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ABSTRACT Multiple unmanned aerial vehicles (UAVs) can compensate for the performance deficiencies
of a single UAV in multi-access edge computing (MEC) systems, thus providing improved offloading
services to user equipments (UEs). In multi-UAV enabled MEC systems, the offloading strategy and UAVs’
trajectories affect the fairness of both UEs and UAVs, which affects the UE experience and UAVs’ existence
durations. Therefore, we investigate fairness-aware offloading and trajectory optimization in the system.
To ensure fairness of energy consumptions (ECs) for both UEs and UAVs, we minimize the weighted sum of
the maximum EC among UEs and the maximum EC among UAVs subject to the task delay, the offloading
strategy and UAVs’ trajectories constraints. Despite the non-convexity of the original formulated joint
optimization problem, we transform the problem into two sub-problems and solve them one by one. Finally,
an iterative optimization algorithm is proposed to alternately optimize the offloading strategies and theUAVs’
trajectories. Simulation results show that the proposed algorithm can effectively reduce both the maximum
EC among UEs and the maximum EC among UAVs and ensure the fairness of both the UEs and UAVs.

INDEX TERMS Fairness, multi-access edge computing, multiple UAVs, trajectory optimization, offloading
optimization.

I. INTRODUCTION
In recent years, smart mobile applications (e.g., speech recog-
nition, augmented reality, sensing data processing) [1]–[4]
have brought convenience to people’s lives, but also brought
great challenges to user equipments (UEs). These smart appli-
cations are computation-intensive and resource-hungry appli-
cations that require large amounts of computing resources and
energy consumptions (ECs). Due to resources constraints,
the UEs can hardly bear the EC caused by executing these
applications locally, which prevents the smart applications
from being applied on the UEs [5], [6].

Multi-Access edge computing (MEC) [7]–[9], deploying
computing servers close to the UEs, has been considered as
an effective technology to address this problem. In traditional
MEC, the computing servers are generally fixed in the base
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stations (BSs) or access points (APs). This service method
mainly has the following disadvantages. Firstly, it is difficult
for fixed servers to cope with emergency computing needs
in disaster areas. Moreover, it is difficult for fixed servers to
be deployed in the areas where there are computing require-
ments but the BS/AP is difficult to set up. In addition, fixed
servers can not satisfy the computing requirements of remote
UEs [10]. Therefore, a flexible computing service method
should be studied.

Recently, unmanned aerial vehicles (UAVs) attract a lot of
attentions in wireless communications due to the flexibility
and maneuverability [11], [12]. According to the existing
studies [13]–[17], the UAVs can be flexibly and quickly
deployed over the area of interest to provide emergency
and considerate services to ground UEs. Thus, the UAVs
installed with computing servers can provide computing ser-
vices for all UEs in a location-flexible way. Moreover, since
the channel between UAVs and UEs can be modeled as
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line-of-sight (LoS) links [18], the transmission rate of
UEs can be improved. In general, since the UAV-enabled
MEC system has many advantages, it has broad application
prospects.

A. RELATED WORK AND MOTIVATION
There are some literatures that have studied UAV-enabled
MEC systems. For example, in [19], Zhou et al. regarded the
UAV as an aerial platform which not only transfers energy to
UEs, but also provides UEs with computing services. In [20],
Hu et al. jointly optimized the UAV’s trajectory, the ratio of
offloading tasks, and the user scheduling strategy tominimize
the sum of the maximum delay among UEs in each time slot.
In addition, there are some studies investigating the EC opti-
mization for UAV-enabledMEC systems. In [21], Jeong et al.
minimized the sum EC of all UEs by jointly optimizing
trajectory, task data and power allocations. In [22], Hu et al.
minimized the sum EC of all UEs by optimizing the UAV’s
hover position, and the duration and ratio of offloading tasks.
In [23], Hua et al. minimized the total EC of UEs with one-
by-one access scheme. Moreover, some works studied the
optimization of the EC of UAVs or the weighted EC sum
of the UEs and the UAV. In [24], Zhang et al. considered
the task queues of the UEs and the UAV, and minimized
the weighted EC sum of the UEs and UAV by optimizing
resources allocations and UAV’s trajectory. In [25], Hu et al.
studied the UAV-assisted relaying and edge computing sys-
tem and minimized weighted EC sum of UEs and UAV by
optimizing the computing rates, bandwidth allocation and
UAV’s trajectory. In [26], Du et al. studied the UAV-enabled
wireless-poweredMEC system and minimized the UAV’s EC
by optimizing the offloading strategies, computing resource
allocation, and the hovering duration and wireless charging
duration of the UAV. In [27], Liu et al. investigated the
UAV-enabled wireless powered cooperativeMEC system and
minimized the UAV’s EC by optimizing the computing rates,
the amount of offloading task and the UAV’s transmit power
and trajectory.

The above studies focus on the simplified case of single
UAV. However, as a matter of fact, the real computing plat-
form usually consists of multiple UAVs, since a single UAV
can not provide high quality computing services to all UEs
for a long time due to physical limitations, such as computing
resources and battery capabilities. There are only a few liter-
atures studying multi-UAV enabled MEC systems. In [28],
Yang et al. studied the multi-UAV enabled MEC system and
minimized the weighted EC sum of all UEs and UAVs in the
system by optimizing offloading strategies, UAVs’ hovering
positions and computing rates. In [29], Wang et al. optimized
the number and hovering positions of UAVs, offloading
strategies and computing resource allocation to minimize the
weighted EC sum of UEs and UAVs in a static multi-UAV
enabledMEC system. In [30],Wang et al.maximized number
of UEs whose task can be completed within the maximal tol-
erance time under predetermined maximum number of UAVs
and an online multiple UAV-enabled edge server dispatching

scheme was proposed to provide flexible computing services.
In [31], Yang et al. optimized the deployment of UAVs and
task scheduling to minimize task delays and balance the
UAVs’ loads. The above works both studied static multi-UAV
scenarios, however, keeping the UAVs hovering does not take
advantage of UAVs’ flexibility and can not further explore
the performance improvements brought by multiple UAVs.
Therefore, it motivated us to study the dynamic multi-UAV
enabled MEC system.

B. CONTRIBUTIONS AND ORGANIZATION
In this paper, we study a multi-UAV enabled MEC system
where multiple UAVs roaming in the area of interest help
UEs complete the computing tasks. Reaping the benefit of
multiple UAVs forMEC systems requires to take into account
the following key issues. Firstly, the undesigned offloading
strategies and UAVs’ trajectories may cause large EC gaps
between UEs, which affect the service experience of some
UEs. Second, to serve all UEs fairly, energy-limited UAVs
tend to be closer to each UE, resulting in non-negligible ECs,
thus reducing the existence duration of UAVs. Thus, the EC of
UAVs should also be an indicator of the system performance.
Third, multiple UAVs have trajectory differences when serv-
ing UEs, thus causing EC fairness issues. If a UAV can not
continue to work due to excessive flight EC, it will seriously
affect the performance and even lead to the failure of the
multi-UAV system. As a result, it is of practical importance
for us to take into account the EC fairness of both UEs and
UAVs.

Therefore, we jointly optimize the offloading strategies and
UAVs’ trajectories to minimize the weighted sum of the max-
imum EC among the UEs and the maximum EC among the
UAVs. Although the integer offloading strategy variables and
the ECs of UAVs in the non-convex problem are difficult to be
addressed, we propose corresponding methods to solve these
problems. Specifically, we propose a greedy-based offloading
strategy rounding algorithm which utilizes greedy rules to
make the performance of the reconstructed integer offloading
strategies close to that of the optimal linear offloading strate-
gies. Moreover, a upper bound method is used to convert the
non-convex UAVs’ ECs into convex upper bounds of ECs.
Denote that there is a central controller (e.g., a large rotor
UAV at a higher altitude), which collects UEs’ computing
request packet which includes positions and computing task
information, optimizes computing offloading strategies and
UAVs’ trajectories, and finally releases the offloading strate-
gies and trajectories to UEs and UAVs, respectively. It is
worth noting that in our system, the data amounts of the com-
puting request packets sent by UEs and the optimized results
returned by the controller are small. Therefore, compared to
the total task time, the transmission delays of collecting UEs’
information and returning the optimized results are small
and can be ignored. In addition, the computing ability of the
controller is generally strong, so the processing delay of the
central controller is also ignored. The main contributions of
the paper are summarized as follows.
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FIGURE 1. The multi-UAV enabled MEC system.

1) We consider a fairness-aware multi-UAV enabledMEC
system in which the UAVs can make full use of their
flexibility to provide UEs with fair computing services
and the UAVs also ensure EC fairness with other UAVs
when serving UEs. The system can extend the service
duration of multiple UAVs while ensuring the EC fair-
ness among UEs.

2) The Min-Max fairness is considered as a measure
of ensuring the fairness of both UEs and UAVs
and the fairness problem is model as a weighted
multi-objective optimization problem. Specifically,
we minimize the weighted sum of the maximum EC
among theUEs and themaximumEC among theUAVs.

3) The original non-convex problem is divided into two
sub-problems. For the offloading strategies, we con-
vert the integer problem to a linear problem and then
propose a greedy-based rounding algorithm to obtain a
near-optimal integer solution. For the UAVs’ trajecto-
ries, we obtain the optimal solution for the upper bound
problem. Finally, we propose an iterative algorithm
to alternately optimize the offloading strategies and
trajectories to obtain a sub-optimal solution.

The rest of this paper is organized as follows. In Section II,
we introduce the system model and formulate the optimiza-
tion problem. In Section III, we propose an iterative algo-
rithm to solve the optimization problem. Section IV presents
the numerical results. Finally, we conclude the paper in
Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
As shown in Fig. 1, we consider a multi-UAV enabled MEC
system where M fixed-wing UAVs with computing abilities
roaming in the area of interest provide computing services for
K UEs, denoted by K = {1, 2, . . . ,K }. In a finite time hori-
zon T , we assume that all UEs’ locations remain unchanged,
and eachUE k has a taskwhich adopts the partial computation
offloading mode, where the task data is bitwise indepen-
dent and can be arbitrarily divided into different groups [7].
To make the flight more trackable, T is divided into N equal

time slots τ , i.e., T = Nτ , and denote N = {1, 2, . . . ,N }.
When τ is sufficiently small, the position of the UAV during
each τ can be regarded as stationary. In the n-th slot, each
UE k can calculate the sub-task Ak,n

1
= (Dk,n,Xk,n) locally

or offload it to one UAV with the frequency division multiple
access (FDMA) protocol. Dk,n is the input-data size of the
UE k in the n-th time slot (in bits), and Dk,n =

Dk
N ,∀k ∈

K, n ∈ N , whereDk is total amount of task data of UE k . Xk,n
represents the computing intensity assigned to the UE k in the
n-th time slot (in the unit of CPU cycles per bit). Moreover,
due to limitations of UAVs’ computing abilities, we assume
that each UAV only serve up to Umax UEs. When the UE k
chooses to offload its sub-task to one UAV, its bandwidth is
B = Btotal

MUmax
, where Btotal is the total bandwidth. We construct

a 3-Dimensional Cartesian coordinate system model, where
the coordinate of the UE k is uk = [xk , yk , 0]T ,∀k ∈ K
and the coordinate of the UAV m in the n-th time slot is
qm[n] = [xm[n], ym[n],H ]T ,∀n ∈ N , where the H is a
constant.Moreover, we define the set of all UAVs’ trajectories
as Q = {q1[n], . . . ,qM [n],∀n ∈ N }.
In the n-th time slot, UEs can choose local computing or

computing offloading. When the UE k selects local comput-
ing in the n-th time slot, the task delay and the EC of the UE
k can be respectively calculated as

T local
k [n] =

Xk,nDk,n
fk,n

, (1a)

E local
k [n] = κXk,nDk,nf 2k,n, (1b)

where κ is a coefficient depending on the chip architec-
ture [32]. The fk,n is the local computing rate of the UE k
in the n-th time slot (in the unit of CPU cycles per sencond).
Moreover, the maximum computing rate of the UE k is f maxk .
Similar to [14]–[16], the channels between UAVs and UEs

are dominated by line-of-sight links. Therefore, the channel
gain between the UAVm and the UE k in the n-th slot is given
by

gk,m[n] =
g0

‖qm[n]− uk‖2
, (2)

where parameter g0 represents the channel power gain at the
reference distance d0 = 1 m, and the ‖·‖ represents the norm
operator. Moreover, the transmission rate from the UE k to
the UAV m in the n-th slot is given by

Rk,m[n] = B log2

(
1+

pkgk,m[n]
N0B

)
, (3)

where pk is the transmission power of the UE k and N0 is the
noise power density. When the UE k chooses to offload the
sub-task Ak,n to the UAV m, the task delay and EC of the UE
k are are respectively given by

T off
k,m[n] =

Dk,n
Rk,m[n]

+
Xk,nDk,n

F
, (4a)

Eoff
k,m[n] =

pkDk,n
Rk,m[n]

, (4b)
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where F represents the computing rate assigned by the UAV
m to one of the UEs accessing it, and is a constant. In other
words, the total computing ability of an UAV is UmaxF .
In (4a), similar to [5], we do not consider the delay for
sending back the computing results.Moreover, we define a set
M = {0, 1, 2, . . . ,M} and the binary variable sk,m[n], which
represents the computing strategy of the UE k in the n-th time
slot. When sk,m[n] = 1,∀m ∈ M\{0}, the UE k offloads
the sub-task Ak,n to the UAV m in n-th slot. Particularly,
sk,0[n] = 1 indicates the UE k performs local computing in
the n-th time slot. Moreover, we define S = {sk,m[n],∀k ∈
K,m ∈ M, n ∈ N }. In summary, the task delay and EC of
the UE k in the n-th time slot are given by

Tk [n] = sk,0[n]T local
k [n]+

M∑
m=1

sk,m[n]T off
k [n], (5a)

Ek [n] = sk,0[n]E local
k [n]+

M∑
m=1

sk,m[n]Eoff
k [n]. (5b)

In the T period, UAVs constantly fly and calculate tasks
for UEs. Therefore, the total EC of an UAV includes comput-
ing and flight ECs. Moreover, since the τ is small enough,
the UAVs can be considered to fly with a constant speed in a
slot. Therefore, similar to [25], the total EC of UAV m in the
n-th slot can be expressed as

Em[n] =
K∑
k=1

sk,m[n]κXk,nDk,nF2

+ τ

(
k1 ‖vm[n]‖3 +

k2
‖vm[n]‖

)
, (6)

where ‖vm[n]‖ =
‖qm[n+1]−qm[n]‖

τ
represents the velocity of

the UAV m in the n-th slot. k1 and k2 are two parameters
related to the UAV’s weight, wing area, air density, etc.

In order to ensure the Min-Max fairness [33] of UEs while
considering the EC fairness of multiple UAVs, we aim tomin-
imize the weighted sum of the maximal ECs among all UEs
and the maximal ECs among all UAVs by jointly optimizing
the computing offloading strategies and UAVs’ trajectories.
The optimization problem can be formulated as follows

P1 : min
Q,S

ωk max
k
{

N∑
n=1

Ek [n]} + ωmmax
m
{

N∑
n=1

Em[n]}, (7a)

s.t. Tk [n] ≤ τ, ∀k ∈ K, n ∈ N , (7b)

qm [1] = qm[N + 1] = qm, ∀m ∈M, (7c)

‖qm[n+ 1]− qm[n]‖ ≤ τVmax, ∀n ∈ N ,
(7d)

‖qm[n+ 1]− qm[n]‖ ≥ τVmin, ∀n ∈ N ,
(7e)∥∥qx[n]− qy[n]

∥∥ ≥ dmin, ∀n ∈ N ,
∀x, y ∈M, x 6= y, (7f)

sk,m[n] ∈ {0, 1}, ∀k ∈ K, m ∈M, n ∈ N ,
(7g)

K∑
k=1

sk,m[n] ≤ Umax, ∀m ∈M, n ∈ N , (7h)

M∑
m=0

sk,m[n] = 1, ∀k ∈ K, (7i)

where ωk and ωm are positive weighted factors for UEs and
UAVs, respectively. Their effect is to reduce the EC gap
between UEs and UAVs so that their ECs can be optimized
better. Here, constraint (7b) represents the task delay of any
UE in any time slot must be less than the time slot length τ .
Constraint (7c) represents that the initial and final points of
any UAV’s trajectory are same and fixed. Constraints (7d)
and (7e) indicate that the fixed-wing UAV’s flight rate must
be less than the maximal reachable velocity Vmax , and must
be greater than the minimum velocity Vmin to remain aloft.
Constraint (7f) represents the distance between any twoUAVs
can not be less than the minimal safety distance dmin in any
time slot. Constraint (7g) indicates that the offloading strategy
variables are binary variables. Constraint (7h) represents that
any UAV serves up to Umax UEs. Constraint (7i) ensures any
UE must choose only one computing method at any time
slot. Since the objective function and the constraints (7b)
and (7e)-(7g) are non-convex, the problem is a non-convex
optimization problem and can not be directly solved by the
convex optimization techniques.

III. PROPOSED ALGORITHM
In this section, we transform the problem P1 into two
sub-problems and solve them one by one. Then, we propose
an algorithm to alternately solve the offloading strategies and
UAVs’ trajectories. Specifically, since any UE’s strategy is
either local computing or computing offloading, we convert
the constraint (7b) into the following form

M∑
m=1

sk,m[n]
(

Dk,n
Rk,m[n]

+
Xk,nDk,n

F

)
≤ τ,

∀k ∈ K, n ∈ N , (8a)

fk,n ≥
sk,0[n]Xk,nDk,n

τ
, ∀k ∈ K, n ∈ N . (8b)

In order to make fk,n satisfy the constraint (8b), we assume
f max
k ≥

Xk,nDk,n
τ

. Based on (1b), in order to reduce local
ECs of UEs, we set fk,n =

Xk,nDk,n
τ

. Moreover, we introduce

the auxiliary variables e1 ≥ max
k

{
N∑
n=1

Ek [n]
}

and e2 ≥

max
m

{
N∑
n=1

Em[n]
}

to simplify the objective function. Thus,

the problem P1 can be equivalently reformulated as follows

P2 : min
Q,S,e1,e2

ωke1 + ωme2, (9a)

s.t. e1≥
N∑
n=1

(
sk,0[n]κXk,nDk,nf 2k,n+

M∑
m=1

sk,m[n]pkDk,n
Rk,m[n]

)
,

∀k ∈ K, (9b)
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e2 ≥
N∑
n=1


K∑
k=1

sk,m[n]κXk,nDk,nF2

+τ
(
k1 ‖vm[n]‖3 + k2

‖vm[n]‖

)
, ∀m∈M,

(9c)

Constraints (7c)-(7i),(8a). (9d)

In order to solve the non-convex problem P2, we solve two
sub-problems under given variables, and then jointly solve all
sub-problems.

A. OFFLOADING STRATEGY OPTIMIZATION
For problem P2 with fixed Q, the offloading strategy opti-
mization problem can be formulated as

P2.1 : min
S,e1

ωke1 + ωme2, (10a)

s.t. Constraints (7g)-(7i),(8a),(9b)-(9c), (10b)

Since the S is a set of binary variables, the problem P2.1 is
a non-convex problem, and it is difficult to find the optimal
solution by using exhaustive search algorithms. The branch-
and-bound method [34] is an alternative method, however,
which is time-consuming because the S contains a large
number of variables. To solve the NP-hard problem, we first
relax the sk,m[n] to continuous variables with a numerical
interval [0,1], namely, 0 ≤ sk,m[n] ≤ 1,∀k ∈ K,m ∈
M, n ∈ N . After the above operation, the problem P2.1 is
transformed into a linear programming problem P2.1.1. It is
worth noting that the ECs of the UEs are much smaller than
the ECs of the UAVs. In order to enable the UEs’ ECs and
UAVs’ ECs to be optimized better. ωk should be much larger
than ωm, which makes the small computing ECs of UAVs
account for a very small proportion of the weighted EC sum.
Therefore, the problem P2.1.1 can be simplified as minimiz-
ing the maximal EC among UEs, i.e., the optimization goal
of the problem P2.1.1 can be simplified as ωke1. Moreover,
we utilize CVX [35] to solve the problem and find the linear
optimal solution.

However, {sk,m[n]} obtained by the above method is a
series of decimals. Therefore, we propose a greedy-based
offloading strategy variable rounding (GOSVR) algorithm
to reconstruct {sk,m[n]}. In this algorithm, we regard sk,m[n]
as the UE k’s preference value for the computing body m,
where the computing body is UE k when m = 0, and the
computing body is UAV m when m 6= 0. We assume that
each UE is greedy, namely, the larger sk,m[n] is, the more the
UE k tends to perform the sub-task on the computing body
m in n-th slot. Therefore, under constraints (7h), we select
the computing body whose preference value is as large as
possible for each UE in each slot. Specifically, the algorithm
obeys the following principles

1) Greedy principle: In each slot, each UE tends to select
a computing body with the largest preference value.
If the computing body can not be selected by the UE,
the UE will observe whether the computing body with

Algorithm 1GOSVR-Algorithm: To Reconstruct Offloading
Strategy Variables
1: Input: K , M , N , and optimal continuous variables{

sck,m[n]
}
obtained by solving the problem P2.1.1.

2: Set m = 1, n = 1,
{
sk,m[n]

}
= 0.

3: repeat
4: repeat
5: According to the descending order of{

sck,m[n],∀k ∈ K
}
, obtain the corresponding

rank of the UEs’ number rankueK×1.
6: RankUE(1 : K ,m, n) = rankue, n = n+ 1.
7: until n > N
8: m = m+ 1, n = 1.
9: until m > M
10: Set n = 1.
11: repeat
12: Set arrays RSC1×M and flag1×K whose elements are

both equal toUmax and 0, respectively, and use an array
set UAV = {UAV1K×1, . . . ,UAVMK×1} to accommo-
date all M columns of RankUE(1 : K , 1 : M , n), and
set m = 1.

13: repeat
14: Set k = 1.
15: repeat
16: if flag(k) == 1 then
17: k = k + 1.
18: Continue.
19: end if
20: According to the descending order of{

sck,m[n],∀m ∈M
}
, obtain the corresponding

rank of the computing body number
rankcb1×M+1.

21: m∗ = rankcb(m).
22: if m∗ = 0 then
23: sk,0[n] = 1, flag(k) = 1, and delete the UE

number k in all arrays of UAV.
24: else if UAVm∗(1 : RSC(m∗)) ∩ k == k then
25: sk,m∗ [n] = 1, RSC(m∗) = RSC(m∗) − 1,

flag(k) = 1, and delete the UE number k in
all arrays in UAV.

26: end if
27: k = k + 1.
28: until k > K
29: m = m+ 1.
30: until m > M + 1
31: n = n+ 1.
32: until n > N
33: Output:

{
sk,m[n]

}
.

the second largest preference value can be selected, and
so on, until find an alternative computing body.

2) Selection principle: If the UE wants to select itself as
the computing body, it can directly select itself. If the
UE wants to select UAV m as its computing body,
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its preference value for the UAV m must be in the
top RSC(m) among all UEs that have not determined
their computing bodies, where RSC(m) represents the
remaining service capacity of the UAV m.

3) Constraint principle: If RSC(m) = 0, the remaining
UEs that have not determined their computing bodies
can not choose the UAV m.

The GOSVR-Algorithm is illustrated in Algorithm 1.
Moreover, in the algorithm, the UAVm represents the m-th
array of the array set UAV. In general, the GOSVR-
Algorithm can make the performance of the reconstructed
integer offloading strategies approach the performance of the
optimal linear offloading strategies from two aspects, so as to
obtain an near-optimal solution. On the one hand, the problem
P2.1.1 is a minimization problem of EC. For any UE, the EC
of the computing bodymwith the largest sck,m[n] is the small-
est, where the sck,m[n] belongs to the optimal linear offload-
ing strategies. Therefore, the GOSVR-Algorithm allows the
UE to greedily select the optional computing bodymwith the
larger sck,m[n], whichmeets the requirement of ECminimiza-
tion. On the other hand, since the problem P2.1.1 considers
UEs’ EC fairness, the allocation of sck,m[n] can make the
UEs’ ECs tend to be fair. Specifically, the fairness is reflected
when UEs occupy the limited computing resources of UAVs.
In a specific time slot n, a larger sck,m[n] represents that the
UE k occupies more computing resources of the UAVm. Dur-
ing the entire time period T , all UEs occupy the computing
resources of UAVs fairly with the change of the time slots,
namely, the UEs occupy more computing resources of UAVs
in turn. Therefore, the GOSVR-Algorithm selects the UEs
with larger sck,m[n] as the service targets of theUAVm, which
meets the requirements of fairness.

B. TRAJECTORY OPTIMIZATION
For problem P2 with fixed S, the trajectory optimization
problem can be formulated as

P2.2 : min
Q,e1,e2

ωke1 + ωme2, (11a)

s.t. Constraints (7c)-(7f),(8a),(9b)-(9c). (11b)

Since constraints (7c)-(7f), (8a), (9b)-(9c) are non-convex,
problem P2.2 is a non-convex problem. Therefore, we intro-
duce auxiliary variables to convert it into a convex problem.
First, we introduce auxiliary variables {tk,m[n]}, which satisfy
the following constraints

1
tk,m[n]

≤ Rk,m[n], ∀k ∈ K, m ∈M, n ∈ N , (12a)

tk,m[n] > 0, ∀k ∈ K, m ∈M, n ∈ N , (12b)

where Rk,m[n] is not a concave function with respect to
qm[n], but Rk,m[n] is a convex function with respect to
‖qm[n]− uk‖2. Therefore, for any given feasible local point∥∥qlocalm [n]− uk

∥∥2, the following inequality holds
Rlowk,m[n] =

B
ln 2

ln

(
1+

α∥∥qlocalm [n]− uk
∥∥2
)

−

Bα
(
‖qm[n]− uk‖2 −

∥∥qlocalm [n]− uk
∥∥2)

ln 2
(∥∥qlocalm [n]− uk

∥∥4 + α ∥∥qlocalm [n]− uk
∥∥2)

≤ Rk,m[n],

∀k ∈ K, m ∈M, n ∈ N , (13)

where α = pkg0
N0B

, and Rlowk,m[n] is a concave function with
respect to qm[n]. Therefore, the constraint (12a) can be writ-
ten as

1
tk,m[n]

≤ Rlowk,m[n], ∀k ∈ K, m ∈M, n ∈ N . (14)

Since the structures of constraints (7e) and (7f) are similar,
we take the processing method of (7e) as an example. Due to
‖qm[n+ 1]− qm[n]‖ > 0 and τVmin > 0, the constraint (7e)
can be written as ‖qm[n+ 1]− qm[n]‖2 ≥ τ 2 V 2

min. Since
‖qm[n+ 1]− qm[n]‖2 is a convex function with respect to
‖qm[n+ 1]− qm[n]‖, under any given feasible local point∥∥qlocalm,n

∥∥ = ∥∥qlocalm [n+ 1]− qlocalm [n]
∥∥, the constraint (7e) can

be rewritten as∥∥∥qlocalm,n

∥∥∥2 + 2
(
qlocalm,n

)T (
qm[n+ 1]− qm[n]− qlocalm,n

)
≥ τ 2V 2

min, ∀m ∈M, n ∈ N . (15)

Similarly, under any given feasible local
∥∥∥qlocalx,y

∥∥∥ =∥∥∥qlocalx [n]− qlocaly [n]
∥∥∥, the constraint (7f) can be rewritten as∥∥∥qlocalx,y

∥∥∥2 + 2
(
qlocalx,y

)T (
qx[n]− qy[n]− qlocalx,y

)
≥ d2min,

∀n ∈ N , ∀x, y ∈M, x 6= y. (16)

Moreover, the constraint (9c) is not convex with respect to
vm[n], we propose a UAV’s EC upper bound method to con-
vert it to a convex constraint. Specifically, sincewe previously
assume that the UAVs flywith constant velocities in each time
slot, the EC of each UAV can be written as the product of the
resistance and distance. Therefore, the constraint (9c) can be
rewritten as follows

e2 ≥
N∑
n=1

 K∑
k=1

sk,m[n]κXk,nDk,nF2
+

Drag(‖vm[n]‖) ‖qm[n+ 1]− qm[n]‖

,
∀m ∈M, (17)

where Drag(‖vm[n]‖) = k1 ‖vm[n]‖2 + k2
‖vm[n]‖2

. Since

the second derivative of Drag(‖vm[n]‖) is 2k1 +
6k2

‖vm[n]‖4
,

the Drag(‖vm[n]‖) is convex function with respect to
‖vm[n]‖. Therefore, the maximal value of Drag in the
numerical interval [Vmin,Vmax] can be obtained by substi-
tuting the end values of the interval, namely, Dragmax =

max{Drag(Vmin),Drag(Vmax)}. Thus, constraint (17) can be
written as

e2 ≥
N∑
n=1

(
sk,m[n]κXk,nDk,nF2

+

Dragmax ‖qm[n+ 1]− qm[n]‖

)
, ∀m ∈M.

(18)

124364 VOLUME 8, 2020



X. Diao et al.: Fairness-Aware Offloading and Trajectory Optimization for Multi-UAV Enabled MEC

In summary, based on the above transformation and pro-
cessing, the problem P2.2 can be formulated as

P2.2.1 : min
Q,tk,m[n],e1,e2

wke1 + wme2, (19a)

s.t.e1 ≥
N∑
n=1

(
λk,n +

M∑
m=1

µk,m,ntk,m[n]

)
,

∀k ∈ K, n ∈ N , (19b)

e2 ≥
N∑
n=1

(
sk,m[n]κXk,nDk,nF2

+

Dragmax ‖qm[n+ 1]− qm[n]‖

)
,

∀m ∈M, (19c)
M∑
m=1

sk,m[n]
(
Dk,ntk,m[n]+

Xk,nDk,n
F

)
≤ τ,

∀k ∈ K, n ∈ N , (19d)

qm [1] = qm[N + 1] = qm, ∀m ∈M, (19e)

‖qm[n+ 1]− qm[n]‖ ≤ τVmax, ∀n ∈ N ,
(19f)∥∥∥qlocalm,n

∥∥∥2 + 2
(
qlocalm,n

)T
×

(
qm[n+ 1]− qm[n]− qlocalm,n

)
≥ τ 2 V 2

min, ∀m ∈M, n ∈ N , (19g)∥∥∥qlocalx,y

∥∥∥2 + 2
(
qlocalx,y

)T
×

(
qx[n]− qy[n]− qlocalx,y

)
≥ d2min,

∀n ∈ N , ∀x, y ∈M, x 6= y, (19h)
1

tk,m[n]
≤ Rlowk,m[n], (19i)

tk,m[n] > 0, ∀k ∈ K, m ∈M, n ∈ N ,
(19j)

where λk,n = sk,0[n]κXk,nDk,nf 2k,n and µk,m,n =

sk,m[n]pkDk,n. Note that the objective function of problem
P2.2.1 is the upper bound of the objective function of problem
P2.2. Since the problem P2.2.1 is a convex problem and the
UAVs’ trajectories Q are Markov processes, we utilize the
convex optimization tool CVX to solve it. Moreover, similar
to [13], we utilize the successive convex approach (SCA) to
iteratively find the optimal solution. Specifically, in each iter-
ation, the local point {qlocalm [n]} is the solution of the previous
iteration. When the change value of the optimal solutions
in two adjacent iterations is less than the error threshold,
the iteration ends.

C. ITERATIVE ALGORITHM AND ANALYSIS
Then, we propose an iterative optimization algorithm to alter-
nately optimize S and Q. The iterative algorithm is shown in
Algorithm 2.

Moreover, step 3 can obtain the near-optimal {sk,m[n]}
under fixed {qm[n]} and step 4 can obtain the optimal {qm[n]}
under a fixed {sk,m[n]}. Thus, a series of non-increasing
objective function values can be obtained. Therefore,

Algorithm 2 JOST-Algorithm: Alternately Optimize
Offloading Strategies and UAVs’ Trajectories

1: Initialize {sk,m[n],qm[n]}0, calculate the weighted sum
we0 and set the iteration number l = 0, qlocalm [n] = q0m[n]
and the tolerance error ε = 10−4.

2: repeat
3: Solve the problem P2.1.1 with given {qm[n]}l

and obtain the integers {s∗k,m[n]} by the GOSVR-
Algorithm

4: Obtain the optimal solutions {q∗m[n]} by solving the
problem P2.2.1 with given {s∗k,m[n]} and calculate the
weighted sum we∗.

5: l = l + 1
6: {sk,m[n],qm[n],we}

l
= {s∗k,m[n],q

∗
m[n],we

∗
}

7: until
∣∣wel − wel−1∣∣ ≤ ε

according to the block coordinate descent method [37],
the proposed algorithm can converge to a sub-optimal solu-
tion. In the JOST-Algorithm, the complexity comes from
solving the P2.1.1, reconstructing offloading strategy vari-
ables by the GOSVR-Algorithm and solving the P2.2.1.
Specifically, the P2.1.1 and P2.2.1 are solved by the
CVX, which utilizes the primal-dual infeasible interior point
method. According to the works in [19] and [36], the com-
putational complexity of solving the P2.1.1 and P2.2.1
are O

(
(K (M + 1)N + 1)3

)
and O

(
(2MN + KMN + 2)3

)
,

respectively. K (M + 1)N + 1 and 2MN + KMN + 2 are the
numbers of variables in the P2.1.1 and P2.2.1, respectively.
Moreover, the computational complexity of the GOSVR-
Algorithm is O (MN + KMN ). Hence, the computational
complexity of the JOST-Algorithm can be calculated as
O
(
L1
(
n31 +MN + KMN + L2 n

3
2

))
, where n1 and n2 are the

number of variables in the P2.1.1 and P2.2.1, respectively.
The L1 and L2 are the total number of iterations of the
JOST-Algorithm and the number of iterations of the problem
P2.2.1, respectively.

Moreover, the process of obtaining the initial solution of
the JOST-Algorithm is as follows. We first draw a circle
with a determinate radius and its center is the origin of the
coordinate system, and select the initial point of each UAV’s
trajectory on the circle. Then, we define the above circle
starting from the initial point of each UAV as each UAV’s tra-
jectory, and divide the circular trajectory from the initial point
into equal N segments. The position of each UAV at the n-th
time slot corresponds to the initial point of the n-th segment in
the circular trajectory. In addition, the flight directions of the
UAVs are the same. Thus, collisions between UAVs can be
avoided. Moreover, we randomly generate initial computing
offloading strategies. Subsequently, we verify whether the
initial trajectories and computing offloading strategies met
the constraints. If the constraints are met, the process is com-
pleted. If the constraints are not met, we change the radius of
the circle or computing offloading strategies, and then verify
them.
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IV. SIMULATION RESULTS
In this section, simulation results are presented to evalu-
ate the performance of the JOST-Algorithm. Denote that
the MATLAB is used for the numerical simulations. There
are K = 20 UEs, which are randomly distributed in the
system. Moreover, based on the typical parameter settings
in [13], [20] and [38], we set other related system parameters
as follows: N = 50, T = 10 s, Btotal = 20 MHz, H =
100 m, Vmax = 50 m/s, Vmin = 3 m/s, κ = 10−28, α0 =
−50 dB, F = 1.2 Gcps, dmin = 10 m, Dk = 2 Mbits and
pk = 10 dBm, ∀k ∈ K, Xk,n = 103,∀k ∈ K, n ∈ N ,
and N0 = −174 dBm/Hz. In order to make the weighted
ECs of the UEs and the weighted ECs of the UAVs on the
order of magnitude as close as possible, and thus to optimize
the ECs of both UEs and UAVs better, we compare the
UE’s local computing energy consumptions with the UAVs’
flight energy consumptions under the initial trajectories and
set wk = 103, wm = 10−3. For convenience, we mainly
investigate the typical multi-UAV scenario where M = 2,
namely, there are two UAVs. Specifically, the initial and final
points of UAV 1 and UAV 2 are q1 = [−50, 0, 100] and
q2 = [50, 100, 100]. In the section, we also compare the
algorithm performances under different numbers of UAVs.

A. PERFORMANCE OF THE JOST-ALGORITHM
To evaluate the performance of the JOST-Algorithm,
we compare it with other algorithms. Specifically, the ref-
erence algorithms as performance baselines mainly include
the comparing algorithm (CA) where based on the opti-
mization ideas in the work [20], the linear computing
offloading strategy variables and the UAVs’ trajectories are
iteratively optimized, and finally the computing offload-
ing strategy variables are restructured into integers by the
GOSVR-Algorithm; the joint offloading strategy and trajec-
tory optimizations without UAV optimization (JOSTWUO)
where only the maximal EC among all UEs’ is mini-
mized; the trajectory optimization with positive offloading
strategies (TOWPOS) where only the UAVs’ trajectories
are optimized to minimize the weighted sum under a ran-
dom and positive offloading strategies (the positive offload-
ing strategies mean that UEs tend to offload computing
tasks to UAVs rather than local computing); the offload-
ing strategy optimization (OSO) where only the computing
offloading strategies are optimized to minimize the weighted
sum under the initial circular trajectory; the none optimiza-
tion with positive offloading strategies (NOWPOS) where
there is not optimization but with a random and positive
offloading strategies. Moreover, we utilize the relaxed lower
bound (RLB) to reflect the effectiveness of the proposed
algorithm. The RLB is obtained by solving a convex RLB
problem. Specifically, in the RLB problem, the comput-
ing offloading strategy variables are continuous variables
between 0 and 1, the transmission rate of the UE k is
changed from B log2(1 + pkg0/(N0 B ‖qm[n]− uk‖2)) to its
RLB B log2

(
1+ pkg0/(N0 BH2)

)
, and the maximal energy

consumption among all UAVs is set to the minimal flight
energy consumption under the feasible range of the UAV’s
speed.
In Fig. 2, we plot the convergence performance of the

JOST. It can be seen that the JOST can converge in two
iterations under different T , thus showing good convergence
performance. Moreover, as the total task time T becomes
larger, the weighted sum of EC becomes smaller, which
indicates that there is a tradeoff relationship between task
delay and EC. In addition, equally interval increases in total
task time T does not correspond to equally interval decreases
in the weighted sum of ECs, which shows that the relationship
between the total task time and the weighted sum of ECs is
not a simple linear relationship.

FIGURE 2. Convergence performance of the JOST-Algorithm under
different T , with Umax = 5.

The weighted sum of maximal ECs under different algo-
rithms and the weighted maximal EC versus the number
of UEs are presented in Fig. 3 and Fig. 4, respectively.
It is obvious that the JOST is significantly better than the
NOWPOS, presenting the tremendous benefits the UEs and

FIGURE 3. The weighted sum of maximal EC versus the number of UEs
under different algorithms, with Umax = 5.
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FIGURE 4. The weighted maximal EC versus the number of UEs under the
JOST-Algorithm, with Umax = 5.

UAVs obtained by jointly optimizing offloading strategies
and trajectories. It is clear that the weighted sum of the JOST
always outperforms that of JOSTWUO, which is because
only optimizing the UEs’ ECs makes the UAVs tend to be
closer to all UEs in the system, which make UAVs consume
more energy. In addition, the weighted sum of ECs of the
OSO is always higher than that of the TOWPOS, indicating
that the efficiency of trajectory optimization is higher than
that of computing offloading strategy optimization. This is
because the computing offloading strategies mainly affect the
ECs of the UEs, and the trajectories of the UAVs affect not
only the ECs of the UEs but also the ECs of the UAVs. It can
be seen that the performance of the JOST is relatively similar
to that of the CA. It shows that the proposed JOST can obtain
the performance which is similar to the algorithm based on
the existing relatedwork [20], which reflects the effectiveness
of the proposed algorithm. In addition, it can be seen that the
performance of the JOST can outperform that of the CA in
some cases, which also shows the effectiveness of the JOST.
Moreover, because the CA is an iterative optimization algo-
rithm, and the optimization problems in the iterative process
are P2.1.1 and P2.2.1. Then the computational complexity of
the CA is O

(
L3
(
n31 + L4 n

3
2

)
+MN + KMN

)
, where L3 and

L4 are the total number of iterations of the CA and the number
of iterations of the trajectory optimization, respectively. It can
be seen that the computational complexity of the CA and that
of the JOST is similar. It is clear that the gap between the
weighted sum obtained by the JOST and that obtained by the
RLB is not large. In addition, as the number of UEs increases,
the change in the gap between the JOST and the RLB is small.
The above results verify the validity of the proposed JOST.

Moreover, it can be seen that when the number of UEs is
less than MUmax , the gap between the JOST and the TOW-
POS is small. This shows that when the computing resources
in the system are sufficient, the weighted sum are mainly
affected by the UAVs’ trajectories. Since the TOWPOS and
the JOST have different initial offloading strategies, there is

no absolute relationship between the weighted sum obtained
by the TOWPOS and the JOST, namely, the weighted sum
obtained by the JOST may be smaller than that obtained
by the TOWPOS, and vice versa. Under the condition of
sufficient computing resources, since the performances of the
JOST and the TOWPOS are close and the TOWPOS only
optimizes the UAVs’ trajectories, the TOWPOS is a better
choice.

While the the number of UEs is larger thanMUmax , the per-
formance of the JOST is significantly better than that of other
algorithms without the CA, which indicates that when the
computing resources are insufficient, the joint optimization
of offloading strategies and trajectories can obtain great per-
formance improvement. As can be seen from Fig. 4, when the
number of UEs changes from 10 to 12, the weighted maximal
EC among UEs suddenly becomes large, while the weighted
maximal EC among UAVs changes slightly. This indicates
that UEs’ ECs are sensitive to the quantitative relationship
between the UEs and computing resources.

Fig. 5 shows that the weighted sum of maximal ECs among
UEs and UAVs versus the number of UAVs. In particular,
we define the coordinates of the initial and final points of
the UAV 3 and the UAV 4 as q3 = {50, 0, 100} and q4 =
{−50, 100, 100}, respectively. In general, the performance of
the JOST always outperforms that of other baseline algo-
rithms without the CA and the TOWPOS. It can be seen that
there is no absolute performance relationship between the
JOST and the CA, namely, the JOST does not always out-
perform the CA, and vice versa. Intuitively, the performance
relationship between the JOST and the CA is affected by other
system parameters (e.g., the numbers of UEs and UAVs).
However, under a variety of different system parameters,
the performance of the JOST is generally better than that
of the CA, which reflects the effectiveness of the proposed
algorithm. It can be seen that when the computing resources
are insufficient (e.g., M ≤ 3 in Fig. 5(a)), the performance
gap between the JOST and the RLB is small. As the number

FIGURE 5. The weighted sum of maximal ECs among UEs and UAVs versus
the number of UAVs, with F = 1.2 Gbps.
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of UAVs increases (i.e., the number of computing resources
increases), the performance gap between the JOST and the
RLB is gradually enlarged. This shows that the JOST can
show good performance when computing resources are insuf-
ficient. Moreover, it can be seen from Fig. 5, when the com-
puting resources are sufficient, the performance relationship
between the JOST and the TOWPOS satisfies the conclusion
obtained in Fig. 3, thus further verifying the correctness of
the conclusion. It is clear that the performance of multiple
UAVs is better than that of single UAV. In addition, under
Umax = 10, when the number of UAVs is increased from 2,
the weighted sum appears to increase. This shows that when
the communication resources are limited, more UAVs may
lead to reduced performance. This is because the increase in
the number of UAVs leads to a decrease in the bandwidths
of the sub-channels allocated to the UEs, thus reducing the
transmission rate and increasing UEs’ ECs.

Moreover, in Fig. 5(a), we can observe that the per-
formance relationship between the JOSTWUO and the
TOWPOS is not unique. This is because when the number
of computing resources is less than the number of UEs (i.e.,
M ≤ 3), the performances of the JOSTWUO and the TOW-
POS are affected by not only the number of UAVs but also
the number of UEs. It can be seen from Fig. 3 that when
M = 2 and K = 12, the performance of the TOWPOS is
better than that of the JOSTWUO, thus verifying the above
view. However, when the number of computing resources is
equal to or greater than the number of UEs (e.g., M ≥ 2
in Fig. 5(b)), the performance of the TOWPOS is always
better than that of the JOSTWUO. This is because the main
factors that affect the performance at this time is the UAVs’
trajectories, which makes the performance of the TOWPOS
close to that of the JOST.

B. FAIRNESS ANALYSIS OF THE JOST-ALGORITHM
Fig. 6 depicts the trajectories obtained by the JOST and the
JOSTWUO. The black points in the figure represent UEs.

FIGURE 6. Trajectories obtained by the JOST-Algorithm and
JOSTWUO-Algorithm, with Umax = 5.

It can be seen from the figure that compared to the UEs’
trajectories obtained by the JOSTWUO, the trajectories of
UAV 1 and UAV 2 obtained by the JOST are more sym-
metrical, which makes fairer EC between UAVs. In addition,
it is clear that UAVs under the JOSTWUO tend to be closer
to each UE, which makes the UAVs consume more energy.
However, the UAVs under the JOST have made compro-
mises between approaching UEs and reducing their own ECs.
Although it may increase UEs’ EC, it can reduce the ECs of
UAVs and extend the UAVs’ cruising distances.

In Fig. 7 and Fig. 8, we compare the maximal, the minimal
and the average ECs of all UEs and UAVs, respectively.
In Fig. 7, compared to the TOWPOS, the OSO and the NOW-
POS, the maximal EC of the JOST is significantly smaller,
and the gaps between the maximal EC, the minimum EC and
the average EC are also smaller. This indicates that JOST can
effectively reduce the ECs of UEs while guaranteeing the EC
fairness of UEs. In particular, themaximal EC obtained by the
JOSTWUO is smaller than that obtained by the JOST. This
is because the JOSTWUO only focuses on the minimization
of the maximal EC among UEs, and the JOST consider not
only the UEs but also the UAVs, which further shows that

FIGURE 7. Fairness Comparison for UEs, with Umax = 5.

FIGURE 8. Fairness Comparison for UAVs, with Umax = 5.
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optimizing the ECs of the UAVs requires energy sacrifice of
UEs.

In Fig. 8, compared with the JOSTWUO, the TOWPOS,
the OSO, and the NOWPOS, the maximal EC of the JOST is
smaller, and the gaps between themaximal EC,minimumEC,
and the average EC are also smaller. This shows that the JOST
can effectively guarantee the fairness of UAVs’ ECs. In par-
ticular, the maximal EC of the JOSTWUO is significantly
larger than that of the JOST. Combining the result with Fig. 7,
we can know that compared with the JOSTWUO, the JOST
can effectively reduce the maximal EC among UAVs with
the small cost of the maximal EC among UEs. Moreover,
combined with Fig. 7 and Fig. 8, the maximal ECs, minimum
ECs and average ECs of UEs and UAVs obtained by the
JOST are similar to those obtained by the CA, showing the
effectiveness of the proposed algorithm in ensuring the EC
fairness of both UEs and UAVs.

V. CONCLUSION
In this paper, we have investigated the multi-UAV enabled
MEC system and minimized the weighted sum of the max-
imal EC among the UEs and the maximal EC among
the UAVs. The original problem was divided into two
sub-problems and we solved them one by one. Then, we pro-
posed an iterative optimization algorithm to alternately opti-
mize offloading strategies and UAVs’ trajectories, and finally
obtained a sub-optimal solution of the upper bound prob-
lem. Simulation results show that the proposed algorithm
can effectively guarantee the EC fairness of UEs and UAVs.
Moreover, the performance of multiple UAVs is better than
that of single UAV. In addition, when the communication
resources are limited, the increase in the number of UAVs
may lead to a decrease in performance. In our future work,
wewill study the trade-off problem between ECminimization
and fairness for both UEs and UAVs in the system. The
solution of the problem can make the whole system operate
with lower and fairer ECs. Moreover, we will study the
trade-off between the energy consumption and the number
of computed bits at servers by investigating the computation
efficiency maximization in edge computing systems.
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