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ABSTRACT The abnormal braking of wagons is a challenging safety problem for operators at railway
marshalling yard. This paper develops an acoustic-based technology to detect the unreleased braking of
wagons during the uncoupling operation. Experiments have been conducted to collect the acoustic waves of
wagons abnormal braking, as well as the background sounds like train whistling and wheel vibration. Before
data collection, a wayside recording system and an experimental train composed of 5 different wagons have
been prepared in the marshalling yard. The recognition algorithm consists of fast Fourier transform (FFT),
feature extraction, template matching and support vector machine (SVM) classification. Based on the sample
data of different acoustic waves, the FFT is firstly performed to obtain the frequency spectrum from original
time-domain signals. Then the major spectrum features of different sounds are carefully extracted for SVM
training through a newly-devised algorithm, where the features include the spectrum center, spectrum flux,
energy peak and corresponding frequency. During the SVM training, classifiers are designed under the one-
against-one strategy to guarantee the recognition accuracy. Given a test data, at most 3 SVMclassifiers will be
activated according to the decisionmatrix of templatematching.Meanwhile, rules have beenmade to regulate
the classification result considering different activation cases. Finally, a case study of all 12 sound categories
has been performed to illustrate the application of proposed algorithm. Results show that the acoustic-based
recognition algorithm is indeed reliable to identify wagons unreleased braking, with the global warning
accuracy over 98%.

INDEX TERMS Railway safety, unreleased braking, acoustic recognition, feature extraction, SVM classi-
fication.

I. INTRODUCTION
In recent years, kinds of intelligent information technologies
have been applied in the fields of railway management and
maintenance, such as locomotive rescheduling [1], conflicts
detection [2], and traction fault diagnosis [3]. Specially, wag-
ons unreleased braking is a challenging safety problem for
operators at railway marshalling yard, which is always a
threat to workers’ personal safety and infrastructures lifecy-
cle. In order to guarantee the safety of uncoupling trains on
the hump platform, the demand for an automatic monitoring
and warning system of the unreleased braking is increasing.
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Therefore, researches on relevant recognition methods are of
great significance in improving the quality of safety detection
during wagons movement.

The unreleased braking of wagons, also known as a kind of
brake faults or abnormal braking, is affected by different fac-
tors. Aside from human errors in daily uncoupling and main-
taining, mechanical failure is themain influence factor. Under
a conventional air braking system, it is found that the propa-
gation of brake application is slow for long and heavy-hauled
freight trains [4]. Specially, Zhang et al. [5] pointed out
that the increased inertia and vertical force of heavy wag-
ons would cause a difficulty in releasing brake operation.
Due to the disequilibrium of braking force, the brake slack
adjuster would get locked and come into a brake seizure [6].
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Furthermore, a freight train is usually a mixed marshalling of
different wagons, including the flat car, tank car, open-top car,
box car, etc., while the pneumatic brake valves of different
wagons may have the different releasing performance and
operation quickness [7].

During trains uncoupling on the hump platform, the sound
from wheelsets will become different when occurring an
unreleased brake, due to a conversion from rolling friction
to sliding friction [8], [9]. Generally, the unreleased braking
will cause wheel tread damages [10] together with the noise
pollution [11], [12], and may lead to wagons dragging or
derailment in different degrees [13], which makes it neces-
sary to develop methods to recognize the unreleased braking
proactively. Therefore, the major objective of this study is
to propose a recognition method for the unreleased braking
of uncoupling wagons in the marshalling yard. The main
contributions of this research are summarized as follows.

– First, a wayside acoustic acquisition system is presented
to detect the unreleased braking of uncoupling trains in
railway marshaling yard. The acoustic data of 5 abnormal
braking sounds and 7 normal background sounds collected
through repeated experiments are stored into the system
database, in order to support the acoustic recognition.

– Second, a hybrid algorithm framework of acoustic recog-
nition is proposed as an integration of the off-line data train-
ing and the real-time classification. During the algorithm
programming, codes of feature extraction, template matching
and SVM classification rules are differently designed consid-
ering the application context.

– Third, representative case studies have been conducted
on real acoustic datasets to validate the performance of the
proposed algorithm. The application of this acoustic-based
recognition algorithm is competent to solve the problem of
abnormal braking detection with a stable performance and a
reliable prediction accuracy.

The remainder of this paper is structured as follows.
Section II discusses prior studies in brake fault diagno-
sis, railway noise recognition and acoustics application.
Section III introduces the experimental scheme of data collec-
tion and processing. Based on fast Fourier transform (FFT),
Section IV develops a hybrid recognition algorithm of tem-
plate matching and SVM identification considering the appli-
cation context. The detailed case analysis and discussion are
presented in Section V and Section VI respectively, both
the feasibility and reliability of presented algorithms have
been validated. Finally, the study is concluded by high-
lighting major contributions and possible future research in
Section VII.

II. RELATED WORK
Currentmethods of detecting train brake faultsmainly depend
on the onboard equipment and sensors. Onboard sensors have
been frequently adopted and integrated in the monitoring
system to realize the condition diagnosis of freight railway
vehicles [14]. In the respect of train braking faults detec-
tion, Lonsdale and Wilson [15] suggested using on-board

handbrake sensors to monitor the braking operation and give
warning signals. Considering the air pressure of pneumatic
pipes and air cylinders, Lu and Zhang [16] designed an
alarm circuit integrated by pressure switches, air sensors and
other devices. Besides the brake cylinder pressure, Aimar and
Somà [17] further considered the brake block temperature
and developed a prototype of the onboard unit to monitor
the brake system. Based on the multi sensor data, Lee [18]
presented a contextual air leakage detection based on the idle
time and run time of compressor behaviors. Yang et al. [19]
discussed the detection of pneumatic brake system through
the leakage diagnosis algorithm.

Apart from the detection methods by sensing interior
mechanical units like the pneumatic pipe and the hand
brake, it is also feasible to recognize the abnormal braking
through outward manifestations like heat and sound. At the
marshalling yard, experienced workers can tell the brak-
ing anomalies by visual observation and hearing sensation.
Gutierrez and Garrido [20] applied an infrared thermogra-
phy to analyze the thermal characterization of heated brake
rotors under strong frictional stresses. The similar visualiza-
tion technology using grey projection was applied to identify
brake faults by checking the mechanical structure [21].

The acoustic recognition was proved to be an effective
approach in train faults diagnosis. Cerullo et al. [22] applied
the acoustic signal processing techniques to continuously
diagnose the train system including the pantographs, rails,
wheels, bogies and etc. Pronello [23] carried out on-site
acoustic measurements to identify the noise emission of rail
traffic, considering the train type, running speed and site
configuration. It turned out that the acceleration/deceleration
of diesel trains have stronger noise emissions than other
conditions. Huang et al. [24] designed a uniform rectangular
array of microphones to capture the wayside acoustic sig-
nal, and improved the diagnosis accuracy for wheel bear-
ing health through an envelope spectrum analysis. Similarly,
Jiang [25] demonstrated the possibility and feasibility of
using the acoustic energy ratio in detecting fatigue cracks of
axles. The railway noise can also be applied in the detection
of rail-head roughness and rail structural health. Jones and
Packham [26] studied the distribution characteristics between
the rolling noise and the train speed by using a microphone
mounted near a smooth wheel, where the noise ranges at
different speeds can support the identification of rail-head
roughness. Janeliukstis and Kaewunruen [27] found that the
acoustic sources of railway noise can be separated from each
other, and adopted a decision tree classification algorithm to
monitor the structural health of railway pre-stressed concrete
sleepers.

The acoustic analysis has also been extensively applied in
many other engineering fields. Based on the acoustic data of
heavy machinery, Aguilar et al. [28] proposed a recognition
method to detect risks during the undergroundmining project.
Zhao et al. [29] developed an acoustic signal processing
system to measure the running state of transformers. Cao
et al. [30] analyzed the acoustic features during municipal
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excavation to protect underground pipelines. Besides, the
acoustic recognition can also be applied in the identifica-
tion of military jets and heavy vehicles [31], [32]. Before
acoustic recognition, discrete Fourier transform (DFT) and
wavelet transform (WT) are fundamental processing methods
to obtain the spectral distribution from original time-domain
signals [33], [34]. As to the recognition methods, dynamic
time warping (DTW) [35], fuzzy matching [36] and support
vector machine (SVM) [37] are major algorithms used in the
classification and identification of acoustic data.

From the foregoing literatures, great efforts have been
done in train braking faults identification and railway noise
recognition for daily operation and maintenance. Current
approaches mainly focus on monitoring the braking mode,
cylinder pressure and block temperature of brake system for
trains running on lines, while few studies have discussed the
feasibility of acoustic-based recognition for the unreleased
braking of uncoupling trains in the marshaling yard. Com-
pared with onboard sensors, the wayside acoustic recognition
has the advantages of non-contact measurement, low cost and
easy mounting.

III. DATA COLLECTION
During the daily operation at a railway marshaling yard,
the unreleased braking of freight wagons is a random event,
which brings about uncertainty and difficulty in collecting the
acoustic data of abnormal braking just by installing a wayside
sound recording system. Therefore, we have to design experi-
ments to get the acoustic data of this abnormal braking, where
the brake valves of different wagons are controlled manually
by experienced workers.

A. PRELIMINARY WORK
Before starting experiments, necessary preliminary works
have to be done, including the setup of wayside recording
system and the preparation of experimental wagons. The
wayside acoustic acquisition system is composed of a laptop,
a portable power, an external audio adapter, an audio pickup
device and transmission cables, as shown in Figure 1. The
audio pick-up is used to capture kinds of acoustic signals from
freight trains, powered by the portable power supplywith 12V
DC output. The audio adapter is used to deal with the conver-
sion from electrical signals to digital signals. To guarantee the
efficiency of original data acquisition and storage, a simple
monitoring system has been developed based on the browser
server architecture (B/S).

In the railway marshalling yard, five kinds of wagons
are frequently used, including the flat car, tank car, open-
top car, box car and JSQ car. Besides, a DF-7C type diesel
locomotive is operated to provide the necessary traction force.
The wagons and tractor prepared by the marshalling yard are
shown in Figure 2.

B. EXPERIMENTAL SCHEME
The experiment was performed in a railway marshaling
yard at East Wuhu Station, under the administration of

FIGURE 1. The setup of wayside acoustic acquisition system.

FIGURE 2. Experimental wagons and the diesel locomotive.

Shanghai Railway Bureau. In order to reduce the impact to
daily uncoupling tasks, 1:30 p.m. to 3:30 p.m. was chosen
to be the best experiment period of the day. Meanwhile,
the weather should be fine, because the sound of strong wind
or heavy rainfall will affect the acquisition quality of acoustic
waves. The experiment time is from 10th to 12th April, 2019.

As mentioned in the literature review, different wagons
have different pneumatic brake valves. Therefore, the corre-
sponding sounds of abnormal braking are distinguished from
each other. Under the guidance of operators, 5 types of wag-
ons (one for each type) were marshalled into an experimental
train together with a DF-7C locomotive. The experimental
train moves back and forth on the hump platform as one
movement, and eachmovement will provide two acoustic sig-
nals. It should also be noticed that the traction speed is limited
between 6 to 8 km/h, which agrees with the normal push-
ing speed of uncoupling trains on the hump. During every
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FIGURE 3. The layouts of hump platform area and the selected
experiment location.

back-and-forth movement, only one wagon’s brake valve is
set unreleased manually to simulate the abnormal braking.

Another important consideration is the experimental loca-
tion. Figure 3 shows the general layouts of the hump plat-
form in the yard, the place where workers uncouple freight
trains. Since the experimental train plans to move on Track I,
the wayside recording system is installed closed to Track I.
The abnormal braking should be identified before the wagon
humping into themarshalling yard, whichmeans enough time
and distance should be reserved for the recognition proce-
dure. Therefore, the experiment place is located 100 m ahead
of the first shunting signal at the marshalling yard, as shown
in Figure 3.

In addition to the collection of abnormal braking sounds,
acoustic data of surrounding environments should also be col-
lected to avoid errors of misidentification. The background
sounds usually come from the adjacent uncoupling trains,
the passing-by trains on main lines, the inertia vibration
before stop, the roaring of locomotive’s engine, the train
whistling, the wheel vibration at rail slots, etc. According to
the on-site situation, the acquisition of background sounds
can be performed at the hump platform without the experi-
mental train.

C. DATA PRE-PROCESSING
The pre-processing of original acoustic data includes a trans-
formation and a selection. Taking an acoustic sample of tank
car as an example, the original wave data is a time-domain
signal, where the amplitude represents the voltage, as shown
in Figure 4(a). Because the sampling frequency is 48000 Hz,
the acoustic wave looks rather compact, where the unreleased
braking appears at about 9 s to 11 s. To catch more char-
acteristics of acoustic signals, the method of FFT has been
applied. Through FFT, the time-domain signal graph can be
efficiently transformed into a spectrogram, see Figure 4(b),
where the vertical ordinate represents the sound frequency
and the darkness represents the energy grade of waveform.
It is obvious to find the frequency distribution characteristics
of different sounds, where the major frequency distribution
of abnormal braking consists of 1000 Hz, 2100 Hz, 3200 Hz,
4400 Hz and 5500 Hz.

An original acoustic sample usually contains two or more
sounds, such as the sounds of train whistling and abnormal
braking shown in Figure 4(b). Therefore, each kind of sound

FIGURE 4. (a) The original acoustic signal waveform of a tank car; (b) The
corresponding acoustic spectrogram after FFT.

TABLE 1. Basic information of selected acoustic samples.

should be selected out into its own categorization for subse-
quent data training. The selected acoustic samples are listed
in Table 1, where the last column is the data size of energy
matrix output by FFT. There are 5 types of abnormal sounds
of unreleased braking and 7 types of background sounds
during normal operation. Meanwhile, the flat car and open-
top car have a smaller sample size than other wagons, because
some acoustic signals of abnormal braking are submerged in
the complicated sounds.

The time domain and frequency domain distributions of
representative sound types are shown in Figure 5, including
type 1, type 4, type 6, type 8 and type 10. It is obvious
that different sound type has different wave form characteris-
tics, represented in the amplitude distribution and frequency
distribution. According to the time domain signals, sound
type 1, 6 and 8 have higher amplitudes than type 4 and 10,
sound type 10 has an instantaneous amplitude peak, while
the amplitude distributions of sound type 4 and 9 are more

120298 VOLUME 8, 2020



Y. Ye et al.: Acoustic-Based Recognition Algorithm for the Unreleased Braking of Railway Wagons in Marshalling Yards

FIGURE 5. Time domain and frequency domain distribution of representative acoustic samples.

equilibrium than other sound types. Compared with the time
domain waveform, the differences are more apparent in the
frequency distribution. For example, train whistling sound
has a discrete distribution of frequency peaks, where intervals
between peaks are almost the same (about 500∼600Hz).

IV. HYBRID RECOGNITION ALGORITHM
A. ALGORITHM DESIGN
The framework of the hybrid algorithm is an integration of
off-line data training and real-time recognition, as shown
in Figure 6. The devised algorithm has a self-regulated mech-
anism, where the template matrix and SVM classifiers can be
updated with the newly stored data from the database.

The recognition algorithm includes four major steps: FFT
processing, feature extraction, template matching and SVM
classification. Since FFT is a widely-used method in digital
signal processing [38], [39], algorithms of feature extraction,
template matching and SVM classification will be mainly
introduced, considering the data characteristics and safety
requirements.

B. FEATURE EXTRACTION
The frequency of collected acoustic signals is 48000 Hz,
namely every second generates 48000 data records. Through
FFT processing, the energy matrix contains an average
of 16 column vectors per second. For the convenience of
subsequent SVM training, the feature extraction is performed
to all vectors in the energy matrix of every selected acoustic
category.

Affected by various conditions of working temperature,
air moisture, trains running speed and load capacity, spectro-
grams of the same acoustic category may become obviously
different. Therefore, the normalization of energy matrix is
necessary before feature extraction. The method of Min-Max

FIGURE 6. The framework and procedure of the recognition algorithm.

normalization has been adopted, as in

v′ij = (vij −min{Vj})/(max{Vj} −min{Vj}) (1)

where Vj is jth column vector of an energy matrix, vij is the ith

element of Vj, and v′ij is the normalized value of vij.
The frequency of energy matrix output by FFT ranges from

0 Hz to 6000 Hz, and it is isometric partitioned into 512
sections. To erase some inherent bias and to enhance compu-
tation efficiency, the frequency is re-divided into 60 sections
at 100 Hz intervals. Based on the initial analysis of Figure 5,
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TABLE 2. Fourteen extracted features from normalized energy matrix.

FIGURE 7. The extraction of frequency peaks considering minimum
interval.

six frequency peaks and corresponding energy distribution
are enough for the recognition of different sound types in
the marshaling yard. Features need to be extracted are listed
in Table 2.

During the extraction of frequency peaks, 200 Hz is set to
be theminimal interval between peaks. The purpose of setting
this interval is to guarantee the equilibrium of extracted peaks.
As shown in Figure 7, the top three peaks have beenmarked in
the frequency distribution, and their intervals are greater than
200 Hz naturally. When extracting the 4th frequency peak,
point 1 should be ignored because it is adjacent to the 2nd

peak, and point 2 would become the 4th peak. The major steps
for feature extraction is programmed in Matlab R2018a, as
shown in Algorithm 1.

C. TEMPLATE MATCHING
The purpose of template matching is to activate major SVM
classifiers for real-time collected acoustic data during the
time period. To guarantee the reliability and timeliness,
the recognition of abnormal braking should depend on the
frequency distribution of energy spectrum during a very short
time period, like 0.5 s. As discussed before, each frequency
distribution corresponds to one column vector in the energy

Algorithm 1 Feature Extraction Algorithm
Input File location, file_path

Energy matrix output by FFT, Xe
Original frequency vector, fo
Combined frequency vector, fc

Output Feature matrix of Xe, featureMatrix
1: Load fo and fc from the file_path
2: Normalize Xe: XeN

= (mapminmax(Xe’,0,1))’
3: Redivide XeN at 100 Hz intervals, and obtain

XeNR
4: Calculate the energy distribution matrix XeD
5: [m2,n2]= size(XeNR); XeD =zeros(m2,n2);

Sum=sum(XeNR)
6: for j=1:n2; XeD(:,j)= XeNR (:,j)/Sum(j); end
7: Extract the spectrum center f_ave
8: Extract the spectrum flux f_sum
9: place=zeros(6,n2) % store the index of

6 peaks
10: fp_max=[] % store the frequency of 6 peaks
11: Find the 1st frequency peak,

f1p_max =max(XeD)
12: for j=1:n,
13: [place(1,j),temp]=find(f1p_max(1,j)

== XeD(:,j))
14: end
15: Find the 2nd frequency peak f2p_max
16: XeD1 = XeD; t=1; p=1
17: for j =1:n2; XeD1(place(p,t),j)=0
18: if place(p,t)==1; XeD1(place(p,t)+1,j)=0
19: elseif place(p,t)==m2; XeD1

(place(p,t)-1,j)=0
20: else XeD1(place(p,t)-1,j)=0;

XeD1(place(p,t)+1,j)=0
21: end; t=t+1
22: end; f2p_max=max(XeD1)
23: fp_max=[f1p_max; f2p_max]
24: for j=1:n
25: [place(2,j),temp]=find(f2p_max(1,j)

== XeD1(:,j))
26: end
27: Find the 3rd, 4th, 5th and 6th frequency

peak in order
28: fp_max=[f1p_max; f2p_max; f3p_max;

f4p_max; f5p_max; f6p_max]
29: place_fm=place∗100-100

% transform index into frequency
30: featureMatrix=[f_ave;f_sum;

fp_max;place_fm]

matrix, and there are about 8 vectors during 0.5 s. Through
the SVM training of extracted featurematrix, SVM classifiers
can be obtained. Assuming that there are n classifiers, then
every feature data of one column vector should invoke all
the n classifiers to identify its category, and the computation
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load will be expanded eightfold for the data of 0.5 s, which
couldn’t meet the demand of real-time recognition. There-
fore, a template matching process should be performed before
invoking SVM classifiers.

For a sound category, its template vector and match-
ing threshold must be determined. The template vector is
obtained by averaging the energy matrix of selected acoustic
data by row, and the matching threshold is decided by the
maximum proximity between every sample vector and the
template vector, where the calculation method of proximity
is worthy of careful consideration.

Euclidean distance is widely used in measuring the abso-
lute difference between two individuals, and in our study it is
defined as

dEpro(r, t) =

√√√√ m∑
i=1

(ri − ti)2 (2)

where r and t represent the real-time column vector and
the template vector respectively, ri and ti denote the corre-
sponding ith element values, m is the dimension of column
vector, which is 513 in this case, and dEpro(r, t) is the proximity
between r and t using Euclidean distance.

However, every real-time vector should be compared with
11 template vectors, and we found that sometimes the prox-
imity calculated by Euclidean distance was not consistent
with the reality through repeated tests. To guarantee the reli-
ability of template matching, we decide to adopt the cosine
distance [40] to measure the proximity, which is defines as

dCpro(r, t) =
m∑
i=1

ri × ti

/√√√√ m∑
i=1

r2i ×

√√√√ m∑
i=1

t2i

 (3)

where dCpro(r, t) is the cosine distance between r and t , rang-
ing from -1 to 1.

The results of repeated tests had shown that the cosine dis-
tance outperforms the Euclidean distance during the template
matching. Besides, Pearson correlation coefficient (PCC) can
also be used to measure the proximity [41], which is an
improvement of cosine distance through a centralized pro-
cessing as

dPpro(r, t) =

m∑
i=1

(ri − r̄)× (ti − t̄)√
m∑
i=1

(ri − r̄)2 ×

√
m∑
i=1

(ti − t̄)2
(4)

where dPpro(r, t) is the proximity between r and t via PCC, r̄
and t̄ denote the mean value of r and t respectively.
Algorithm 2 shows the devised codes of template match-

ing, where major steps are listed as follows.
–For an energy vector from real-time FFT processing,

calculate the proximity between the vector and every template
vector in turn.

–Compare the proximity values and threshold values, and
select top three categories with the nearest proximity.

Algorithm 2 Template Matching Algorithm
Input File location, file_path

Template matrix of all sound types, X_allclass
Normalized energy matrix, XeN

Output Decision matrix, D
1: Calculate the proximity between XeN and

X_allclass
2: X_allclass = load([file_path,’X_allclass.mat’])
3: nc =size(X_allclass,2); ne =size(XeN ,2);

dpro = zeros(ne,nc)
4: for i=1:ne
5: for j=1:nc
6: r= XeN (:,i); t=X_allclass(:,j);

dpro(i,j)=pdist2(r’,t’,’cosine’)
7: end
8: end
9: Figure out the decision matrix D
10: for i=1:ne
11: min1=min(dpro(i,:)); D(i,1)=find(min1

== dpro(i,:)); dpro(i, D(i,1))=inf
12: end
13: for i=1:ne
14: min2=min(dpro(i,:)); D(i,2)=find(min2

== dpro(i,:)); dpro(i, D(i,2))=inf
15: end
16: for i=1:ne
17: min3=min(dpro(i,:)); D(i,3)=find(min3

== dpro(i,:))
18: end

–Integrate the nearest categories of all vectors in one period
into a decision matrix D, where an element dij represents the
ith nearest sound type of the jth energy vector.
–Tabulate the decision matrix, and find top three categories

for all vectors according to the occurrence rate.
Taking one acoustic data of train whistling (type 10) as an

example, the decision matrix of template matching is indi-
cated in Table 3. The length of this acoustic data is 1 s, and the
corresponding energymatrix includes 15 column vectors. Top
three nearest templates of every vector has been figured out.
Obviously, different energy vector corresponds to different
templates. However, the most three frequent templates of dij
are type 10, type 11 and type 3, where type 10 has the top rate
in N1. The three nearest templates will be output as the basis
of SVM classification.

D. SVM CLASSIFICATION
As a binary classification algorithm [42], SVM algorithms
usually adopt two approaches for multi classification, namely
the one-against-one strategy and the one-against-many strat-
egy [43]. Assuming there are m data categories, the one-
against-one strategy needs to train C2

m classifiers, and the
one-against-many strategy needs to train m − 1 classifiers.
It is obvious that the one-against-one outperforms the one-
against-many in the reliability, while the latter outperforms
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TABLE 3. The decision matrix D of template matching for given data of
type 10.

the former in the efficiency. In the field of audio surveillance,
the one-against-many and one-class SVM classification are
frequently adopted due to the high efficiency [44]. However,
specific case needs specific analysis.

According to Table 1, there are 12 categories of acoustic
data in this study. If we adopt the one-against-many strat-
egy, every energy vector will activate 11 classifiers with-
out template matching. Through template matching, only
3 classifiers will be activated, but it may cause difficulty in
identifying the category of abnormal data. If we adopt the
one-against-one strategy, the sound category can be iden-
tified by probability, but it needs 66 classifiers theoreti-
cally, which will cause some computation burden to SVM
training.

Considering the safety requirement for recognition accu-
racy, finally 45 classifiers have been determined based on the
one-against-one strategy. The 12 sound categories are split
into set A and set B, where set A includes the 5 abnormal
sounds and set B includes the 7 background sounds. On one
hand, every type in set A needs to be identified with each
other, therefore there should be 10 classifiers. On the other,
every type in set A also need comparisons with every type
in set B, therefore there should be another 35 classifiers.
Because the purpose is to recognize the abnormal sound of
unreleased braking, it is not necessary to develop classifiers
between types in set B. All 45 classifiers are stored in the
database. The binary classification result is marked as ‘1’
or ‘-1’. The trained SVM classifiers will be activated after
the template matching, where the top three nearest templates
are denoted by t1, t2 and t3 respectively. The activation and
recognition algorithm should obey the following rules under
different cases.

1) CASE 1
If none of the three templates belongs to set A, then output
the safe value.

FIGURE 8. The energy spectrum of selected samples (tank car).

FIGURE 9. The energy spectrum of selected samples (Adjacent
uncoupling trains).

2) CASE 2
If there is only one template belongs to set A, assuming that
this template is t1, then activate classifier t1-t2 and classifier
t1-t3. Meanwhile, give a safe value to the virtual classifier
t2-t3, because t2 and t3 both belong to set B. The final output
is a warning value only when the classification results are
1 and 1, and t1 is recognized as the abnormal sound type.

3) CASE 3
If there are two templates belong to set A, assuming that
the two templates are t1 and t2, then activate classifier t1-t2,
classifier t1-t3 and classifier t2-t3. The output value depends
on the results of classifiers. E.g. if the classification results are
1, 1 and -1, which correspond to t1 (abnormal), t1 (abnormal)
and t3 (normal), then output a warning value and determine
t1 as the sound type. When outputting a warning value, result
of classifier t1-t2 plays a decisive role in the recognition of
sound category.

4) CASE 4
If all the three templates belong to set A, then output a
warning value without question, and activate classifier t1-t2,
classifier t1-t3 and classifier t2-t3 for recognition. Usually,
the classification results correspond to two templates, and
the template appearing twice will be identified. E.g. if the
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FIGURE 10. The frequency distribution of 12 acoustic templates.

classification results are t2, t3, t2 respectively, then t2 is deter-
mined as the sound type. However, if the results correspond
to three templates, namely every template appears once, then
the template with the top rate in N1 will be identified.

V. CASE ANALYSIS
A. FEATURE EXTRACTION OF SELECTED SAMPLES
Figure 8 shows the representative acoustic spectrograms
of the unreleased braking from tank cars (type 3), and
Figure 9 shows the spectrograms of normal running from
adjacent uncoupling trains (type 6). The frequency distribu-
tion of type 3 has a strong regularity, where 5 to 6 frequency
peaks are uniformly distributed in the energy spectrum.
In contrast, the frequency distribution of type 6 concentrates
on the low frequency band, where the spectrum data shows
that over 50 % acoustic energy is distributed below 1300 Hz.

After running the code of feature extraction, representative
frequency characteristics of 12 sound categories can be fig-
ured out, as listed in Table 4.

B. TEMPLATE MATCHING ANALYSIS
Based on the acoustic data of selected sound waves, the tem-
plates of 12 sound types can be obtained from their

FIGURE 11. Template matching results for abnormal braking sounds.

normalized energy matrices. The frequency distribution of
abnormal unreleased braking sounds and background sounds
are displayed in Figures 10(a) and 10(b). It is reflected that
sounds of abnormal braking have energy peaks in the middle-
high frequency band, while the background sounds focus
in the low-middle frequency band. Meanwhile, in Figure
10(a), type 1 and type 3 have more obvious energy peaks
than other abnormal types. It is also found that the acoustic
characteristics of type 2, type 4 and type 5 are much weaker
than type 1 and type 3 due to different brake blocks. In the
experimental train, the flat car, open-top car and box car are
equipped with composite brake shoes, while he JSQ car and
tank car are equipped with traditional iron brakes.

Taking the samples from type 1 and type 3 as examples,
both acoustic data sets are during 8 seconds, with 128 contin-
uous column vectors. The results of corresponding template
matching are indicated in Figure 11, where the values of dij
are displayed in a greyscale grid.

As shown in Figure 11(a), the original acoustic sample
belongs to the unreleased braking of JSQ car, while the
nearest templates appear most frequently are type 1 (33.1%),
type 3 (29.2%) and type 7 (25.3%). Despite type 1 has the
highest rate, it doesn’t have a dominate proportion in N1
during 0 to 2s. Similarly, in Figure 11(b), the original sample
data belongs to type 3, the nearest templates appear most
frequently are type 7 (33.1%), type 3 (32.8%) and type 1
(25.5%). It should be noted that type 3 has the top rate in
N1, which means that type 3 is the first nearest template.
Therefore, it is hard to identify the sound category only by
the proportion of nearest templates, and that’s why we need
the SVM classification.

C. CLASSIFICATION RESULTS
Through template matching, top three nearest templates will
be activated for a real-time collected sample within 0.5 s.
To better illustrate the classification process, test samples of
JSQ car’s abnormal braking (type 1), tank car’s abnormal
braking (type 3) and train whistling (type 10) are taken
as examples. Theoretically, different acoustic samples will
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TABLE 4. Extracted frequency features of 12 sound types.

TABLE 5. Representative classification results of acoustic wave data
(type 1).

activate different combinations of nearest templates. After
template matching, all test samples of type 1 and type 3
activate the same template set of 1-3-7, while the test samples
of type 10 activate different template sets including 7-10-11,
3-7-10 and 3-10-11.

Classification results of two representative samples of
type 1 are indicated in Table 5. The decision type is deter-
mined by the output types during 0.5 s, because every output
type is an instantaneous value. Among the output types of
R1, type 1 accounts for 87.5%; among the output types of R2,
type 1 only accounts for 37.5%. R1 and R2 both belong to the
sample sets of type 1, while R1 is recognized as type 1 and
R2 is recognized as type 7. Considering the quality of samples
and the complexity of classifiers, it is inevitable to encounter
the above recognition errors. Similarly, test samples of type 3
and type 10 will also encounter these errors.

The distribution of output types for test samples of type 1,
type 3 and type 10 are shown in Figures 12(a)-(c). According
to the test results, 3% of type 1 samples are mistaken as type 3

FIGURE 12. Distribution of instantaneous output types for test samples
of type 1, 3 and 10.

and 19% of type 3 samples are mistaken as type 1. Mean-
while, 14% of type 1 samples are recognized as type 7 and
5% of type 3 samples are recognized as type 7. Despite
these false rates, it should be noted that these output types
are under instantaneous recognition, and 8 continuous output
types during 0.5 seconds will determine a decision type.
Therefore, the final recognition accuracy of decision types
should be higher, which will be validated later.

As indicated in Figure 11(c), 18% of type 10 samples are
mistaken as type 3, which is acceptable and safety-oriented.
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TABLE 6. Recognition results of test samples for 12 sound types.

Besides, the normal sound types need no recognition because
we have not designed SVM classifiers between normal sound
types to reduce calculation load. Therefore, output types of 7,
10 and 11 are merged into the normal types.

D. ACCURACY VALIDATION
Based on the proposed algorithm, the final classifica-
tion results of different acoustic samples can be obtained.
Table 6 lists the recognition results of 12 sound types. For
abnormal sound types, the warning rate is consistent with the
recognition accuracy. It is obvious that the warning rate is
higher than the proportion of corresponding abnormal type.
During the accuracy testing, the average warning rate of
5 abnormal types is 99%, while the average warning rate of
7 normal sound types is 2.6%. Considering thewarning rate of
normal sound samples, the global decision accuracy is about
98.2%, which is calculated by a weighted equation as

Ag =

[
5∑
i=1

si × αi +
12∑
i=6

si × (1− αi)

]/
12∑
i=1

si (5)

where Ag represents the global decision accuracy, si is the
sample size of the ith sound type, αi is the warning rate of
the ith sound type. Note that for normal sound types (i =
6, 7, . . . , 12), the ith decision accuracy should be 1 minus αi.
Admittedly, some types may be confused with other types,

like type 1 and type 7, type 3 and type 7, type 4 and type 2.
This phenomenon of confusion may arise from their similar
frequency distribution, and it may also arise from their dis-
turbance with each other. Nevertheless, the recognition error
is acceptable and the overall algorithm accuracy is reliable.

As to the recognition efficiency, the combined algorithms
were coded in MATLAB R2018a and were performed on
an Intel Core 6700k @4.18 GHz, with 16 Gb of RAM. The
computational time for an acoustic data during 0.5 s is about
0.11 s, which satisfies the demand of real-time recognition.

VI. DISCUSSION
Compared with current studies related to train braking faults
identification, the biggest difference lies in the monitoring
method. This paper presented an acoustic-based recognition

TABLE 7. Comparisons with other acoustic recognition applications.

algorithm for wagons’ unreleased braking, while the prior
studies usually adopt onboard sensors to monitor the status
of brake system. Based on the time-varying monitoring data
of brake valve status and cylinder air pressure, Liu et al. [45]
achieved a classification accuracy of 94.3% by using the
method of Gradient Boosting Decision Tree (GBDT). The
accuracy of our acoustic-based recognition algorithm is about
98.2%. It is hard to judge between the two methods due
to the differences in measuring approach and original data
set. Another difference lies in the train running environment.
Current researches focus on trains running on railway lines,
while this study targets at the uncoupling trains in the mar-
shaling yard, the running speed, infrastructure condition and
surrounding environment are different. Meanwhile, in the
marshaling yard, it is feasible for us to install the way-side
acoustic monitoring system, which is easier to maintain and
upgrade.

Since the proposed method is an acoustic-based recogni-
tion algorithm, comparisons with prior studies in acoustic
recognition and classification have been performed from the
perspectives of application context, sound types, recognition
algorithm and recognition accuracy, as indicated in Table 7.
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SVM and convolutional neural networks (CNN) are most
frequently used algorithm for recognition, while the k near-
est neighbour (KNN) is also applicable. The recognition
algorithm presented in this paper is an improvement of
SVM, where the classifiers and decision rules are newly
designed considering the recognition requirements. Mean-
while, the extracted features are determined upon the spec-
trum analysis of 12 sound types, which makes the results
of data training more pertinent. As shown in Table 7, the
accuracy of acoustic recognition usually ranges from 70% to
99%. The global recognition accuracy of our algorithm is in
the high level of current studies. However, it should be noted
that the acquisition quality and the number of sound types
will affect the accuracy to some extent.

VII. CONCLUSION
This work researches the detection of wagons unreleased
braking at railway marshaling yard, and proposes an
acoustic-based recognition algorithm considering the appli-
cation context. Repeated experiments have been conducted to
collect acoustic data through a self-installed wayside acqui-
sition system, where the acoustic waves are classified into
5 abnormal types and 7 background types.

The hybrid algorithm consists of data pre-processing, fea-
ture extraction, template matching, SVM training and clas-
sification. Upon a detailed spectrum analysis through FFT,
14 frequency features have been selected during extraction,
where the discreetness of extracted frequency peaks is guar-
anteed under a minimum interval of 200 Hz. A matching
algorithm is then carefully designed to figure out a decision
matrix before the activation of SVM classifiers. The match-
ing proximity between real-time vectors and template vec-
tors is calculated by the cosine distance, which outperforms
the Euclidean distance for the high-dimensional acoustic
data. To increase the efficiency, top three nearest templates
in the decision matrix are selected for SVM classification.
The mechanism of SVM classification has been redesigned,
considering the selected templates and trained classifiers.
Meanwhile, algorithms of off-line training and real-time
computation have been integrated in the algorithm procedure
organically. Testing results of 12 sound types have validated
the reliability of proposed algorithm, with an overall decision
accuracy over 98%.

The limitation of proposed method lies in the acoustic
samples and the disturbance of background noise. On one
hand, some sound types may be confused with each other,
and the average recognition error for all sound types is
about 6.75%. Given more acoustic samples before feature
extraction and SVM training, the false rate will decrease to
some extent. On the other hand, there exist some unexpected
background noises, whichwill affect the recognition accuracy
of unreleased braking. Meanwhile, when faced with adverse
weather conditions, the warning system needs an alternative
database including different original samples and classifiers.

Future work will be focused on improving the pre-
processing method and recognition algorithm for a higher

accuracy during instantaneous recognition. Algorithms like
wavelet transform and decision tree are worth applying to
enhance the recognition performance. In summary, the pro-
posed recognition method can effectively extract the acoustic
features and recognize the sound type for the real-time iden-
tification of wagons unreleased braking.
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