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ABSTRACT This paper presents a novel framework for suppressing time-varying radio frequency
interference (TRFI) in wideband dechirping radar. The TRFI challenges the wideband radar because of
1) changing in wide spectra range; 2) dynamic nature and unpredictability; 3) significant noise power in
limited band. In this paper, an essential phenomenon of real measured data about TRFI in dechirping process
is analyzed, where it is smashed into several segments because of the narrowband filtering. Based on that,
a 2-step framework combining the interference filtering and frequency estimation is proposed. First, since the
different sparsity of signal of interference, a simple yet very effective regional filtering method based on l1
norm of STFT is applied, which transforms original problem into a sparse signal recovery problem. Second,
for 1-D signal, the reweighted atomic norm minimization (RAM) algorithm is applied to estimate the signal
from defect filtered data; for 2-D signal block, a weighting strategy is proposed to promote the accuracy
of original 2-D atomic norm minimization method. This method can be implemented as an interference
suppression stage for wideband radar with dechirping processing. Experiment of real measured signal in
TRFI environment and simulation of defect signal block illustrate its effectiveness.

INDEX TERMS Sparse recovery, reweighted atomic norm minimization (RAM), radio frequency
interference (RFI), dechirping.

I. INTRODUCTION
The bandwidth of high-resolution radar usually ranges
from 100 MHz to several GHz, which is easily influenced
by time-varying radio frequency interference (TRFI) [1],
characterized by instantaneous frequency laws changing in
time domain. These interferences can be either narrowband or
wideband [2]–[10], and their center frequencies hardly follow
a pattern. The RFI [11]–[16] is usually caused by signals
of television, mobile communications, radio, and cellular
phones, et al. With the electromagnetic spectrum becoming
increasingly congested, there are also some intentional
interference such as frequency-sweeping jammer, which
quickly changes in time domain and is extremely hard to
suppress. In this paper, these interferences are all classified
as TRFI.

Because of the dynamic nature and unpredictability,
the TRFI is very challenging to suppress. Previous work in
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RFI suppression area can be classified into two following
categories.

1) Suppression via filtering techniques, where the received
signal is processed by a notch filter or adaptive filter to
mitigate the interference source to noise floor, which is
popular in practical implementations because it is easy to
realize.

2) Interference extraction, including methods of eigen
decompositions [7], [8], spectral decomposition [15], inde-
pendent component analysis [6], time-frequency analy-
sis [5], [17], where the RFI components are first detected
and estimated, and then subtracted from the received signal.
In [2], a modified component analysis method using complex
tensor is proposed, which is designed to mitigate continu-
ously distributed NBIs and WBIs simultaneously. A signal
reconstruction method based on dynamic synthetic aperture
scheme is proposed for suppressing deceptive jamming
in [18].

Recently, the sparse recovery method has been utilized
in interference mitigation area [13], but requires prior
knowledge to build a representation dictionary, which cannot
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adapt dynamic TRFI. This problem is further solved in [14]
by adding an initial estimation step that operates directly on a
contaminated radar signal to identify the interference primary
subband.

However, there are still problems exist. First, the suppres-
sion by filtering will have a negative effect on the signal
power, and the sidelobe will be introduced, leading to serious
associated problems [14]. Second, the main difficulty of
the latter TRFI-extraction method is that the data collected
has been heavily contaminated by strong noise. Therefore,
unless there is very accurate prior information about the
TRFI source, it is hard to model or estimate the interference
effectively. The dynamic range and sampling resolution of
equipment also limit realization of suchmethods, even though
they are theoretically feasible.

A crucial phenomenon ignored by most interference
extraction methods is that dechirping has thoroughly changed
the frequency and bandwidth of original TRFI. Dechirping
for large bandwidth linear frequency modulation (LFM)
signal is a universal technic in high resolution radar
system [19], [20], after which the dynamic frequency
interference will not remain intact with complete frequency
but become isolated as several blocks in time domain. More
details will be covered in section II, where we will analyze
this phenomenon in detail.

A defect for filtering technic is that the signal becomes
incomplete and sparse, which is the reason for low
power and sidelobe. Recently, the emerging super-resolution
method stimulate numerous investigations on sparse sig-
nal recovery. Reference [21] first proposed a compres-
sive sensing method for radar imaging. Then the sparse
recovery method was used for super-resolution [22]–[27],
including sparse Bayesian learning [24], 2D gradient
projection [25], matrix completion [26], atomic norm
minimization (ANM) [28], [29], reweighted atomic norm
minimization (RAM) [27], [30], et al. Among those meth-
ods, the RAM has shown great advantage in estimation
accuracy [27], [30], [31] because of the off-grid characteristic
and high estimation accuracy.

In this paper, we investigate the change of TRFI from basic
of dechirping, and a notching method based on l1 norm after
short-time Fourier transform (STFT) is proposed to transform
it into a typical sparse recovery problem. After that, the RAM
is applied for 1-D and 2-D frequency estimation. Our main
novel contributions are listed as follows.

1) The interference phenomenon of TRFI on dechirping is
explained by investigating the interference mechanism from
the basic, and find that the interference has been changed and
smashed by dechirping and filtering, which is different from
the suppose of some interference extraction methods such
as [2].

2) The proposed TRFI filtering method based on l1 norm
analysis after STFT is efficient and performs well in strong
TRFI.

3) The RAM-based line spectrum estimation for filtered
signal is verified by a real experiment with TRFI.

4) We further promote the ANM for 2D data by imple-
menting a weighting strategy, which effectively improved the
calculation accuracy.

Organization wise, Section II provides details on signal
and TRFI modeling, as well as basic dechirping. Section III
presents our main proposed approach for filtering and
RAM-based frequency estimation. Section IV presents exper-
iments to verify the effectiveness of proposed method.

II. DECHIRPING OF SIGNAL AND INTERFERENCE
Dechirping is a pulse compression technique for LFM,
which is widely applied in radar imaging system such as
SAR and ISAR. It transforms the signal bandwidth into a
few hundred of the original in analog electronic devices,
extraordinarily reducing the requirement for the analog-
to-digital converter (ADC). Flowchart of dechirping is shown
in Figure 1.

FIGURE 1. Block diagram of dechirping for LFM.

In order to better illustrate the interference mechanism of
TRFI, we start from the basic of dechirping. Suppose the
radar transmits a LFM signal, then the echo of target sr (t)
with a distance of Rt will be
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Dechirping is a method using a LFM signal with the center
frequency of fc and the chirp rate of −γ as the reference
to mix the echo for frequency difference processing. The
reference is
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where Rref is the reference range, which indicates the center
of the observed area, and Tref is the pulse width of reference,
usually wider than Tp. The output of mixer is sif (t) = sr (t) ·
s∗ref (t)
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where R1 = Rt − Rref and the sif (t) is a single
frequency pulse whose frequency is proportional to R1. If the
required observation range is [Rref − 1r

/
2,Rref + 1r

/
2],

the frequency range will be
[
−γ1r

/
c, γ1r

/
c
]
, which

means the bandwidth of signal will be transformed into B =
2γ1r

/
c = B1r

/
Rp, where Rp is the corresponding range

of Tp. Then, the sif will be input into a lowpass filter with
bandwidth equal or slightly greater than B, then the output
will be collected by ADC for fast Fourier transform (FFT)
to show the spectrum, where the frequencies corresponds to
spatial ranges. Figure 2 indicates the signal and TRFI before
and after dechirping in time-frequency domain.

FIGURE 2. Signal and TRFI before and after dechirping in time-frequency
domain. (a) Typical original LFM signals. (b) Signals after dechirping.
(c) Signal together with TRFI. (d) Signals and TRFI after dechirping.

The TRFI is modeled as

i(t) = Ai(t)ej(2π fci(t)t+ϕi(t)) (4)

where fci(t) is the interference frequency which follows an
arbitrary pattern, Ai(t) denotes the noise amplitude and ϕi(t)
is the phase. For concentration of interfering energy, the
bandwidth of TRFI is usually limited. The output of mixer
is

iif (t) = i(t) · s∗ref (t)

= Airect

(
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c
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·e
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The whole interference cannot be acquired totally because
of the lowpass filter. After the filter, a narrow band noise
will be collected, whose bandwidth is usually not the whole
bandwidth of original interference and is equal to or narrower

than the filter bandwidth. This is the main reason for the
defect of interference extraction methods, which can hardly
be realized in LFM dechirping systems because of the
incompletion of TRFI after dechirping.

The collected digital signal from ADC is

y(k) = x(k)+ i(k)+ n(k), k = 1, 2, . . .K (6)

where k denotes the index of range sample, x(k) denotes
the collected signal, i(k) denotes the interference and n(k)
denotes an additive noise. Figure 3 simulates each step of
dechirping, where the first column is LFM and the second
is NRI.

FIGURE 3. Each step of dechirping, where the first column is LFM and
the second is NRI. (a) and (b) are the STFT of original LFM and NRI;
(c) and (d) are the STFT of mixer output, where the slopes have been
changed; (e) and (f) are the STFT of filter output, where the original NRI
has been changed into a narrowband interference; (g) and (h) are the
outputs in frequency domain, where (h) has been severely interfered that
signal has been buried in noise.

III. PROPOSED METHOD
Proposed method combines interference filtering approach
and spectrum estimation method. As verified in [30], [31],
the RAM shows great performance in sparse signal recovery.
Proposed method includes following steps. 1) Interference
filtering based on l1 norm of STFT, which transforms the
problem into a common sparse signal recovery problem.
2) 1-D or 2-D spectrum estimation of filtered data based on
RAM.
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FIGURE 4. STFT of received samples (first column) and their
corresponding l1 norm (second column).

A. INTERFERENCE FILTERING BASED
ON l1 NORM OF STFT
A common phenomenon is that, the noise interference after
sampling shows discrete block distribution in time domain,
and frequency energy distribution of the noise block is denser
than signal owing to containing more frequency components.
According to the property, the time-frequency distribution of
the received signal is analyzed, and a simple but effective
filtering method is proposed. The STFT with rectangular
window of length M can be formulated as

STFT = [STFT (k, l)] =

[
M−1∑
m=0

y(k + m)e−j2π lm/M
]

(7)

which can be written in vector form as

STFT = [ρ(1), ρ(2) · · · ρ(k) · · ·] (8)

where ρ(k) denotes the transformed vector of k th index.
The l1 norm is sensitive to the sparsity of vectors and is

widely used in sparse reconstruction algorithms. Here we
apply it to the detection of interference region. According

to previous analysis, the interference after dechirping is
relatively dense in frequency domain, whereas the signal is
relatively sparse.

The l1 norm of ρ(k) is calculated by

L(k) = L1ρ(k) =

∥∥∥∥∥
M−1∑
m=0

y(k + m)e−j2π lm/M
∥∥∥∥∥
1

=

∑
l

∣∣∣∣∣
M−1∑
m=0

y(k + m)e−j2π lm/M
∣∣∣∣∣ (9)

The interference region is much more intense in frequency
domain than signal region, corresponding to the l1 norm,
where L1interference � L1signal. This criterion determines
whether y(k) is an interference or a signal. A binary
hypothesis can be established, where H0 : y(k) is signal and
H1 : y(k) is interference. σ is a threshold and σ = λLs, where
Ls is the pure signal l1 norm, which is estimated by the first
several l1 norm results where the pure signal region shows a
stable characteristic. λ is a constant between 2 to 4 according
to the interference power. The value setting of σ rely on
first several results to analyze and conduct an estimation of
interference and signal regions. After that, we can utilize it
automatically. {

L(k) ≤ σ, H0 is true
L(k) > σ, H1 is true

(10)

Because of noise has the characteristics of instability,
there are large fluctuations in individual positions of direct
calculated L(k), bringing intolerable errors. To solve this
problem, a sliding window detection method is constructed
as

LW (k) = ‖[ρ(k), · · · ρ(k + 1) · · · , ρ(k + K )]‖1
= max

ki∈[k,k+K ]
L1ρ(ki) (11)

and (10) is transformed to{
LW (k) ≤ σ, H0 is true
LW (k) > σ, H1 is true

(12)

This smoothingmethod can effectively avoid the instability
of individual positions. After detection, the filtering criterion
will be (13), which transforms original data to a typical sparse
data.

y(k) =

{
y(k), k → H0

0, k → H1
(13)

B. 1-D SPECTRUM ESTIMATION BASED ON RAM
Through previous processing, the interference suppression
has been transformed into a typical sparse signal reconstruc-
tion problem. Then the RAM-based algorithm is applied to
deal with such problems.
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FIGURE 5. Block diagram of TRFI l1 norm filtering.

The ideal signal is a stack of frequencies with different
amplitudes, which can be expressed as

‖Y‖A,0 = inf
fq,σq

U : Y =
U−1∑
q=1

a
(
fq
)
σq

 (14)

where σq denotes the amplitude of qth frequency index and
a (f ) =

[
1, ej2π f , . . . , ej2π(K−1)f

]
denotes a discrete sinusoid

with frequency f. It can be transferred into the following
optimization problem

min
u

ln |T (u)+εI| + tr
(
YHT (u)−1 Y

)
s.t.T (u)≥0 (15)

where u is aK×1 vector and T (u) is the Toeplitz matrix of u.
The rank(·) and tr(·) denotes the rank and trace of a matrix.
εI is a disturbance component to avoid T (u) being a singular
matrix.

In [32], the RAM is proposed to improve the accuracy
by an iterative weighting algorithm. A weighted continuous
dictionary is defined as

Aw ,
{
aw (f ) = w (f ) a (f )

}
(16)

wherew (f ) is a weighting function. For ith iteration,wi (f ) =(
a (f )H W ia (f )

)− 1
2 and W i =

(
1
/
K
)
(T (ui)+ εI)−1.

The weighting function W i is updated based on the latest
solution ui. The final optimization problem for RAM is

‖Y‖Aw = min
u

√
K
2

tr (WT (u))+
1

2
√
K
tr
(
YHT (u)−1 Y

)
s.t.T (u) ≥ 0 (17)

It can be restored with a standard semidefinite program-
ming (SDP) solver SDPT3 in CVX toolbox. The proof of the
above theorem can refer to [32].

C. PROMOTED 2-D SPECTRUM ESTIMATION
The 2-D frequency estimation is extremely useful in radar sig-
nal processing such as SAR/ISAR imaging after dechirping
and 2-D direction of arrival (DOA) estimation. The 2-D data
is usually composed by n2 1-D signal vectors, formulated as
Y =

[
y1, y2 · · · yi · · · yn2

]
∈ Cn1×n2 , where yi is a filtered

sparse vector with dimension of n1.
The approximate solution of [34] is based on atomic l0

norm, which can find the best optimal solution. However,
its solution procedure is usually nonconvex. Reference [35]
provides an alternative solution to transform atomic l0 norm
into a convex problem. In actual situation, the frequency
components are usually not uniformly distributed, and we can

approach the most accurate value by an iterative algorithm,
which is the same in 2-D case. Based on [32], [35], we extend
traditional RAM for line spectrum estimation to the 2-D
application.

According to [34], the 2-D matrix Y can be vectorized
as z = vec

(
YT)

∈ Cn1n2 to transform original problem
into a 1-D form. First, we define a continuous dictionary on
2 frequency dimensions as

Aw ,
{
aw (f1, f2) = w (f1, f2) a (f1)⊗ a (f2)

}
(18)

where ⊗ denotes the Kronecker product and we have
a (f1, f2) = a (f1) ⊗ a (f2);w (f1, f2) is a weighting function
of f1 and f2.
In order to conduct the 2-D reweighted atomic norm

minimization frequency estimation, we must solve the
following problem

‖z‖Aw

= inf
f1q,f2q,σwq

∑
q

∥∥∥σwq ∥∥∥2 : z =∑
q

σwq a
w (f1q, f2q)


= inf

f1q,f2q,σq

∑
q

∥∥σqw∥∥2
w (f1, f2)

: z=
∑
q

σqa
(
f1q
)
⊗ a

(
f2q
) (19)

The weighting function for ith iteration is

wi (f1, f2) =
(
(a (f1, f2))H W ia (f1, f2)

)− 1
2

(20)

where W i =
(
1
/
n1n2

)
(T (U)+ εI)−1 ∈ Cn1n2 and T (U)

is a double-fold Toeplitz structure from a n1n2 matrix U ={
um1,m2

}
(m1 < n1, m2 < n2) [34], composed by

T (U) =


U0 U1 . . . Un1−1

UH
1 U0 . . . UH

n1−2
...

...
. . .

...

UH
n1−1 UH

n1−2 . . . U0

 ∈ Cn1n2×n1n2

(21)

The lth row of U defines U l

U l =


ul,0 ul,−1 . . . ul,n2−1
uHl,1 ul,0 . . . ul,n2−2
...

...
. . .

...

uHl,n2−1 uHl,(n2−2) . . . ul,0

 (22)

Referring (17), the extended solution for (19) is

min
U

√
n1n2
2

tr (WT (U))+
1

2
√
n1n2

tr
(
zHT (U)−1 z

)
s.t. T (U) ≥ 0 (23)

The proof of (23) is given in Appendix. By (23), we further
apply the reweighting method to guarantee a better precision.
Procedure for solving (23) is an iterative algorithm, where
the current iteration is based on result of former iteration.
Because the problem has been transformed to 1-D, proposed
weighting function method is an extension of RAM. We can
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also use an SDP solver to deal with optimal problem
of (23). Compared with non-weighted method, the reweight
method will obtain higher estimation accuracy at the cost of
calculating time over several iterations.

However, the complexity will increase rapidly with 2-D
ANM-based methods because solving of which is through an
SDP solver, which consumes most time, compared to which
the computing time of other steps can be ignored. According
to [36], the computational complexity of SDP is O(N 4.5),
which means as the number of calculating points increases,
the computational complexity grows exponentially. Then,
the reality of all 2-DANM-basedmethods has to face the limit
of computing power. Although complexity has increased, it is
tolerable in some small sample cases considering its precision
for frequency estimation.

IV. NUMERICAL EXPERIMENTS
In this section, the experiment and simulation results are
presented to demonstrate the effectiveness of the proposed
method with TRFI environment. Firstly, an experiment for
line spectrum estimation in produced TRFI environment is
conducted, by applying RAM, we can easily recover the
original frequencies. Secondly, we generate a 2-D interfered
signal block with random 2-D frequency, and conduct a
simulation based on proposed 2-D RAM method.

As to dechirping radars, frequency estimation is the dual
problem of signal recovery by implementing inverse FFT.
The output root-mean-square error (RMSE) is formulated for
evaluating algorithm performance as

RMSE = ‖X − Y‖F
/
‖X‖F (24)

where X is the original signal, Y is the recovered signal after
interference region removing and ‖·‖F denotes the Frobenius
norm.

A. EXPERIMENT OF 1-D MEASURED DATA
An experiment is conducted to validate the proposed method.
The experiment setup is shown in Fig. 6 (a), where a generator
working on ARB mode transmits simulated targets signal,
which is consisted by sum of 10 LFM signals with random
micro delays and powers. The Local Oscillator provides a
reference frequency for receiver, which is trigged by the pulse
of transmitter for synchronization. The center frequency of
LFM signal is 10 GHz and the bandwidth is 100 MHz.
Sampling frequency of receiver is 10 MHz. The NRI is a
noise with bandwidth of 10 MHz, whose center frequency
randomly changes from 0.9 to 10.1 GHz, transmitted by a
X-band jammer. Dechirping for received signal is conducted
in the receiver with reference frequency. Received segment
contains 80 complex indexes.

The STFT of original signal is shown in Figure 7 (a), where
the interference region presents more intensive and complex.
About 40% of original signal is polluted by 2 jamming
segments, where the interference regions have a SINR of
−27.3 dB. Through l1 norm filtering, the severely interfered
part can be easily removed. We use integrity rate to describe

FIGURE 6. (a) Setup for experiment. (b) The scene of experiment.

FIGURE 7. (a) STFT of original signal (including interference). (b) STFT of
signal after filtering.

the integrity of signal left after interference removing and
here the integrity rate is 58%. Figure 7 (b) shows the STFT
of filtered signal, where only some signal segments left.

Dechirping for received signal is conducted in the
receiver with reference frequency. Received segment contains
80 complex indexes. The STFT of original signal is shown
in Figure 7 (a), where the interference region presents more
intensive and complex. About 40% of original signal is
polluted by 2 jamming segments, where the interference
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regions have a SINR of−27.3 dB. Through l1 norm filtering,
the severely interfered part can be easily removed. We use
integrity rate to describe the integrity of signal left after
interference removing and here the integrity rate is 58%.
Figure 7 (b) shows the STFT of filtered signal, where only
some signal segments left.

FIGURE 8. Recovery results. (a) Real part of recovered signal.
(b) Recovered spectra of FFT, ANM and RAM.

Next, the essential step is to recover the complete signal
and estimate the frequencies from defective data. The
ANM and RAM are tested for super resolution frequency
estimation, where the conventional FFT is also used for
comparison. Figure 8 shows the recovery results, and the
RAM shows best accuracy in proposed situation, after
3 iterations. In Figure 8 (b), the FFT loses its efficacy in such
situation where the estimation result can hardly match the
ground truth and sidelobes has been introduced to cause the
degradation of resolution, which is the real situation for some
directly filtering algorithms. The estimated spectra of RAM
match the ground truth well, whereas the ANM shows greater
error. The results preliminarily verify the effectiveness of
RAM and ANM for recovering the defect data.

A significant factor of the results is integrity rate which is
the base of data recovery. Thus, 50 Carlo experiments about
the RMSE of ANM and RAM against different integrity rate
(from 10% to 100%) are conducted and the result is shown
in Figure 9 (a). In the case, RAM and ANMwill successfully
work when integrity rate is higher than 30% and RAM shows
better performance considering its RMSE is much lower than
ANM. Notice that the needed integrity rate depends on the
number of signals, which has shown in [32]. Furthermore,
an experiment to illustrate the RMSE against SINR under

FIGURE 9. RMSE of RAM and ANM. (a) RMSE under different integrity
rate. (b) RMSE against SINR under different snapshots.

FIGURE 10. (a) Real locations of (f1, f2). (b) Amplitude of simulated
filtered signal block, where each column presents banded sparsity in
random position.

different snapshots is conducted. The SINR here is defined as
the signal-interference-plus-noise ratio in interference region,
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FIGURE 11. Spectrum estimation results of different methods. (a) Direct 2D-FFT on defect data. (b) APES. (c) BCS. (d) FFT of recovered signal by RAM with
multi-column calculation. (e) 2-D ANM over amplitude threshold 0.05. (f) Proposed method over amplitude threshold 0.05.

thus lower SINRmeansmore salient interference feature. The
interference length is set as 40% of whole echo length. The
result is shown in Figure 9 (b), where SINR of interference
region has little effect on both ANM and RAM, because they
have been processed by l1 norm filtering from the beginning.
Consistent with integrity rate, number of snapshots can affect
RMSE similarly. More snapshot means more information to
utilize, and better performance.

The experiment results show that for the situation that
signal has not been entirely covered by TRFI, the RAM-based
line spectrum estimation method will show its advantage in
accuracy.

The results is consistent with [32] since we have transform
the TRFI problem in dechirping radar into a typical sparse
recovery problem. In this case, we apply the RAM for this
typical line spectrum estimation problem over sparse signal
and demonstrate its feasibility.

B. SIMULATION OF 2-D DATA
In this case, considering the exponentially increasing com-
plexity O((n1n2)4.5) of 2-D ANM-based algorithm with
computing points n1n2, we cannot implement the algorithm
in the actual sampled data block yet. However, we can still
conduct a simulation referring [34] to test the proposed
weighting strategy for 2-D signal block.

We simulate a small sample block of 2-D signal data
with 8 associated frequencies after filtering, which shows a
sparse form. Locations of (f1, f2) is shown in Figure 10 (a).
The two points in red rectangular box are very close to

each other, which will be a trouble for frequency recovery.
The real position of (f1, f2) is [(f1, f2)] =[(0.551,0.429),
(0.404,0.570), (0.694,0.459), (0.628,0.766), (0.379,0.737),
(0.155,0.538), (0.338,0.982),(0.594, 0.430)] and amplitude of
each point is set as 1.

The size of collected filtered signal block is 20 × 20 with
30% of each column assumed to be interfered by TRFI with
random position, which has been set as 0. The amplitude of
collected defect signal block is shown in Figure 10 (b).

Figure 11 shows some 2-D frequency estimation results
based on several typical algorithms, where (a) is direct
2D-FFT on defect data; (b) is Bayesian compressive sensing
(BCS) [37] algorithm; (c) is amplitude and phase estimation
(APES) [38] method; (d) is the 2D-FFT result of recovered
signal by RAM, which is calculated through line spectrum
estimation of each row; (e) Method of [34], which is based
on ANM without an iterative calculation of SDP solver;(f)
Proposed method. There are some low amplitude points in
original estimation results of (e) and (f), which have bad
influence on conciseness of final figures and have been
filtered by an amplitude threshold of 0.05.

The comparison between Figure 11 (e) and (f) shows effect
of promoting. In Figure 11 (e), the estimation accuracy is
limited by the inadequate signal length, which is not as high as
the reweighting method in almost all frequency positions. For
the two points that are close to each other in red rectangular
box of Figure 10 (a), original 2-D ANM cannot distinguish
them, whereas the proposed weighting method performs
better.
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As shown in Figure 11, the proposed 2D-RAM method
performs best accuracy in this case, mostly because of the
iteration algorithm and weighting strategy. What needs to
point is that the promoted accuracy of proposed method is
at the cost of computing complexity, which needs several
iterative solutions of SDP.

V. CONCLUSION
We have observed the interference phenomenon of TRFI
and detailly explained the interfering mechanism from the
basic of dechirping. Based on that, we have presented in
this paper a simple yet very effective filtering method based
on l1 norm of STFT, which transforms original problem
into a typical sparse signal recovery problem. We further
implement a weighting strategy to promote the ANM for
2D data. We confirm the validity of our framework via an
experiment of real measured signal in TRFI environment and
a simulation of 2D echo data.

In the future work, further algorithms to reduce calculation
complexity should be considered.

APPENDIX
The conclusion of (23) is given by fallowing equations.

min
U

√
n1n2
2

tr (WT (U))+
1

2
√
n1n2

tr
(
zHT (U)−1 z

)
s.t. T (U) ≥ 0

= min
f1q,f2q,pq≥0

√
n1n2
2

tr (WR)+
1

2
√
n1n2

tr
(
zHR−1z

)
s.t. R =

∑
q

pqa(f1q, f2q)a(f1q, f2q)H

= min
f1q,f2q,pq≥0,σq

√
n1n2
2

∑
q

pqa(f1q, f2q)HWa(f1q, f2q)

+
1

2
√
n1n2

∥∥σq∥∥22 p−1q
s.t. z =

∑
q

a(f1q, f2q)Hσq

= min
f1q,f2q,σq

w
(
f1q, f2q

)−1 ∥∥σq∥∥2 s.t.z=
∑
q

a(f1q, f2q)Hσq

= ‖z‖Aw

where the Vandermonde decomposition of T (U) is applied in
first derivation.
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