maximum length of the messages for all devices
within a frame. For the users whose message lengths are less
than d , we assume their messages have been zero-padded
to d before precoding. xdi = sTdiP

T
i ∈ C1×T stands for

the spreading data sequence. Pi ∈ CT×d is the complex
precoding matrix, which should have full column rank for
data recovery.

Additionally, we assume each column of the precoding
matrices is normalized to unit energy. ‖Pim‖22=1, where m is
the column index ofPi. The precodingmethod is also adopted

in [10]. Define XdI :=

[
xTdi1 , x

T
di2
, · · · , xTdiNc

]T
as the data

matrix for all current active devices.
For ease of analysis, we assume

E
[
‖xtn‖22

]
= T , E

[
‖sdi‖22

]
= d . (3)

The training sequence and data are QPSK modulation sym-
bols, and the energy of each symbol is 1.

Traditional training based schemes are composed of two
phases: training phase and data phase. Unlike traditional
ST scheme, in a certain transmission, the training symbols
of active devices in the next transmission are transmitted
together with the data symbols of active devices in the current
transmission. Then no extra dedicated resource is required for
activity detection and channel estimation. The comparison
of different transmission superposition schemes is shown
in Fig.2.

FIGURE 2. Comparison between the proposed CTST scheme and the
traditional transmission schemes.
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As shown in Fig.2, active devices in the next transmission
will send their training sequence in advance, no longer wait-
ing for the end of the data phase of the current transmission.
If the traditional ST scheme is adopted, the systemmodel and
receiving equation are similar to those in [23], from which
our proposed CTST scheme evolved. The received signal
Y ∈ CM×T at the receiver within one frame can be written as

Y =
√
ρ1

N∑
i=1

hiaixdi +
√
ρ2

N∑
j=1

hjbjxtj + Z

=
√
ρ1

N∑
i∈I

hixdi +
√
ρ2

N∑
j∈Ine

hjxtj + Z

=
√
ρ1HIXdI +

√
ρ2HIneXtIne + Z

=
√
ρ1H̃IXdI +

√
ρ2HIneXtIne +

√
ρ11HIXdI + Z︸ ︷︷ ︸

Z′

, (4)

where ρ1 is the energy of data symbols, ρ2 is the energy of
training symbols. Z ∈ CM×T represents the additive noise,
with i.i.d. circularly symmetric complex Gaussian distributed
random entries of zero mean and unit variance. Z′ is the
sum of the additive noise and residual error due to imperfect
channel estimation.

In ST scheme, training sequence can have the same length
as the extended data sequence. In reality, T is usually much
larger than the number of active devices, i.e. T � Nc,Nn.
This ensures the performance of active device detection and
channel estimation. Also, the precoding scheme contributes
to solving data recovery with Nc > M [10]. 1

As a comparison, we give a model of traditional ST scheme
with active device detection, where the training symbols are
superimposed to its own data symbols for each current active
device. The received signal of traditional superimposed trans-
mission scheme Ytra can be written as

Ytra =

N∑
i=1

hiai(
√
ρ1xdi +

√
ρ2xti)+ Z

=

N∑
i∈I

hi(
√
ρ1xdi +

√
ρ2xti)+ Z

=
√
ρ1HIXdI +

√
ρ2HIXtI + Z

=
√
ρ1H̃IXdI +

√
ρ2HIXtI +

√
ρ11HIXdI + Z︸ ︷︷ ︸

Z′

. (5)

The index set of active devices I and the channel infor-
mation of the active devices HI are both unknown to the BS.
This is the combination of ST scheme given in [23] and active
device detection given in [11], [14].

The mutual interference between training sequence and
data sequence sent by active devices is the key factor affect-
ing system performance in the proposed CTST scheme.
We design an efficient iterative algorithm to continuously
mitigate the interaction contamination between signal and

1By the way, this proposed CTST scheme is easy to be extended to other
NOMA methods like SCMA or PDMA.

training sequence. The results of data recovery and channel
estimation are updated by the iterative algorithm. After each
iteration, the channel estimation is more accurate, and more
device data are recovered correctly.

III. BOMP BASED ACTIVE DEVICE DETECTION AND
CHANNEL ESTIMATION
Device activity detection and channel estimation are the pre-
requisites of data recovery. In this section, Block Orthogonal
Matching Pursuit (BOMP) [15] is adopted to perform device
activity detection, Least Square (LS) method to obtain the
channel state information.2

Both the analytic results of device activity detection and
channel estimation are given in the section.

In a particular iteration, it is assumed that the data of some
active devices in the current transmission has already been
correctly recovered and subtracted. Define Ir as the collection
of devices whose data have been correctly recovered. Then
the equivalent residual signal rt when doing active device
detection and channel estimation can be written as

rt = Y−
√
ρ1

N∑
i∈Ir

h̃ixdi

=
√
ρ2

N∑
n=1

hnbnxtn +
√
ρ1

N∑
i∈Iw

h̃ixdi + Z′

︸ ︷︷ ︸
Z′t

, (6)

where Iw is the collection of devices whose data have not been
correctly recovered (I = [Ir , Iw]), and Z′t =

√
ρ11HIXdI +

√
ρ1

N∑
i∈Iw

h̃ixTdi + Z is the equivalent noise for active device

detection and channel estimation. Define σ̄ 2
hi as the mean

square error of channel estimation in the current transmission
and σ̄ 2

hj as the mean square error of channel estimation in the
next transmission. The mean value of effective noise energy
can be expressed as

E
[∥∥Z′t∥∥22] = MT+ρ1MNcσ̄ 2

hid + (Nc − k)ρ1Md

≈ MT + (Nc − k)ρ1Md, (7)

where k is the number of active devices whose data have been
correctly recovered, |Iw| = Nc− k . The proof of (7) is shown
in Appendix A in details.

2Here we use the most commonly used algorithms for channel estimation
and active device detection. When the number of antennas and devices are
large, the matrix dimension of the system is too large, so we try to use the
algorithm with low complexity.

For channel estimation, the linear minimum mean-square error
(LMMSE) [28] can also be used to obtain better performance. After
the data of most active devices is recovered correctly, data-aided (DA)
method can be used to improve the performance [23], but it also increases
the complexity. We will continue to analyze in the subsequent work.

For active device detection, CoSaMP algorithm can also be improved to
make use of block sparse structure, which may have better performance [29],
but algorithm improvement is not the focus of this paper. BP [30] and convex
programming [31] method may have better detection performance, but for
the proposed scheme, the complexity may be too high.
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Active device set can be obtained from rt with compressive
sensing method, then we can estimate their channel state
information with the least square algorithm.

Among various compressive sensing (CS) recovery algo-
rithms [30]–[34](including basis pursuit (BP) [30], Convex
programming method [31], Orthogonal Matching Pursuit
(OMP) [32], Compressive Sampling Matching Pursuit
(CoSaMP) [33] and Subspace Pursuit (SP) [34]), BOMP,
extended from OMP, is chosen for its competitive good
performance and low complexity compared with other algo-
rithms. Detailed steps of BOMP algorithm is presented in
the algorithm flow chart as shown in Fig.3. Define ε as
the residual energy threshold of algorithm termination. This
threshold can be set as the energy of the equivalent noise:
ε = E

[∥∥Z′t∥∥22] ≈MT+ (Nc − k)ρ1Md .

FIGURE 3. Algorithm 1 BOMP algorithm for active devices detection.

A. THE PERFORMANCE OF ACTIVE DEVICE DETECTION
According to the above BOMP algorithm, the correlation
between the received signal and the training sequence of
devices is a key factor to decide whether the device is active.

Denote the correlation coefficient between the received
signal and the training sequence of active and inactive devices
as Ce0 and Ce1, respectively. Ce0 and Ce1 follow a chi-square
distribution with 2M degrees of freedom.
Define et is the average energy of each element of Z′t ,

et =
E
[
‖Z′t‖

2
2

]
MT = 1+ρ1Ncσ̄ 2

hi
d
T + (Nc − k)ρ1 dT .

Define µ0 and µ1 as the expectation of Ce0 and Ce1. They
can be expressed as

µ0 =

[
T 2
+ (Nn − 1)T + etT

]
M ,

µ1 = [NnT + etT ]M . (8)

Define σ 2
0 and σ 2

1 as the variances of Ce0 and Ce1,
respectively.

σ 2
0 = 4M

{
1
2

[
T 2
+ (Nn − 1)T + etT

]}2
,

σ 2
1 = 4M

{
1
2
[NnT + etT ]

}2
. (9)

According to our assumptions T � Nn, it can be confirmed
that µ0 � µ1 and σ 2

0 � σ 2
1 .

P1(Ce0 > Ce1) = 8

 µ0 − µ1√
σ 2
0 + σ

2
1

 ≈ 8(√M ). (10)

The proof of (8), (9), (10) is shown in Appendix A in details.
When an active device is detected, its correlation must be

greater than that of all inactive devices. So the MDP can be
approximately expressed as

MDP ≈ 1− P(N−Nn)1 . (11)

If one inactive device has larger correlation coefficient than
any one active device, it may be mistaken as active. So the
false alarm probability (FAP) can be expressed as

FAP ≈ 1− PNn1 . (12)

The exact values of MDP and FAP are related to the
specific algorithm. However, according to the approximate
results given in the equation above, we can draw a conclusion
that the performance of activity detection will be improved
greatly with the increment of the antenna numbers M at the
base station. With the block sparse structure advantage of
massive MIMO systems, the MDP of active device detection
will tend to zero, and its impact on the system performance is
fairly small and negligible according to [12], [13] and [35].

B. MSE: THE INTERFERENCE OF DATA ON CHANNEL
ESTIMATION
With the prior known training sequence and active devices
set Ine, the channel can be estimated with (13)

H̃Ine =
rtX

†
tIne
√
ρ2

. (13)

where X†
tIne = XtIne

H (XtIneXtIne
H )−1 is the pseudo inverse

of XtIne .
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When all active devices are identified, the equivalent chan-
nel matrix error can be written as (14)

1HIne = HIne − H̃Ine =
Z′tX

†
tIne

√
ρ2

. (14)

The mean square error (MSE) can be written as (15),
the trace of matrix expressed by sign tr

MSE = tr(1HIne
H1HIne )/Nn/M . (15)

For LS method:

MSE =
1+ ρ1Ncσ̄ 2

hi
d
T +

(Nc−k)ρ1d
T

ρ2(T − Nn + 1)
. (16)

The proof is shown in Appendix B in details.
For any two adjacent transmissions, the number of active

devices is approximately the same. Using the same CTST
scheme, it can be assumed that the MSE of the channel
estimation of the previous stage is nearly the same as the
current stage

σ̄ 2
hi ≈ σ̄

2
hj . (17)

The MSE can be obtained by using (16) and (17)

MSE ≈
1+ (Nc−k)ρ1d

T

ρ2(T − Nn + 1)− ρ1Nc dT
. (18)

When the data recovery frame error rate (FER) is low
enough (FER� T

Ncρ1d
)

MSE ≈
1

ρ2(T−Nn + 1)− ρ1Nc dT
. (19)

When MSE approaches the result given by equation (19),
the additional interference energy (‖

√
ρ21HIneXtIne‖

2
2 =

MSEρ2 NcMT ) of training will be far less than the noise
energy (‖Z‖22 = MT ). In this way, the channel estimation
error has little effect on the system performance. In order to
analyze the conditions under which MSE performance can
reach (19), we will give the performance of data recovery
below.

For traditional ST scheme, the residual signal for active
device detection and channel estimation are very similar to (6)

rt,tra=
√
ρ2

N∑
n=1

hnanxtn +
√
ρ1

N∑
i∈Iw

h̃ixdi + Z′

︸ ︷︷ ︸
Z′t

. (20)

Without the prior knowledge of h̃i, even if the data of
some devices are recovered correctly, its influence on channel
estimation cannot be eliminated completely. Under the same
conditions, the correspondingMSE σ̄ 2

hi of this method will be
larger. The energy of equivalent noise (7) of the traditional ST
scheme is slightly larger.

Fortunately, the two schemes can be solved by similar
algorithms. For the traditional ST scheme, the set Ine in the
algorithm should be replaced by the set I .

IV. DATA RECOVERY ALGORITHM
In this section, we propose a data recovery algorithm and
analyze its performance. The specific steps of iterative
algorithm for data recovery and channel estimation are
given. The expression for Signal-to-Interference-Plus-Noise
Ratio (SINR) is given to analyze data recovery performance.
We optimize the power allocation factor to improve the over-
all performance.

The residual signal after the processing of active device
detection and channel estimation is given by

rd = Y−
√
ρ2H̃IneXInet

=
√
ρ1HIwXdIw +

√
ρ21HIneXInet + Z′︸ ︷︷ ︸

Z′d

. (21)

Define Z′d =
√
ρ21HIneXtIne + Z′ as the effective noise

vector for data recovery.
In the data decoding process, with the formula

vec(ABC) = (CT
⊗ A) vec(B), we rewrite (21) as:

vec(rd ) =
√
ρ1
∑
i∈Iw

(Pi ⊗ hi)si + vec(Z′d ). (22)

We define y := vec(rd ), Bn := (Pn ⊗ hn), z = vec(Z′d )and
B := [B1,B2, · · · ,BN ], S := [sT1 , s

T
2 , · · · , s

T
N ]

T , then we
have

y =
√
ρ1BS+ z. (23)

We extend the first-order statistics-based approach for data
recovery. Assume that the channels are sorted as ||h1||22 >
||h2||22 > · · · > ||hn||22. In the successive interference
cancellation (SIC) scheme, the device with the larger channel
response should be recovered earlier.

We use similar method tomitigate the interference between
training symbols and data symbols, and relax the pressure of
error propagation as given in paper [10]. Error detection codes
such as cyclic redundancy check (CRC) code can be utilized
to indicate whether the decoded packets are error-free. Once
the data of an active device is recovered and confirmed error
free, its impact on other devices can be subtracted from the
total receiving matrix (6). Then the active device set Ine

for the next transmission and their channel state information
can be updated. Detailed steps of this iterative algorithm is
presented in the algorithm flow chart as shown in Fig.4.

Using SIC scheme, the pseudo-inverse of the Kronecker
product has a simplified algorithm. In order to alleviate the
recovery complexity, we recover the data of just one device
with equation below

B†
n = (Pn ⊗ hn)† = P†n ⊗ h†n. (24)

Since the dimension of the pseudo-inverse operation is
greatly reduced, the complexity of each iteration is greatly
reduced with a slight performance degradation. To trade off
the cost and system performance, the joint scheme can be
used when SIC scheme fails to recover data. In this way, data
recovery can finally achieve the performance of joint scheme.
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FIGURE 4. Algorithm 2 iterative algorithm for data recovery and channel
estimation.

In order to maximize the overall performance of our
scheme, we will study the SINR of data recovery for each
device. Then, the optimal power allocation factor can be given
according to the expression of SINR.

When the data of current active devices from 1 to k−1, have
been recovered, the data that has been correctly recovered can
be eliminated from the receiving matrix, and the equivalent
receiving matrix can be expressed as

rk =
√
ρ1hkxdk +

√
ρ1

N∑
i=k+1

hixdi +
√
ρ2

N∑
j∈Ine

1hjxtj + Z′

︸ ︷︷ ︸
Z′d

.

(25)

The expression of the effective noise matrix for data
recovery is

Z′d =
√
ρ11HIneXInet + Z′

=
√
ρ11HIXId +

√
ρ21HIneXInet + Z. (26)

Using joint scheme, s̃Iw =
B†
Iw
y

√
ρ1
. Then the equivalent SINR

can be expressed as (27)

SINRk =
ρ1(MT − (Nc − k)d)hHk hk

(1+
ρ2Nn(1+

(Nc−k)ρ1d
T )+ρ1Nc dT

ρ2(T−Nn+1)−ρ1Nc dT
)MT

= ρeff
(MT − (Nc − k)d)hHk hk

MT
, (27)

where ρeff = ρ1
ρ2(T−Nn+1)−ρ1Nc dT
ρ2(T+1)+ρ2(

(Nc−k)ρ1d
T )

. The specific derivation

process of SINR is shown in Appendix C.
The sum achievable transmission rate of the system can be

expressed as

R =
Nc∑
k=1

log2 (1+ SINRk ). (28)

System performance depends on SINR. To observe the
influence of power allocation scheme, assume that the total
power of each transmission including training phase for train-
ing symbols and data phase for data symbols is fixed. ρ0d =
ρ1d + ρ2T . Define λ ∈ [0, 1] as the data power allocation
factor. We optimize the parameter λ= ρ1d

ρ1d+ρ2T
to maximize

the SINR when performing signal recovery.
SINR is determined by noise, the interference of data and

training sequence sent by other devices, the interference from
the training symbols depends on the channel estimation error.
Among them, the energy of data symbols ρ1 and channel esti-
mation error σhi , σhj are affected by power allocation scheme.
Seen from (27), to maximize SINR is to maximize ρeff .
Only when the interference between data and training

sequence is small, the scheme is feasible. When SNR is
high enough, it is reasonable to assume that the impact from
residual error of data recovery on the channel estimation is
negligible as wementioned in the former section. At this point
MSE is given approximately by (19). According to (27), ρeff
can be represented as a function of λ

ρeff =
λ[(1− λ)(T−Nn + 1)− λNc]ρ0

(1− λ)(T + 1)
. (29)

Define: η = Nc
T−Nn+1

. The derivative of ρeff about λ can be
expressed as

dρeff
dλ
=

[1− 2(1+ η)λ+ (1+ η)λ2](T−Nn + 1)ρ0
(1− λ)2(T + 1)

. (30)

When the derivative is zero, the optimal data power alloca-
tion factor λ can be calculated

λopt = 1−

√
1−

1
1+ η

= 1−

√
Nc

T−Nn + 1+ Nc
. (31)

According to (31), because T � Nc, the power that needs
to be allocated to the training part is only a small percentage.
However, for low SNR case, FER is inevitably high, MSE
is larger than (19). In order to reduce the influence of chan-
nel estimation error on data recovery, more energy should
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be allocated to training symbols to obtain accurate channel
estimation.

Compared with the data recovery performance of ideal
situation (perfect CSI, without superimposed training, all the
energy is allocated to the data), the performance loss caused
by superimposed training can be given. We first give the
received signal in the ideal situation.

Y=
√
ρ0

N∑
i∈I

hixdi + Z. (32)

In this case, the active devices set I , and their channel
response vector hi are known to base station. For comparison,
we give the SINR expression under perfect CSI as (33)

SINRpk =
(MT − (Nc − k)d)hHk hkρ0

MT
. (33)

The proof of this equation is almost the same as (27).
Through the comparison of (27) and (33), we can analyze

the SNR loss caused by superimposed training sequence. The
MSE of channel response will be regarded as interference
for data recovery. The SINR gap caused by superimposed
training is the biggest for the first device.

In the first iteration, all devices’ signal have not been recov-
ered correctly. The minimum value of ρeff can be expressed
as (34)

ρeff, min =
ρ1

1+
ρ2Nn(1+

Ncρ1d
T )+ρ1Nc dT

ρ2(T−Nn+1)−ρ1Nc dT

. (34)

Define δ as the gapwith or without the influence of channel
estimation error in dB and its upper bound can be derived as

δ 6 10 log10 ρ0 − 10 log10 ρeff, min

= 10 log10

[(
1+

ρ2Nn(1+
Ncρ1d
T )+ ρ1Nc dT

ρ2(T−Nn + 1)− ρ1Nc dT

)
1
λ

]
. (35)

On the contrary, if the data of all devices have been recov-
ered correctly, then the value of ρeff will reach the maximum.

ρeff, max =
ρ1

1+
(ρ2Nn+ρ1Nc dT )

ρ2(T−Nn+1)−ρ1Nc dT

. (36)

Then δ will reach its lower bound.

δ > 10 log10 ρ0 − 10 log10 ρeff, max

= 10 log10

[(
1+

(ρ2Nn + ρ1Nc dT )

ρ2(T − Nn + 1)− ρ1Nc dT

)
1
λ

]
. (37)

Compared with the perfect CSI, our proposed CTST
scheme has an SNR loss range in data recovery given by
the (35) and (37).

In the case of high SNR, δ will be very close to the lower
bound. Under actual circumstances, T � Nn is satisfied,
the interference of channel estimation error on data recovery
is very small. Then the performance of active device detec-
tion, channel estimation and data recovery will all achieve
their desired boundaries. This is exactly what this program

is pursuing, the interference between signals and training
sequence can be basically eliminated.

By analyzing SINR, we can give the conditions under
which the scheme can be implemented efficiently. To ensure
the performance of active devices detection and channel esti-
mation, the SINR should satisfy the equation (38) when each
device is recovering its data. For all k , the SINR must meet
the condition (38)

SINRk > γ. (38)

where γ is the SINR threshold to ensure the system perfor-
mance. The channel response parameters of each device on
each antenna satisfy the complex Gaussian random distribu-
tion, the sum of the energy responses of all antennas (hHk hk )
satisfies the chi-square distribution with a dimension of 2M .

It can be approximated that the energy of the channel
response matrix of the active devices is evenly distributed
in the equal probability interval. The probability of having
i active devices in a certain equal probability interval is
P(i) =

(Nc
i

)
( 1
Nc
)i(Nc−1Nc

)Nc−i. Then the expectation can be
expressed as∑

i
(
Nc
i

)
(
1
Nc

)i(
Nc − 1
Nc

)Nc−i = 1. (39)

That is to say, there is one device in each section on aver-
age. Further more, even in a single simulation, the probability
of each equal probability interval exceeding two users is
relatively small when the number of active devices is large
enough.

P(i > 2) ≈ 1−
2
e
−

2
e2
, (40)

where e is the natural constant.
Then the average value of k-th largest response energy can

be approximately expressed as (41).

E(hHk hk ) ≈
1
2
chi2inv

(
2(Nc − k)+ 1

2Nc
, 2M

)
. (41)

Average SINRs of all active devices can be evaluated by
substituting (41) into the expression of SINR.

In order to give a simple approximate expression, we take
the channel response energy as the average given by (41). For
all k ∈ [1,Nc], equation (38) can be rewritten as (42)

(MT − (Nc − k)d)E(hHk hk )ρ1

MT
(
1+

ρ2Nn(1+
Ncρ1d
T )+ρ1Nc dT

ρ2(T−Nn+1)−ρ1Nc dT

) > γ. (42)

To get SINR threshold γ , we can draw a simulation image
of the relationship between SINR and FER for one single
device.

As shown in Fig.5, the SINR threshold that can ensure the
data recovery performance should be set at around γ = 2.5.
In addition, the number of equations in (4) must be at least

equal to the number of variables.

MT > Ncd + NnM . (43)
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FIGURE 5. Relationship between SINR and FER for one single device.

From (42) and (43), the required training length T or the
number of active devices Nc,Nn that the system can support
can also be calculated.

V. NUMERICAL RESULTS
This section presents the simulation studies to evaluate the
presented theoretical analysis of the proposed scheme. In all
simulations, Quadrature Phase Shift Keying (QPSK) is used
for training and data modulation. The elements in channel
matrices are independent and identically distributed.

The BS is equipped withM antennas. The active device is
randomly selected from all N online devices. The number of
current active devices Nc and their set I are known, and the
number of active devices Nn and their set Ine are unknown at
the BS. The data frame length T is also the training length,
T = 5d in all of our simulations.

The parameters are set as (T , d,N ,Nc,Nn,M ) = (1000,
200, 1280, 32, 32, 8). From the simulations, we can see that
the system performance with eight antennas is good enough.
From (27), we can see that the signal recovery performance
will increase with the number of antennas. Thanks to the
block sparse structure of the MIMO system and the long
enough training sequence, the probability of missed detection
of active devices in the next transmission is nearly zero in our
simulations. This is also in line with our theoretical analysis.

A. THE INFLUENCE OF DATA POWER ALLOCATION
FACTOR (λ) ON DATA RECOVERY PERFORMANCE
We first simulate the power allocation scheme to obtain the
optimal allocation factor. The performance of data recovery
for different values of λ is shown in Fig. 6: the optimal data
power ratio λ is about 0.80, this is consistent with the conclu-
sion given by the theoretical formula (31). When the parame-
ters (T , d,N ,Nc,Nn,M ) = (1000, 200, 1280, 32, 32, 8) are
introduced into (31), the theoretical result λopt = 0.82 can
be obtained. The energy of the actual superimposed training
is only a small part of the total energy, then its impact on
data recovery will be small. It can be seen that after the
power allocation factor is optimized, the performance of data
recovery will be significantly improved.

FIGURE 6. The influence of optimal data power ratio on data recovery
performance.

At low SNR, because of the influence of the data that can-
not be recovered correctly on the channel estimation, more
energy should be allocated to the training part. Optimal value
of λ is a little bit smaller than 0.80. This is also consistent
with our analysis.

In order to get the best performance, we set the power
allocation factor to λ = ρ1d

ρ1d+ρ2T
= 0.8 in the later simu-

lation. That is ρ1 = 0.8ρ0, ρ2 = 0.2dρ0/T . The SNR in all
our simulations is defined as Es/N0, where Es is the overall
symbol energy (ρ0) and N0 is the noise spectral density.

B. CHANNEL ESTIMATION AND DATA RECOVERY
PERFORMANCE CHANGES WITH THE INCREASE OF
ITERATIONS
Thenwe simulate the performance of the proposed algorithm,
and we can see that the performance of channel estimation
and data recovery will be improved after each iteration. Both
simulation and theoretical analysis show that the performance
gap between the proposed superimposed training scheme and
perfect CSI is small enough.

As shown in Fig. 7, after each iteration, the data of more
active devices can be recovered and verified correctly, its
impact on channel estimation is smaller, and the performance

FIGURE 7. MSE performance: the interference of data on channel
estimation.
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of the channel estimation is better. At high SNR, the MSE
performance of the channel estimate is very close to the ideal
theoretical value (19). In this case, the data symbols has
negligible effect on the channel estimation. When the SNR
reaches 0 dB, the influence of data recovery error is small
enough. As shown in Fig.8, FER is around 0.01 at 0 dB which
satisfies the condition FER � T

Ncρ1d
. On the contrary, when

the SNR is low, the influence of data symbols on channel
estimation is too large.

As shown in Fig. 8, since the MSE of the channel estima-
tion is getting smaller and smaller, each iteration can further
reduce the impact of the training sequence on data recovery,
then the performance of data recovery will get better and
better. Compared to the ideal situation (perfect CSI, without
superimposed training), the SNR loss of the decoding perfor-
mance is only a gap of about 1.8 dB. This just falls within the
range given by the theoretical formula (35) and (37) which is
[1.7, 4.8], and it is very close to its theoretical lower bound.

FIGURE 8. FER performance: the influence of channel estimation error on
data recovery.

After a few iterations, the performance of the channel
estimation (MSE) and data recovery performance (FER) will
not change. After the third circulation, the MSE and FER
performance is very close to the final performance.

C. FER AND MSE PERFORMANCE: COMPARISON OF A
SIMILAR SUPERIMPOSED TRAINING SCHEME
And then, we compared the gap between the performance of
the proposed CTST scheme and traditional ST scheme. In
order to compare our proposed scheme with traditional ST
scheme, we set the same total energy ρ0, the same power
distribution factor λ=0.8, the same training and data symbols
length T , the same number of active devices Nc,Nn and
antennas M for both scenarios. As shown in Fig. 9, our
proposed scheme has better performance than the traditional
superimposed training scheme, whether at high SNR or low
SNR. Compared to the ideal situation (perfect CSI, without
superimposed training), the SNR loss of the proposed CTST
scheme is smaller.

Accurate data recovery is also a guarantee of active device
detection and channel estimation performance. The channel
estimation error of the proposed CTST scheme is also lower

FIGURE 9. FER the comparison of a similar superimposed training
scheme.

FIGURE 10. MSE: comparison of different superimposed training scheme.

than traditional ST scheme as shown in Fig. 10. In turn,
the performance of data recovery has also improved.

D. THE NUMBER OF ACTIVE DEVICES THAT THE SYSTEM
CAN SUPPORT
Finally, we simulate the performance of the system with the
number of active devices. The number of active devices that
the system can accommodate is given. We assume that the
number of active devices in two adjacent transmissions is
approximately the same Nc = Nn.
As shown in Fig. 11, when the number of active devices

is less than 32, the result of MSE is close to its ideal value.
At this time, active device detection and channel estimation
are very little disturbed by data recovery error. This satisfied
the condition that guarantees system performance.

As shown in Fig. 12, the performance of data recovery will
greatly decrease with the increase of the number of active
devices when Nc,Nn > 32. According to Fig.5, the SINR
threshold should be around γ = 2.5. Under the given simula-
tion parameters, the number of active devices Nc,Nn that the
system can support can be calculated: Nc,Nn < 33 according
to (42) and Nc,Nn < 38 according to (43). The simulation
result of the number of active devices Nc,Nn that the system
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FIGURE 11. MSE with different number of active devices Nc . The
parameters as (T ,d ,N,M,Es/N0) = (1000,200,1280,8,2).

FIGURE 12. FER with different number of active devices Nc . The
parameters as (T ,d ,N,M,Es/N0) = (1000,200,1280,8,2).

can support is also in agreement with the theoretical results.
By increasing the number of antennas M or the extended
length of training sequence T , the system can accommodate
more active devices.

VI. CONCLUSION
In this paper, the new superimposed training scheme can
efficiently improve the utilization of system resources, where
active device detection, channel estimation and data recovery
can be performed simultaneously, and no extra dedicated
resource need to be allocated for channel estimation.

Moreover, the performance of active device detection per-
formance and channel estimation mean square error is also
better due to the use of longer training sequences. Further-
more, because of the good performance of active device
detection, low complexity algorithm can be used, and the per-
formance of data recovery can also be improved. Simulation
results show that the proposed CTST scheme can guarantee
the performance of data transmission, channel estimation and
active device detection.

In conclusion, the transmission scheme can achieve
massive connectivity, which is applicable to future wireless
communication system.

APPENDIX A
BRIEF DERIVATIONS OF (7), (8), (9) AND (10)
Zt ,1HI and HI are independent of each other, the energy of
each term of equivalent noise can be expressed as

E
[
‖Zt‖22

]
= MT , (44)

E
[
‖hnxd‖22

]
= Md, (45)

E
[
‖1HIXdI‖

2
2

]
= NcM σ̄ 2

hid . (46)

Channel estimation error is small enough, we can get
E
[
‖1HIXdI‖

2
2

]
� E

[
‖Zt‖22

]
. With results above, we can

have result in (7).
Define Z′t =

√
etZ0, then each element of Z0 is i.i.d.

circularly symmetric complex Gaussian distributed random
of zero mean and unit variance. For all i ∈ Ine, j /∈ Ine

Ce0= ||rtxHti ||
2
2 = ||

√
ρ2
∑
n∈Ine

hnxtnxHti +
√
etZ0xHti ||

2
2,

Ce1= ||rtxHtj ||
2
2 = ||

√
ρ2
∑
n∈Ine

hnxtnxHtj +
√
etZ0xHtj ||

2
2. (47)

Each device’s channel response vectors are independent,
as well as between them and noise.We can analyze the energy
of each item separately.

||hixtixHti ||
2
2 = T 2

||hi||22, n = i,

||hnxtnxHti ||
2
2 ≈ ||hn||

2
2||xtnx

H
ti ||

2
2 ≈ T ||hn||22, n 6= i

||
√
etZ0xHtj ||

2
2 = etT ||

Z0xHtj
T
||
2
2. (48)

hi ∈ CM×1,hn ∈ CM×1,
Z0xHtj
T ∈ CM×1 in the above

formula, are all with i.i.d. circularly symmetric complex
Gaussian distributed random entries of zero mean and unit
variance.

Ce0 =
1
2

[
T 2
+ (Nn − 1)T + etT

]
||x0||22,

Ce1 =
1
2
[NnT + etT ] ||x1||22, (49)

where x0 ∈ CM×1 and x1 ∈ CM×1 are all with i.i.d. circularly
symmetric complex Gaussian distributed random entries of
zero mean and unit variance. Then, ||x0||22, ||x1||

2
2 all follow a

chi-squared distribution with 2M degrees of freedom. Their
expectation is 2M , and their variance is 4M . With results
above, we can have result in (8) and (9).

Because xti and xtj are mutually independent, after a linear
transformation, they are uncorrelated, Then Ce0 and Ce1 can
be considered uncorrelated. It can be explained by the follow-
ing equation:

Cov(Ce0,Ce1)

= Cov(xtirtHrtxHti , xtjrt
HrtxHtj )

= Cov(xtiRxHti , xtjRx
H
tj )

= Cov(
T∑

m=1

T∑
n=1

Rmnxtimxtin,
T∑
p=1

T∑
q=1

Rpqxtjpxtjq)
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=

T∑
m=1

T∑
n=1

T∑
p=1

T∑
q=1

RmnRpqCov(xtimxtin, xtjpxtjq)

= 0, (50)

where R = rtHrt ∈ CT×T , Rmn and Rpq are elements of
matrix R.
Chi-square distribution of high dimension can be approx-

imately treated as Gaussian distribution according to central
limit theorem. We use the following parameters to show the
distinction between active and inactive devices

P(Ce0 > Ce1) = P(Ce0 − Ce1 > 0) = 8

 µ0 − µ1√
σ 2
0 + σ

2
1

 .
From the equation above, we can easily conclude that with

larger data length, the cross correlation coefficient can be
reduced, so superposition is a good solution to extend the
training symbols to whole time-frequency resource block.

According to our assumptions T � Nn, it can be confirmed
that µ0 � µ1 and σ 2

0 � σ 2
1 . With results above, we can have

result in (10).

APPENDIX B
BRIEF DERIVATIONS OF MSE THEORETICAL
FORMULA (16)
Due to space limitation, we only present the important steps
of the derivations. the equivalent channel matrix error can be
written as (51)

1HIne = HIne − H̃Ine =
Z′tX

†
tIne

√
ρ2

. (51)

Equivalent noise Z′t is independent of the training sequence,∥∥Z′t∥∥22 = ||Z′ + √ρ1 N∑
n∈Iw

hnxdTn ||
2
2 = MT + ρ1MNcσ̄ 2

hid +

(Nc − k)ρ1Md .

MSE = tr(1HH
Ine1HIne )/Nn/M

=
1

ρ1 NnM
tr((Z′tXIne

†)H (Z′tXIne
†))

=
1

ρ1 NnM
tr((XIne

†)H (Z′t )
H (Z′tXIne

†)). (52)

(Z′t )
H (Z′t ) can be approximated as a diagonal matrix

E[(Z′t )
H (Z′t )] ≈ MetI, (53)

where et = 1+ ρ1Ncσ̄ 2
hi
d
T +

(Nc−k)ρ1d
T is the average energy

of each element of Z′t , substituting (53) into equation (52),

MSE =
et

ρ2 Nn
tr((XtIne

†)H (XtIne
†))

=
et

ρ2 Nn
tr((XtIne

HXtIne )−1)

=
et
ρ2
λ̄. (54)

λ̄ is the average of the eigenvalues of matrix (XtIne
HXtIne )−1,

according to the theory of random matrices.

λ̄ =
1

T − Nn + 1
. (55)

With results from (54) to (55), we can have result
in (16) and (19).

APPENDIX C
BRIEF DERIVATIONS OF EXPRESSION OF SINR USING
JOINT DATA RECOVERY SCHEME
The data symbols will be got by LS method, using
equation (23)

S̃ =
B†rd
√
ρ1

(B†
= BH (BBH )−1). (56)

Furthermore, we have the following two results S = B†y =
S+ B†z.
The corresponding estimation error can be written as

1S = B†y− S = B†z, (57)

where z = vec(Z′d ). After normalization, each element of
matrix B satisfies the Gaussian random distribution. Through
the asymptotic result of RMT theorem 2.35 in [36], this is
also a good approximation of the rational small-scale matrix
dimension, and the pseudo-inverse of B. The eigenvalues of
the matrix have an empirical distribution. Define λi as the
eigenvalue of the matrix (BHB)−1. E [λi] = MT

MT−(Nc−k)d
.

E
[{
‖1S‖22

}]
= E

[
tr
{
B†zzH

(
B†
)H}]

≈ edE
[
tr
{
B†
(
B†
)H}]

= edE

[
tr

{((
BHB

)−1)H
}]

= edE
[
tr
{(

BHB
)−1}]

= (Nc − k)dE [λi]

=
MT (Nc − k)ded
MT − (Nc − k)d

, (58)

where zzH = ed IMT + edG. Among them, the diagonal
element of G is a random small Gaussian distribution. And
ed is the energy of each element of z = vec(Z′d ).

Z′d =
√
ρ11HIXId +

√
ρ21HIneXInet + Z. (59)

Z, 1HIXId and 1Hne
I XInet are independent of each other.

E
[∥∥Z′d∥∥22] = E

[∥∥√ρ11HIXId +
√
ρ21HIneXInet + Z

∥∥2
2

]
= ρ1NcMSEMd + ρ2NnMSEMT +MT

=

[
1+

ρ2Nn(1+
(Nc−k)ρ1d

T )+ ρ1Nc dT
ρ2(T−Nn + 1)− ρ1Nc dT

]
MT

= edMT .
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We can get ed = 1+
ρ2Nn(1+

(Nc−k)ρ1d
T )+ρ1Nc dT

ρ2(T−Nn+1)−ρ1Nc dT
.

After normalization, the energy of each element should
be approximately equal, so the channel response for the
k-th device is the average of each device. The estimated error
of the corresponding k-th device is

1sk = 1S[1 : d]. (60)

Its energy can be written as

E
[{
‖1sk‖22

}]
= E

[{
‖1S‖22

}]
/(Nc − k)

=
MTd

MT− (Nc − k)d
. (61)

The corresponding SINR of the k-th device is

SINRk =

∥∥s′k∥∥22
‖1sk‖22

=
(MT− (Nc − k)d)

(
hHk hk

)
ρeff

MT
, (62)

where ρeff =
ρ1
ed
.
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