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ABSTRACT The explosive growth of Internet of Things (i.e., IoT) terminal equipment makes its topology
more complex, which leads to the increasing cost of network research. Recently, the implicit community
structure is widely used to improve the efficiency of research. However, most of the non-overlapping
community detection algorithms have some weakness, such as the large number of community detected
and the obvious scale gap between communities. To address these abovementioned problems, we design
a novel non-overlapping community detection algorithm, named as Pairing, Splitting and Aggregating
algorithm (i.e., PSA). Firstly, in order to improve the accuracy of community division, a new node similarity
index is designed to transform the network into a large number of similar node pairs. Secondly, based
on the connected branches composed of similar node pairs, the network is further divided into several
similar node sets. Thirdly, to balance the scale gap of different communities, the Grasshopper Optimization
Algorithm, (i.e., GOA) is introduced to combine the local attribute (i.e., conductance) and global attribute
(i.e., modularity) together to aggregate similar node sets into potential (or final) communities. Finally,
the experimental results show that PSA not only controls the difference among communities well, but
also outperforms the other four popular algorithms in terms of two metrics. Moreover, we propose a
community-based resource discovery method (or scheme), named as Community-assisted Short-distance-
query Resource Discovery algorithm (i.e., CSRD) to further verify the efficiency of PSA. The results show
that the resource discovery efficiency of CSRD using PSA is better compared with other algorithms.

INDEX TERMS Community detection, grasshopper optimization algorithm, Internet of Things,
non-overlapping community, resources discovery.

I. INTRODUCTION
The Internet of Things (i.e., IoT) [1] connects all kinds of
sensors, controllers and embedded devices in the physical
world to the internet through wired and wireless access,
expanding the boundaries and capabilities of information
systems to obtain information from the physical world. Based
on the traditional information networkwith human semantics,
a new dimension of device with data is introduced to form an
abstract digital ecosystem with the fusion of physical world
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and human information domain. The number of devices in
IoT reached 13.7 billion in 2019 and will reach 20.4 billion
by 2020 [2]. As a result, we face many challenges in a
practical application process, such as a huge number of
devices, limitation of resource utilization, various kinds
of multi-format real-time data and numerous historical
records [3]. Several research teams have used the implicit
community structure to reduce the research cost of the net-
work. In graph theory, community structure refers to the
sub-graph structure in which the inner connection is compact
and the outer connection is sparse [4]. In order to improve
the efficiency and quality of IoT, the IoT network can be
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subdivided by the community detection algorithm into sev-
eral blocks with similar function or structure.

The community detection algorithms can be divided into
non-overlapping community detection algorithms and over-
lapping community detection algorithms [5]. The former
has advantages in time complexity and space complexity,
which is more suitable for the IoT environment. Currently,
the widely used non-overlapping community detection algo-
rithms can be divided into the following three categories
according to the different reference attributes, as global
attribute-based method, local attribute-based method and
hybrid method. (i) Global attribute-based method can accu-
rately assign nodes with similar characteristics to the same
community, while the high computational complexity makes
them only suitable for small-scale network environments,
not for the IoT environment with such a large number of
devices; (ii) Compared with the former, the method based
on local attributes can reduce the complexity of computation,
while it will lead to a large gap between the sizes of com-
munities (i.e., the number of community nodes) due to the
local optima dilemma. The limitation will seriously affect the
research quality of IoT; (iii) The hybrid method is superior
to the global attribute-based method in time complexity and
suitable for large-scale networks, and superior to the local
attribute-based methods in accuracy. However, this method
still has much room for improvement;

In order to solve the problems of the large number of
community detected and the obvious scale gap among com-
munities, a novel non-overlapping community detection algo-
rithm is proposed in this paper, named as Pairing, Splitting
and Aggregating algorithm (i.e., PSA), which can balance the
scale gap of different communities and reduce the number of
communities.

The main contributions of this paper are as follows:
(1) In order to assign the nodes with the same characteris-

tics into the same community, a new index used for measuring
the attraction among nodes is designed.We use this new index
to improve the most commonly used node similarity index.

(2) In order to avoid the local optima dilemma, we intro-
duce the Grasshopper Optimization Algorithm, (i.e., GOA)
in the aggregating phase. This optimization scheme makes
it easier to find the optimal merging location for each similar
node set, enhances the global searching ability of the algo-
rithm, and improves the accuracy of merging process.

(3) In order to improve the efficiency of resource discovery
in IoT environment, we propose a community-based resource
discovery method, named as Community-assisted Short-
distance-query Resource Discovery algorithm (i.e., CSRD).
This new method redesigns the functions of each node and
realizes a new distributed resource discovery mechanism.
Terminal devices in IoT can search and interact autonomously
according to their requirements, thus forming a distributed,
loosely coupled and easily expanded resource discovery
system.

This paper is divided into six parts: the first part, we
introduce the background of community detection in IoT,

and classify the current community detection algorithms.
In the second part, we introduce the related work of com-
munity detection. In the third part, we first introduce some
knowledge about community detection in order to help us
understand the rest of the article better, and then introduce the
specific operation steps of PSA. In the fourth part, we com-
pare the experimental results of PSA with other four methods
to prove that PSA’s stability and accuracy. In the fifth part,
we apply the community detection algorithm to the resource
discovery domain of the IoT, and carry on the experimental
proof. Finally in part six, we briefly summarize this article.

II. RELATED WORK
This section first introduces some related work of swarm
intelligence optimization and then focuses on three types of
community detection algorithms, and evaluates the relative
merits of these algorithms.

A. THE SWARM INTELLIGENCE OPTIMIZATION
The main idea of Particle Swarm Optimization(i.e., PSO)
is study the clustering behavior of birds, using the char-
acteristics of bird population attracted by habitat to guide
human decision-making process [6]. Chen et al. [7] add
two genetic operators based on union-find into PSO process,
namely crossover and mutation operations, which update the
velocity and position of particles and further enhance the
search ability. Liu et al. [8]–[10] define the Global Rout-
ing problem as a multicommodity flow problem, and adopt
the partitioning strategy and PSO to reduce the size of the
Global Routing problem.GOA [33] is inspired by the foraging
behavior of grasshopper colony and can solve real problems
with unknown search spaces which is consistent with the
application scenario in this paper.

B. THE OVERLAPPING COMMUNITY DETECTION
ALGORITHMS
Cheng et al. [11], [12] proposes an novel overlapping com-
munity change-point detection based on a signal processing
framework and a decision function-based strategy, which
can ensure higher accuracy and a lower false positive rate.
Guo et al. [13] proposed a local community detection algo-
rithm to discover communities accurately based on expanding
the seeds by fitness function with internal force between
nodes. Liu et al. [14] proposed an approach based on coarsen-
ing strategy and the local overlapping modularity to quickly
detect overlapping communities. Although they are good
methods to study the network structure, the high time and
space complexity makes it difficult to adapt to the IoT net-
work research.

C. THE NON-OVERLAPPING COMMUNITY DETECTION
ALGORITHMS
1) THE GLOBAL ATTRIBUTE-BASED COMMUNITY
DETECTION ALGORITHM
There are many algorithms for community detection based
on global attributes. Girvan-Newman (GN) algorithm [15]
performs community detection by gradually deleting edges
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with high edge betweenness, which greatly promotes the
development of community detection to a certain extent.
Although the cost of the Algorithm is very high, the accuracy
of the result is improved greatly. Arasteh and Alizadeh [16]
proposes a new improved method of GN called the proposed
methods of GN (GNp), which optimizes the definition of the
edge betweenness and can delete multiple edges in an itera-
tion. Blondel et al. [17] maximize the modularity by using a
greedy algorithm andmerging modules, and propose Louvain
Algorithm whose time complexity is the square of the net-
work size. Radicchi and Filippo [18] proposed a hierarchical
clustering method called Kernighan-Lin (i.e., KL), which
can divide the network into two parts with similar structure.
Lin et al. have also combined KL with integer program-
ming [19] methods for community detection.

The algorithms which only rely on global attributes often
take the whole network structure as a parameter until all
community structures are detected, which leads to the high
complexity and it is not suitable for large-scale networks with
complex structures like IoT [20], [21].

2) THE LOCAL ATTRIBUTE-BASED COMMUNITY DETECTION
ALGORITHM
Random walk based algorithms are also effective local
attribute-based methods. It is assumed that a random walker
prefers to stay in the interior rather than the exterior of
community. RandomWalk with Restart [22] uses Markovian
random walkers to explore the networks. With certain prob-
ability, the walkers jump back to seed nodes. Some commu-
nity detection algorithms reduce the complexity of detecting
community structure by introducing local attributes such as
node similarity and adjacency matrix. Raghavan et al. [23]
put forward a good method called label propagation algo-
rithm (i.e., LPA) which has a nearly linear time complex-
ity, but the stability of LPA algorithm is not satisfactory.
Z̃alik and Rizman [24] has designed a bottom-up community
detection method, which can achieve high accuracy by com-
bining adjacent neighbors into the most similar set of nodes.

The local attribute-based community detection algorithm
can achieve local optimal processing of network structure, but
from the perspective of global, it turns tomake relatively large
differences in the number of nodes between communities,
which not only causes the imbalance between the communi-
ties, but also is disadvantageous to the network research later.

3) THE HYBRID DETECTION ALGORITHM
The hybrid detection algorithm synthesizes the two attributes,
so it can detect community structure accurately and has a
low time complexity. Query-biased Densest Connect Sub-
graph method [25] weights nodes by random walk. Then
the local community is selected to minimize a predefined
goodness function. Colored Random Walk [26] is also a
typical random walk based algorithms which find node as
seed with global attribute in the beginning and then detect
the communities with local random walk. Liu and Ma [27]
proposed a hierarchical method called the divide and

agglomerate algorithm (i.e., DA) which detect the communi-
ties by dividing the networks into many part and then merge
them refer to the modularity. Although DA combine the local
and global information, it ignores the node whose degree
equals to 1, which is not conducive to practical application.

Although they are good methods to detect communities
in complex network, this kind of methods is prone to local
optimization and slow convergence because of greedy algo-
rithm, which leads to the detection of a large number of com-
munities, making it difficult to find a particular community
structure.

In order to solve the problem of imbalance of commu-
nity structure, we proposed a hybrid detection algorithm
named PSA, which can be applied to large-scale networks
and improve the community balance compared with other
algorithms.

III. PAIRING, SPLITTING AND AGGREGATING
ALGORITHM
A. RELEVANT KNOWLEDGE ABOUT COMMUNITY
DETECTION
In this section, we systematically describe the community
detection problem and review some of its key concepts.

1) PROBLEM STATEMENT
Given a undirected graph G = (V,E) with a node set V and
an edge set E, the graph can be represented as an adjacency
matrix A, where Aij = 1 if there is an edge between node i and
node j, orAij = 0 if there is no edge between node i and node j.
The purpose of community detection is to find the node set
C1C2 . . . . . .Ci, such that C1 ∪C2 ∪ . . . . . .∪Ci = V , where
the node in set Ci has more links with the node in Ci than the
node in other set.

2) MEASURES OF NODE SET QUALITY
There are some popular measures for gauging the quality of
a node set: Cut, Ncut, and conductance [28]. Let us define
ϕ (A,B) to be the number of edges between node sets A
and B.

Cut: The cut of set A is defined as the number of edges
between set A and its complementary set. which can be write
as follow:

cut(A) = ϕ(A,V\A) (1)

Ncut: The normalized cut of set A is defined by the cut with
volume normalization as follow

N (A) =
cut(A)
ϕ(A,V )

(2)

Conductance: The conductance is a classical metric to
measure the quality of a community, which is defined to be
the cut divided by the least number of edges incident on either
set A or V\A.

ϑ(A) =
cut(A)

min (ϕ(A,V ), ϕ(V\A,V ))
(3)
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From the definition we can conclude that the conductance
of A is always greater than or equal to the Ncut of A, and can
avoid that the set A has too much nodes and edges. Farther
more, we define the conductance of node set which is made
of many connected components.
Definition 1: Given a node set C which has more than

one connected components, C = C1 ∪ C2 ∪ C3 ∪ . . . ∪ Ci,
the conductance of C can be signified as follow:

θ (C) = max(ϑ(Ci)) (4)

3) MEASURES OF COMMUNITY QUALITY
To evaluate our PSA, we need some criterions for measur-
ing the accuracy of community partitions. One of the most
wide-used index is the modularity Q proposed by Newman
and Girvan [29].

Q =
1
2m

∑
vw

[
Avw −

kvkw
2m

]
θ (cv, cw) (5)

where m = |E|, A is the adjacency matrix of G, and
θ (cv, cw) = 1, when node v and node w are in a same
community, otherwise, θ (cv, cw)= 0.

If we get the network data with the ground truth, another
popular index called normalized mutual information (NMI)
should be used, which measures how close are the detected
communities and the ground truth [30].

NMI (X |Y ) =
H (X)+ H (Y )− H (X ,Y )

[H (X)+ H (Y )] /2
(6)

where X is the ground truth, Y is the predicted communities
by algorithms.H(X, Y) mean the entropy of community X and
the joint entropy of X and Y respectively.

4) SIMILARITY INDEXES
Many indexes, like jaccard, only concentrate on the propor-
tional relation between the same neighbors and the whole
neighbors ignoring the differences between each nodes [31],
[32]. While the AA index [27] takes the differences between
nodes into account, but the scarcity of proportional relation-
ship leads to a great deal of uncertainty in the result, for
example, in some cases the result of low-degree node is much
more higher than the high-degree node which has more same
neighbor [34].

φJaccard =

∣∣CN v1v2

∣∣∣∣N v1 ∪ N v2

∣∣ (7)

φAA =
∑

v∈CN v1v2

1
lg (Kv)

(8)

In order to solve this problem, we propose an attractive
concept, and design a new similarity standard:

Attraction 0(vi, vj) refers to the AA index which outstand
the difference between nodes of different degrees. We mod-
ified the denominator to make sure that the denominator
makes sense when Kv = 1.

0(vi, vj) =
W (vi, vi)
lg(Kvi + 1)

(9)

where W (vi, vj) = 1 when there is a connection between vi
and vj, and W (vi, vj) = 0 when there is no connection.
We propose a new similarity index by combining the

0(vi, vj) and jaccard index.

8PSA(vi, vj) =

∑
vx∈CN (vi,vj)

[0(vx , vi)+ 0(vx , vj)]∑
vx∈N (vi,vj)

[0(vx , vi)+ 0(vx , vj)]
(10)

Nowadays, the most popular similarity index Jaccard is
only concerned with the consistency of neighbors between
two nodes, ignoring the differences between neighbors. But
in the network, each node has its own influence, the compu-
tation of the same value will affect the accuracy of the node
similarity. In addition to the proportional relation of jaccard,
8PSA has improved it by introducing 0(vi, vj), which makes
every neighbor node participate in similarity calculation to
increase the accuracy.

5) GRASSHOPPER OPTIMIZATION ALGORITHM
Like most other swarm intelligence optimization meth-
ods, GOA has two steps of exploration and development,
which ensures that the algorithm has strong global search-
ing ability and can effectively avoid stagnation in local
optimization [36]. The mathematical model for simulating
grasshopper’s behavior in nature is as follows:

xi(t + 1) = Si(t)+ Gi(t)+ Ai(t) (11)

where xi(t + 1) represents the position of the grasshopper i
in the (t+1) iteration, Si(t) represents the interaction between
grasshoppers,Gi(t) andAi(t) represent gravitational andwind
effects.

In this paper, we ignore the influence of wind, set the mod-
ularity Q as the gravity factor Gi(t), and set the conductance
variation of two clusters as the interaction Si(t) between two
clusters. So this model is changed to:

xi(t + 1) = max(1θi→j(t)+1Qi→j(t)) (12)

where ci and cj is the position of grasshopper i and j. cluster cj
is one of the neighbors of cluster ci, cluster ci is always turn to
merge with the cluster cj which can improve the conductance
and modularity, and c is a parameter to control the process
which is defined as follow:

c = n− t
n
T

(13)

where n is the number of nodes in graph G, and T is the
maximum number of iterations which is equal to (n-2) so that
the number of communities is no less than 2 in this paper.
We can generalize the above equation as follow:

xi (t + 1) = max

 (n− t
n
T
)

∗(θ (ci+cj) (t)−θ (ci) (t))
+1Qci→cj (t)

 (14)
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FIGURE 1. The framework of PSA.

B. PAIRING, SPLITTING AND AGGREGATING ALGORITHM
Our proposed method PSA is divided into three phases: Pair-
ing Phase, Splitting Phase and Aggregating Phase. In the
Pairing Phase, we simplify the network G by computing the
similar node pairs, and in the Splitting Phase, we compute
the connected branches by Depth-first Algorithm to form the
similar node set C, in the Aggregating Phase, we aggregate
the similar node set C with GOA to improve the modularity.

Zachary’s karate club [37] is the most popular empirical
network with ground truth in the domain of community detec-
tion, which is compiled by Zachary when he was studying
the social relationships of karate members at American uni-
versities from 1970 to 1972. The network has 34 nodes and
78 edges, each node represents a member of the club and each
edge represents the interaction betweenmembers. This club is
split into two parts by the coach Mr. Hi and the club manager
John.

Fig. 1 shows the overview of PSA. Fig. 2 shows the pro-
cesses of PSA, where 2(a) is the original network of Karate,
2(b), 2(c) and 2(d) show the three phases of PSA in commu-
nity detection.

1) PAIRING PHASE
Each network has a number of nodes that are extremely
similar but not connected to each other, such as node 18 and
node 20 in Karate, which, taking the whole network into
account, must belong to one and the same community. So our
task in this phase is to find theMost SimilarNode (i.e.,MSN),
which is defined as follow:
Definition 2: Given a graph G = (V ,E) , vi ∈ V ,

the most similar node vj is the node which can reach the
maximum value of 8PSA(vi, vx), which can be represent as
MSN (vi) = vx .
Definition 3: Given a graph G = (V ,E) , v,w ∈ V ,

the hops between node v and node w is defined as the number
of node from node v to node w.
Proposition 1: Given a graph G = (V ,E) , vi ∈ V ,

the distance between vi and MSN (vi) = vx is no more than
two hops.

Proof: TheMSN (vi)must have more than one common
neighbor with vi, and there maybe have edge between vi and
MSN (vi), so the Proposition 1 is true.
Proposition 2: Given a graph G = (V ,E) , vi ∈ V ,

Ni is the neighbor node set of vi. We can get MSN (vi) by
traversing Ni, who is the neighbor nodes of the node in set Ni
(the two-hops nodes of vi).

Proof: The distance betweenMSN (vi) and vi is no more
than two hops, so it’s not necessary to traversing all the
node in V to find the MSN (vi), otherwise, we only need to
traversing the two-hops nodes of vi.

Algorithm 1 Pairing Phase Algorithm
Input: Graph G = (V, E), the adjacency matrix A,the
similarity matrix SM
Output: node pair set S
01: Initialize SMi,j = 0 for i, j ∈ v
02: For each node in v:
03: For i, j in the neighbors of node:
04: If SMi,j == 0:
05: Update SMi,j = φ(i, j)
06: Find the node j for every node i which can reach the
max value of SMi,j
07: Add (i, j) to the node pair set S

Wecan draw a conclusion by proving the proposition above
that we can find the most similar node by traversing all its
two-hops nodes, it may be too expensive for seeking theMSN
for a single node, but when it comes to the whole graph,
we can avoid a lot of repetitive computation by marking the
node pairs calculated.

As the Algorithm 1 shows that the Pairing Phase will divide
the whole graph into plenty of node pairs which are consisted
of the most similar nodes. Firstly, the similar matrix SM is
initialized, and then all the nodes are traversed: for each
node traversed, the similarity of any two nodes i and j in
its neighbor node will be calculated and the result will be
recorded to SMi,j. Finally, the most similar node pairs of each
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FIGURE 2. The community detection in Karate with PSA.

node are calculated according to the matrix SM. Noted that a
node may have more than one nodes which can reach the max
value of similarity. For example, node 14 in karate network
has four most similar nodes, 15, 18, 20 and 22. In this phase,
we split the entire network into multiple similar node sets
with the references of the previously discovered similar node
pairs.

Algorithm 2 Splitting Phase Algorithm
Input: The node pair set S
Output: The similar node set C
Initialize the similar node set C, temporary set count and
stack
01: Constructing undirected graphG′ = (V ′,E ′) with set
S
02: For each node in V ′:
03: If node is not in count:
04: Initialize temporary set temp
05: Add node to count, stack, temp
06: While stack is not empty:
07: For element in stack:
08: Add all the neighbors of element to count and
stack
09: Remove element from stack
10: Add temp to set C

2) SPLITTING PHASE
In Algorithm 2, we construct a new topological graph using
similar node pairs, and then combine similar node pairs with
the same node to form a similar node set. In the first step,
we take an unlabeled node in the graph and add it to the
temporary set temp and stack. In the second step, we label
and delete the nodes in the stack and add their neighbors to the
stack, when the number of nodes in count is zero, the nodes
in temp is moved to set C. Repeat this step until there are no
unlabeled nodes in the graph. At this point, the whole network
is split into multiple similar node set C.
Due to the particularity of Algorithm 1, there may be

no connection between similar node pairs, so the nodes in
the similar node set output in this phase are not necessarily
connected.

3) AGGREGATING PHASE
We get multiple similar node sets (clusters) after the
algorithm 1 and 2, and in this phase, we will aggregate
these clusters through GOA and finally get the community
structure.

In the Aggregating Phase, we set the number of similar
node sets as the number of the grasshoppers, and then traverse
all the grasshoppers to calculate its location of the next iter-
ation. When the grasshoppers move from i to j, the cluster i
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Algorithm 3 Aggregating Phase Algorithm
Input: Graph G = (V, E), the similar node set C
Output: Communities
01: Do{
02: For cluster_A in similar node set C:
03: Remove cluster_A from set C
04: Find the clusters nearby as NeighborSet
05: For cluster_B in NeighborSet:
06: cluster = cluster_A + cluster_B
07: Calculate cluster_B with the minimum
θ (cluster)
08: Remove cluster_B from set C
09: Add cluster to set C
11: }While the modularity of the set C is improving
12: Output set C as Communities

will aggregate with the cluster j. The Algorithm 3 will stop
when each grasshopper can not move.

As shown in Fig. 1(c) and Fig. 1(d), the 9 clusters out-
put by Algorithm 2 are merged into two communities by
Algorithm 3, which is the same as the ground truth of Karate.

IV. SIMULATION METHODOLOGY
To evaluate our PSA’s performance, both the real world net-
works and the synthetic networks with ground truth are used,
and four other community detection algorithms include DA,
GNp, Louvain, LPA are compared with PSA method. All the
experiments are taken on a PC with an intel (R) 3.6GHZ
Xeon(R) W-2133CPU and 32G RAM.

A. THE REAL-WORLD NETWORKS
Six real-world networks whose nodes ranges from tens to
tens of thousands are used to evaluate PSA as well as other
four community detection methods. The results of com-
munity detection and the network description are shown
in Table 1, 2 separately.

TABLE 1. Comparisons of modularity values on real-world networks.

Football network (the American collages’ football net-
work) is divided into 12 communities by PSA, which are
almost the same as the reality. Although, it is not much dif-
ference between PSA and other four methods in modularity,

TABLE 2. The statistics of real-world networks.

PSA get a better result in NMI value compared to the ground
truth.

Polbooks network (the political books network) was col-
lected by the Krebs where the nodes represent 1005 books
about American politics which can be divide into 3 classifica-
tions according to the attitude including conservative, liberal
and neutral. None of the five methods get the correct number
of Nc, but PSA get the preferable consequence in both the
modularity and the NMI value.

Email network (the E-mail network) was collected by
Alexandre Arenas, which describes the E-mail interchanges
between members of the University Rovira i Virgili (Tarrag-
ona). The Louvain algorithm performs best, while the LPA
can hardly accomplish the community detection, and PSA
gets the second best value of modularity.

Facebook network (the Facebook network dataset) was
collected and compiled by Mcauley and Leckovec which is
comprised of 4039 nodes and 88234 edges. From the results
in table 5, there is no much difference between Louvain and
PSA, while Louvain get the best result. As a big network
with a high average degree, the node in Facebook often has
a complicated relationship with other nodes, although LPA
get the second high value of modularity, but the number of
communities it detected is three to seven times than that of
other methods.

The hep-th network (the High Energy Physics-Theory col-
laboration network) was compiled by Leskovec etc. Louvain
got the best results out of the five algorithms, but there was
a problem with too many communities. And the number of
communities with fewer than 5 nodes is 10% of the total num-
ber of communities Louvain found, which is 5% inDA, 7% in
GNp and 3% in LPA. Although the modularity of PSA is not
as high as that of other algorithms, the community structure
of PSA is well balanced, and there is no such community.

DBLP network represent the co-authorship network of
the DBLP computer science bibliography. Nodes are authors
and there is an undirected edge between the two nodes if
the corresponding authors have published at least one paper
together. PSA get a best result in modularity and least number
in communities. Louvain and DA also perform well in DBLP,
while GNp and LPA have difficulty in detect the community
structure.

B. THE SYNTHETIC NETWORKS
The LFR benchmarks [41] is used as the synthetic networks
which have power-law distributions of both node degree and
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FIGURE 3. Comparisons of NMI values of algorithms on LFR networks with different scales of µ.

the community size. Therefore, it is always considered as a
substitution of real-world network with community structure
and is duly to evaluate the performance of community detec-
tion algorithms. The networks LFR benchmarks produced
have some parameters which include the number of nodes n,
the average degree < k >, the power-law exponents for
the degree α and the community size distribution parame-
ter β, the mixing parameter µ, where the mixing parameter
µ represents each vertex shares a fraction µ of its links
with the other vertices of its community and a fraction µ
with the other vertices of the network. The higher value
of µ, the more ambiguous community structure. the param-
eters of LFR networks in following calculation are set as
follows.

(1) The number of nodes n: Set n = 1000, 5000,
10000 respectively.

(2) The average degree < k >: Set < k > = 15 and
the upper bound of the degree of the nodes in LFR networks
kmax = 0.1n.

(3) The power-law exponents for the degree α: Set α = 2.
(4) The size of the communities β: Set β = 1 or 2 respec-

tively.
(5) The mixing parameter β: Set β = 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8.

(6) The maximum and minimum for the community size
maxc andminc: Setmaxc= 0.1n,minc is set tominc= 10 for
n = 1000, and minc = 20 for n = 5000 and n = 10000.
For each set of parameters, 72 networks are generated to

evaluate the performance of PSA and the result is shown
in Fig. 3, 4 and 5. Fig. 3 and Fig. 5 show that with the mixing
parameter µ increases, the community detection is getting
more and more difficult for the algorithm we tested, because
the greater µ means the more ambiguous network structure.

Fig. 3((a), 3(b) and 3(d) shows the result for LFR net-
works with the same community distribution and different
networks’ size respectively. PSA is represented by the red
dotted line with balls are almost get the best result when
µ is range from 0.4 to 0.6, other algorithms have better
performance when µ is less than 0.3 whose value of NMI is
almost reach to 1 for NMI. When µ equals to 0.5, LPA begins
to have a sharp decrease. When µ = 0.6, all the results have
a same downward trend. The NMI value of LPA fall to 0 when
µ = 0.7 while another four algorithms behave normally.
When µ = 0.8, all the algorithms don’t perform very well
while the NMI value of PSA is a little higher than others.

Fig. 3(b) and 3(c) exhibit the results of increasing com-
munity size distribution parameter β from 1 to 2. The result
in Fig. 3(b) and 3(c) is nearly the same, which means the
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FIGURE 4. Comparisons of NMI values of algorithms on LFR networks with different scales of n.

FIGURE 5. The structure of node.

difference in community sizes distribution parameter β have
no impact on the accuracy of the algorithms.

In order to further compare those algorithms for discover-
ing communities in blurred networks, we set networks’ size
range from 1000 to 10000 with µ = 0.5, 0.6 and β = 1, and
the results are shown in Fig. 4. Fig. 4(a) shows the results for
µ = 0.5, where PSA and Louvain perform better than others.
When N ranges from 3000 to 7000, the NMI results of PSA
is a little better than Louvain’s. With the increasing of n, all
algorithm perform steadily except LPA, who has difficulty
to find the community structure in this condition. Fig. 4(b)
depicts the comparison for µ = 0.6. In this condition, PSA,
Louvain and DA have a analogical performance, and PSA get
the better values of NMI when n = 4000, 6000.

C. COMPARISON OF REAL-WORLD NETWORKS AND
SYNTHETIC NETWORKS WITH GROUND TRUTH
We collect some real-world data and generate four LFR
networks with ground truth in order to evaluate PSA. The
results is shown in Table 3 and Table 4 show the statistics of
LFR networks. The consequences show thatPSA outperforms
others or have a same performance with other algorithm.

TABLE 3. Comparisons of NMI values on networks with ground truth.

TABLE 4. The statistics of LFR networks.

D. THE COMPLEXITY ANALYSIS
PSA is a three-phases algorithm where the pairing phase
first forms the most similar node pairs and then the split-
ting phase and the aggregating phase will merges them into
communities. In the pairing phase, calculating similarity is
a important step of finding the similar node pairs, and the
similarity calculation will reduce to O(1) with the help of
hash table. Therefore, in the overall network, the comparison
number is

∑
(v,w∈E)

min(dv, dw) < dmax |V |and the similarity

calculation’s complexity is O(dmax |V |), where dmax is the
max degree in the graph. In the splitting phase, the calcula-
tion’s complexity is O(k − 1) where k is the number of the
similar node pairs. In the aggregating phase, the calculation’s
complexity is O(e(m− 1)2), where m is the number of the
connected brunches, and e is the maximal exterior edges
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of a connected brunch. So the calculation’s complexity is
O(dmax |V | + (k − 1)+ e(m− 1)2).

V. APPLICATION
A. NETWORK STRUCTURE FOR RESOURCE
DISCOVERY IN IoT
In this chapter, we simulate a network structure of IoT based
on 4 social behaviors, and then demonstrate the feasibility of
applying community detection to resource discovery in IoT.

1) SOCIAL BEHAVIOR IN IoT
As a social network, the network of IoT must meet the char-
acteristics of the social network, in order to better simulate
the Internet of things, we set up two social behavior:

Social Behavior 1: In social networks, people with similar
interests tend to form small groups (communities).

The community structure is used to simulate the small
groups in Social Behavior 1, and the community detection
algorithm which can divide the whole network into many
parts according to the network topology structure can be used
to discover the community structure in the network.

Social Behavior 2: People in social networks make new
friends through community or friend referrals. They also tend
to leave their contact information after socializing so that
they can contact each other quickly afterwards.

In order to simulate this social behavior, each node in
the IoT network has to set aside some memory space as
Index Table to record other nodes’ address. Once a node has
some resource requirements, the node can access the resource
directly through the Index Table.

To prevent infinite propagation of request, we introduce the
concept of time-to-live (TTL) [42]. If the propagation distance
of resource request exceed TTL, the request could not be
distributed by the other node.

The main objects of the IoT are all sorts of devices and
sensors which can be supposed to be honest and uninquisitive.
So base on this peculiarity we designed Social Behavior 3.

Social Behavior 3: The people in the social networks are
honest, and the information passed between different commu-
nities is authentic and reliable.

In order to simulate the resource discovery process, each
node in the network is required to be honest, not to provide
false information to other nodes, and give feedbacks after
receiving the resource request [43], [44]. This is the basis for
various interactions between nodes and communities.

Social Behavior 4: Each person in the community is well
informed about the information of others, and people in
the community tend to help each other when a request for
resources arises within the community.

After dividing the whole network into communities using
the community detection algorithm, we set each node to store
not only the index of its neighbors, but also the index of the
node which is in the same community [45]. In addition, each
node records the type of label within the community in order

to respond to a request for resource discovery in a timely
manner.

In reality, there is no device has unlimited space for
storage [46], [47], so we limit the number of indexes to three
times of the average degree. If there are too many nodes in
a community, the Index Table of a single node will be dif-
ficult to cover the whole community, which will hamper the
query [48], [49].

Based on the above four social behaviors, we put forward
the node structure which is shown in Fig. 5.

2) INDEX TABLE INITIALIZATION
When the community detection algorithm divides the net-
work into several parts, each node will record the address of
the node in its community into its Index Table. In addition,
if the Index Table has extra space, the node will randomly
copy portions of the Index Table of its neighbor nodes until
reaching its maximum capacity.

3) COMMUNITY-ASSISTED SHORT-DISTANCE-QUERY
RESOURCE DISCOVERY
We propose the CSRD to apply community to resource dis-
covery which is shown in Algorithm 4.

Algorithm 4 Community-Assisted Short-Distance-Query
Resource Discovery Method
Input: Communities, nodeA, labels required, TTL
Output: The index of nodes
01: Initialize Coms = null set, Targets = labels required
02: Find the nodes of nodeA’s community as ComA
03: If label in Targets can be searched in ComA
04: Removed the label searched from Targets
05: Return the index of the node with the label
06: Else:
07: Add the ComA to the Coms
08: Do{
09: For Community in Coms:
10: Find the Communities nearby as Neighbor-
Com
11: Ask the nodes of NeighborCom
12: If label in Targets can be searched in Neigh-
borCom:
13: Removed the label searched from Targets
14: Return the index of the node with the label
15: add the Communities with label to Coms
16: Else:
17: Add all the Communities in NeighborCom
to Coms
18: }While the times of delivery is less than TTL and
Targets has more than one element

To better explain our Algorithm 4, we set TTL = 6 for
resource discovery, and simulated the resource discovery pro-
cess with Fig. 6 as an example. Each node in Fig. 6 represents
a community, and the line between the two nodes indicates
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FIGURE 6. An example of CSRD.

that there are some indexed links between the two commu-
nities. The red node represents the source community with
labels required, black node represents the target community
with all of the labels required, and the blue node represents the
transition community with only some of the labels required,
the white nodes represent the communities that can not meet
the requirements of the label.

(i) d = 0 and d<TTL: In the beginning, a node in the
red community with a resource request checks whether the
label request can be satisfied within the community, and if
not, initiates a query broadcast to the surrounding community
with the help of other nodes in the community;

(ii) d = 1 and d<TTL: After the first step, the nodes
in the red communities will request the nodes in the blue
communities to conduct the second query after receiving the
responses.

(iii) d = 2 and d<TTL: After the second step, the nodes in
the red community received responses from the nodes in the
blue community, and in the same way as (ii), the nodes in the
blue community continued to be requested for the next round
of queries.

(iv) d = 3 and d<TTL: After the third step, the node in red
community gets a response that the black communities can
meet its labels requirements.

B. EXPERIMENTAL SIMULATION AND PERFORMANCE
COMPARISON
1) LABEL GENERATION AND NETWORK CONFIGURATION
Due to the variety and complexity of IoT devices [50], [51],
we set the number of nodes n range from 1000 to 8000.
In the network generation phase of the simulation experiment,
we assume that there is a Data Sharing Platform (i.e., DSP)
that could provide data interaction [52], [53]. First, we gen-
erated 100 labels and randomly assigned them to 0.1n data
where each data assigned two labels, thenwe randomly assign
0.1n data to n nodes. After that each node uploads its address
and data to the DSP [54], [55], and tries to download exactly
or partially the same data with a probability P = 90%, try to
download data which is completely different with a probabil-
ity 1-P = 10%. When the data is downloaded by the node,
the address is also downloaded in passing. To ensure that the
data of each node can be queried by the others, we assume
that data of zero download will be displayed preferentially
on the DSP. In reality, the resources of devices in IoT are
not completely balanced [56], [57], so the data with the most
downloads is more likely to be download by other node when
each type of data has been downloaded at least once. TheDSP
will close the data upload and download channel when there
is no 0 download data in the network and all data associated
with a label reaches 0.1n downloads. Then each node builds
a connection based on the address it downloaded, eventually
forming a network structure. Table 5 shows some properties
of the test network.

2) PERFORMANCE COMPARISON
In this chapter, we set TTL = 6 and use 8 test networks to
examine the efficiency of resource discovery of PSA, DA,
GNp, Louvain, and LPA. We randomly select 100 node pairs
which have completely different labels in the network, and
one node as the source node and the other node as the target
node for resource discovery [58]. Then we define the average
path length of searches for resource discovery as the average
distance of queries between all the source nodes and their
corresponding target nodes, define the success rate of queries

FIGURE 7. Comparisons of different algorithms in resources discovery on the Testworks.
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TABLE 5. The statistics of test networks.

as the percentage of the total number of queries whose query
distance is less than TTL.

The data in Fig. 7(a) shows that the average path length
of searches for resource discovery increases as the number of
nodes increases and the structure of the community grows.
The average path length of community structure discovered
by PSA is always at a low level, and the efficiency of DA
algorithm is closed to PSA. However, the community struc-
ture generated by LPA, Louvain and GNp algorithm does
not perform well in resource discovery due to the excessive
number of node and unbalanced community structure.

The data in Fig. 7(b) shows that as the number of nodes
increases, the network structure becomes more complex and
the success rate of resource discovery decreases. However,
the community structure discovered by PSA is more stable
and successful in resource discovery, and the effect of other
algorithms is not as good as PSA because of the great differ-
ence of nodes in the community structure.

VI. CONCLUSION
The community structure generated by the current non-
overlapping community detection algorithm often has a obvi-
ous gap in the number of nodes between communities,
and when the community detection algorithm is applied to
resource discovery in the Internet of things, this quantita-
tive gap greatly reduces the efficiency of resource discovery.
In order to solve this problem, we put forward the Pairing,
Splitting and Aggregating algorithm, (i.e., PSA), which is
designed to balance the differences of communities detected.
In the first stage, we raise the Pairing Phase Algorithm to find
the most similar nodes for each node in the network to gen-
erate multiple similar node pairs. Then in the second stage,
we split the whole network into multiple similar node sets
with similar node pairs as reference. Finally, we merge these
similar node sets into a community structure based on GOA.
The experimental results show that PSA has the same per-
formance as the current popular non-overlapping community
detection algorithm, while the community structure detected
by PSA is more balanced in structure and number of nodes. In
addition, we also simulate the resource discovery process in
the IoT, and propose the Community-assisted Short-distance-
query Resource Discovery (i.e., CSRD), the experimental

results show that the community structure detected by PSA
is more suitable for resource discovery in IoT.
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