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ABSTRACT Blockchain has been envisioned to be a disruptive technology with potential for applications
in various industries. As more and more different blockchain platforms have emerged, it is essential to
assess their performance in different use cases and scenarios. In this paper, we conduct a systematic
survey on the blockchain performance evaluation by categorizing all reviewed solutions into two general
categories, namely, empirical analysis and analytical modelling. In the empirical analysis, we comparatively
review the current empirical blockchain evaluation methodologies, including benchmarking, monitoring,
experimental analysis and simulation. In analytical modelling, we investigate the stochastic models applied to
performance evaluation of mainstream blockchain consensus algorithms. Through contrasting, comparison
and grouping different methods together, we extract important criteria that can be used for selecting the most
suitable evaluation technique for optimizing the performance of blockchain systems based on their identified
bottlenecks. Finally, we conclude the survey by presenting a list of possible directions for future research.

INDEX TERMS Blockchain, distributed ledger technology, performance modelling, performance evalua-

tion, systematic survey.

I. INTRODUCTION

Since its first introduction in Bitcoin by Nakamoto and
Bitcoin [1] in 2008, blockchain has been recognized as
a disruptive technology in various industries beyond cryp-
tocurrency, including finance [2], [3], Internet of Things
(IoT) [4], [5], health care [6], [7], energy [8]-[10] and logis-
tics [11], [12]. Compared to conventional, centralized solu-
tions, blockchain has some significant advantages such as
immutability, enhanced security, fault tolerance and trans-
parency. However, the decentralized nature of blockchain
dramatically limits its performance (e.g., throughput and
latency). For example, Bitcoin can only achieve a low
throughput of 7 transactions per second (TPS), and it takes
around 10 minutes for a transaction to get confirmed [13].
In contrast, current centralized payment systems such as
VisaNet and MasterCard can reach thousands of TPS and
almost real-time payments. By taking a similar consensus
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algorithm, proof-of-work (PoW), other blockchain platforms
such as Ethereum [14] and Litecoin [15] also inherit the
performance flaws of Bitcoin. Without doubt, the perfor-
mance issue has become the major constraint of blockchain’s
applications in production. This is especially true for systems
demanding high performance such as the online transaction
processing (OLTP) and real-time payment systems.

To overcome this problem, many blockchains put efforts on
improving their performance, e.g., by modifying the system
structure and designing new consensus algorithms. These
solutions include, but are not limited to, off-chain [16]-[19],
side-chain [20]-[23], concurrent execution (smart con-
tract) [24]-[26] sharding [27]-[31], and directed acyclic
graph (DAG) [32]-[39].

Existing and new solutions should be comparatively eval-
uated in a meaningful manner to show their efficiency and
effectiveness. For example, different versions of Hyperledger
Fabric (HLF), e.g., HLF v0.6 and HLF v1.0, should be com-
pared in the same evaluation framework to demonstrate the
performance advantages/disadvantages of the new release.
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In addition, through performance evaluation and analysis,
bottlenecks can be identified and used to inspire further opti-
mization ideas. Therefore, performance evaluation plays an
important role in the area of blockchain research.

To this end, it would be useful to summarize, classify
and survey the existing efforts on blockchain performance
evaluation and to identify future directions in this area. How-
ever, most existing related surveys only focus on improve-
ment (scalability) solutions or a specific evaluation topic
of blockchain performance. A representative list of existing
surveys, shown in Table 1, clearly identifies the need for a
systematic survey on blockchain performance evaluation.

TABLE 1. Research scope of existing blockchain performance related
surveys.

Year Survey Research scope
2018 Kim et al. [40] scalability solutions
2019 Rouhani and security, performance, and

Deters [41] applications of smart contract

challenges of

2019 Zheng et al. [42] performance and security

benchmarking tools

2019 Wang et al. [43] and performance

optimization methods
2020 Zhou et al. [44] scaling solutions to blockchain
2020 Yu et al. [45] sharding for

blockchain scalability

In this contribution, we present a comprehensive, system-
atic survey on blockchain performance evaluation. The sur-
vey covers existing studies on evaluating the performance of
various mainstream blockchains, and compares their advan-
tages and disadvantages. It addresses the following research
questions:

RQ1. What are the current mainstream techniques, main
evaluation metrics and benchmark workloads for
blockchain performance evaluation?

RQ2. How to comparatively evaluate the performance of
two blockchain systems with different consensuses?
RQ3. What are the significant bottlenecks identified in

various blockchain systems?

RQ4. What are the main challenges and opportunities in
blockchain performance evaluation?

To answer these questions, the authors have searched and
reviewed the latest papers published since 2015. The papers
have been retrieved from major scientific databases, includ-
ing ACMDL, IEEEXplore, Elsevier, MPDI and SpringerLink.
In addition, closely related papers cited by the selected com-
munications have also been taken into consideration. Note
that this survey focuses only on blockchain performance
evaluation, and solutions for blockchain performance or scal-
ability improvement are not discussed. Interested readers may
refer to the published surveys of performance improvement
solutions for blockchain [40]—[45] listed in Table 1.
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To the best knowledge of the authors, this is the first
survey that systematically reviews the state-of-the-art on the
blockchain performance evaluation from several different
perspectives. The reviewed evaluation approaches can be
classified into two high-level groups: empirical evaluation
and analytical modelling, as shown in Figure 1. Empirical
evaluation includes benchmarking, monitoring, experimental
analysis and simulation. Analytical modelling mainly covers
three types of stochastic models: Markov chains, queueing
models and stochastic Petri nets (SPNs). Through this clas-
sification, we aim to depict a big picture of the performance
evaluation landscape, identify current challenges in this area,
and provide suggestions for future research. The contribu-
tions of this survey can be summarized as follows:

DLT Performance Evaluation

o & 9
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bitcoin

Empirical evaluation

benchmarking o
monitoring
experimenta
analysis @
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Analytical modelling

models
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FIGURE 1. A landscape of DLT performance evaluation approaches and
evaluated ledgers.

o It provides a systematic survey on the blockchain per-
formance evaluation, covering all existing evaluation
(empirical and analytical) approaches for evaluating the
mainstream blockchain systems.

« It introduces existing popular models for analytical per-
formance evaluation of prominent blockchain platforms,
categorizes them and performs a comparative analysis of
their advantages and disadvantages.

« It identifies the current challenges in this area, and sub-
sequently provides suggestions for future research.

The remainder of this paper is organized as follows.
Section II provides some prerequisite knowledge on dis-
tributed ledger technology (DLT), its categorization and
architecture. Section III introduces the blockchain perfor-
mance evaluation solutions from the perspective of empirical
analysis, including benchmarking, monitoring, experimental
analysis and simulation. Section IV focuses on the tech-
nical and mathematical introduction of existing commonly
used performance modelling solutions including Markov
chains, queueing models and stochastic Petri nets. The fol-
lowing Section V summarizes the major findings and points
out potential opportunities in this area for future research

VOLUME 8, 2020



C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

IEEE Access

according to the identified open issues. Finally, the survey is
concluded in Section VI.

Il. BACKGROUND

Blockchain is a major type of distributed ledger technologies
(DLTs). The relationship of blockchain to DLT is just like
the car to the vehicle [46]. As such, terms ‘‘blockchain”
and “DLT” are used interchangeably throughout this paper.
Any ledger that is stored in a distributed fashion and shared
among a set of nodes or participants can be referred to as a
distributed ledger. For new information to be added to this
ledger, all participating nodes must reach a consensus on
whether the information is legitimate or not. The algorithm
which determines how this decision is reached, called consen-
sus algorithm, is an important part of the DLT. In this section,
we introduce a categorization of DLT and its abstraction layer
architecture.

A. CATEGORIZATION OF DLTs

DLTs are widely used in cryptocurrencies such as Bitcoin [1],
Ethereum [14], and EOS [47]. However, they can also be used
in a variety of applications beyond cryptocurrencies. In 2019,
CB Insights identified 55 industries that can be transformed
by this technology [48].

A possible taxonomy of distributed ledger technologies is
shown in Figure 2. DLTs can be categorized based on their
data architecture. Two main categories are blockchain and
directed acyclic graph (DAG). In blockchain, transactions are
stored in containers called blocks, which are chained together
using their hash values. This chain of information, similar
to a linked list, is immutable. Examples of this category are
Bitcoin, Ethereum, EOS, and Litecoin. In DAG, on the other
hand, transactions are connected to one another by a reference
relationship, forming a directed graph rather than a linked
list. This category includes DLTs such as IOTA, Byteball,
and Nano. In addition, there are distributed ledgers that have

[ Distributed Ledger Technology Categorization ]

Data Structure ] Permission and Accesability ]
- Public Permissionless
Blockchain e.g., Bitcoin, Ethereum, Litecoin |
e.g., Bitcoin, EOS, Litecoin )

Public Permissioned
e.g., EOS, Ripple, Sovrin

Private Permissionless
e.g., LTO, Holochain, Monet )

DAG ) {
e.g., IOTA, Byteball, Nano ) {

Private Permissioned
e.g., Hyperledger, Corda

Others )
e.g., Radix, Corda ) ~[

FIGURE 2. Categories of distributed ledger technologies.
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their unique data structure and do not fall into either of these
categories, such as Radix and Corda.

Based on the permissions of the ledger, DLTs can be
classified as permissioned and permissionless, which usually
makes one think of another taxonomy: private and public
based on the ledger accessibility. In permissioned distributed
ledgers, the identity of all the participants is known.
By contrast, everyone can participate anonymously in a per-
missionless DLT network. Public and private DLTs can be
distinguished by who can read the data on the ledger and
verify its validity. Public ledgers are open and anyone can
read the data on the ledger and host a node without the need to
be approved. Private ledgers, by contrast, are only accessible
by those who are pre-approved.

Therefore, based on the permissions and accessibility of
the ledger, DLTs can be divided into four groups, as shown
in Figure 2. Public permissionless ledgers, such as Bitcoin,
Ethereum, and Litecoin, have no restriction on the partici-
pating parties. In public permissioned ledgers, the identity
of participants should be known but anyone can read and
validate the ledger. EOS, Ripple, and Sovrin are examples of
this type. In private permissionless blockchains, the identi-
ties of the participants are not known but only pre-approved
nodes validate the data. Examples of this category include
LTO, Holochain, and Monet. Finally, in private permissioned
ledgers, such as Hyperledger and Corda, access is restricted to
pre-approved participants and the identities of the participants
are known.

B. DLT ABSTRACTION LAYERS

Dinh et al. [49] introduced a blockchain design comprised
of four identified abstraction layers, namely application,
execution engine, data model and consensus. In the Oracle
blockchain guidance book [46], the authors defined five lay-
ers to display the general architecture of blockchain, includ-
ing the application and presentation layer, consensus layer,
network layer, data layer and hardware/infrastructure layer.
To better describe the architecture of DLT for the purpose
of performance evaluation, we formulate an abstraction layer
architecture following mainly Dinh’s model [49], but extend
it to five layers shown in Fig. 3.

1) APPLICATION LAYER

As the top presentation of DLT’s technology stack, this layer
contains the applications that are mainly used by the end
users. Up to date, the most popular one is still cryptocur-
rency. As the first published digital currency, Bitcoin has con-
trolled most of the marketplace and developed many variants.
Ethereum has its own currency called Ether. IOTA also has
its currency with the same name as the network, I0TA [37].
Other examples include the wallet to manage cryptocurrency,
smart contracts, and all kinds of decentralized applications
(DApps). In a DLT system, a smart contract is a piece of code
designed to digitally facilitate, verify, or enforce the execution
of a contract. For Ethereum, the smart contract is running on a
dedicated virtual machine (called EVM); and most contracts
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Application Layer
Smart Contracts, Chaincode, DApps etc.

Execution Layer
VM, Compilers, Dockers etc.

Data Layer
Blocks, Transactions, Indexing, Signature,
Hash, Merkel Tree etc.

Consensus Layer
PoW, PoS, PBFT, BFT-SMaRt etc.

Network Layer
Peer-to-Peer network

FIGURE 3. Abstraction layer model for DLT.

on the system are related to cryptocurrency. While HLF’s
smart contract is running in a container such as Docker. One
of the best-known DApps is the decentralized autonomous
organization (DAO) in Ethereum, which creates communities
to raise funding for exchange and investment.

Because this layer is in charge of presenting the final results
executed from the distributed ledger system, it is supported
and impacted by all the lower layers. Therefore, the perfor-
mance evaluation results of the application layer reflect the
overall performance of tested DLTs.

2) EXECUTION LAYER
The execution layer is in charge of executing contract or
low-level machine code (bytecode) in a runtime environ-
ment installed on DLT network nodes. Ethereum has its own
machine language and a virtual machine (EVM) developed
to run the smart contracts code. Unlike Java virtual machine
(JVM), the EVM reads and executes a low-level represen-
tation of smart contracts called the Ethereum bytecode. The
smart contracts are programmed in a dedicated high-level lan-
guage named Solidity, which is first compiled to bytecode by
Solidity compiler. The Ethereum bytecode is an assembly lan-
guage made up of multiple opcodes. Each opcode performs
certain action on the Ethereum blockchain. In contrast, HLF
does not take the semantics of language into consideration.
It runs the compiled machine codes (from chaincode) inside
Docker images. In addition, HLF’s smart contract (chain-
code) supports multiple general high-level programming lan-
guages such as Go, node.js, and Java rather than a dedicated
language like Solidity of Ethereum. IOTA does not support
smart contracts up to date. It adopts Java as the main devel-
opment language and runs its reference implementation (IRI)
in JVM. IOTA also has a version running in Docker image.
The runtime environment used to execute contracts or
transactions needs to be efficient. And the execution result
should be deterministic to avoid the uncertainty and inconsis-
tency of transactions on all nodes. Any transaction abortion
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caused by inconsistent execution would result in computation
resource waste and further decrease the performance. Addi-
tionally, the resource configurations (e.g., CPU and RAM)
may impact the execution performance.

3) DATA LAYER

In the data layer, a wide range of data-related topics are
defined, including transaction models, data structure, Merkel
trees, hash function, encryption algorithms, etc. There are
two popular transaction models: unspent transaction output
(UTXO) and account. For UTXO, one owner completes value
transfers by signing a transaction transferring the ownership
of the UTXO to the receiver’s public key. It involves an extra
step of searching for ownership of the transaction from the
sender’s side. The account-based model is more efficient as it
atomically updates two accounts in one transaction. A smart
contract (chaincode for HLF) is a special type of account.

For blockchain, blocks containing transactions and con-
tract execution states are chained together in a linked list by
putting the hashed result of its previous block’s content into
the header of the current block. Ethereum and HLF employ
a two-layer data structure to organize the block’s content.
All states are stored in a key-value database on a disk and
indexed in a hash tree. The hash tree root is contained in
the block’s header. With a similar design, different DLTs
have their own storage solutions for each level. For example,
Ethereum uses LevelDB, and HLF uses CouchDB to store
the states; Ethereum and Parity employ Patricia-Merkle (key-
value store) tree, while HLF implements Bucket-Merkle tree
to store the indices [49]. For IOTA, transactions are directly
appended to the DAG structure called fangle in a hashed man-
ner. The IRI uses RocksDB database to store the snapshot,
apruned ledger to prevent the tangle from expanding too large
in size.

Besides the factors mentioned above, there are other
design parameters in the data layer, such as hash functions
(e.g., SHA 256 v.s. SHA 128), encryption algorithms
(RSA v.s. ECC), and block size. All these factors may influ-
ence the performance of a blockchain system.

4) CONSENSUS LAYER

The consensus protocol is the core of a DLT system. It sets
the rules and forces all nodes to follow them to reach an
agreement (e.g., transaction confirmation) on blockchain
content. Generally, there are two basic types of consensus
mechanisms, which are proof-based and vote-based consen-
suses. The most popular proof-based consensus is proof-of-
work (PoW), which has been employed by many blockchain
systems. PoW is a very computation intensive consensus.
It requires the nodes to solve a difficult puzzle to compete
for the right of recording the ledger. Only the first node
(called winner) solving the puzzle can append the block to the
ledger and gets incentives accordingly. Since PoW provides
high security, integrity and decentralization in an untrusted
environment, it is very popular in public blockchains. How-
ever, the classic PoW protocol has a poor efficiency on
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processing transactions. To tackle this problem, many vari-
ations have been proposed to keep the same safety while
achieving a better performance. Examples include greedy
heaviest observed subtree (GHOST), proof of authority
(PoA), proof of stake (PoS) and proof of elapsed time (PoET).

The vote-based consensuses are communication intensive.
Different from PoW, vote-based solutions always give a deter-
ministic execution result and usually achieve a relatively
high performance. They rely on frequent message transitions
among different roles in a network to ensure that all nodes
reach an agreement on the block order. It is very popular in
permissioned blockchains. Raft and Byzantine fault tolerance
(BFT)-based, (e.g., PBFT and BFT-SMaRt) algorithms are
two representatives of this consensus type. Raft has only
crash fault tolerance (CFT), while PBFT and BFT-SMaRt can
address Byzantine fault.

There are also some hybrid DLTs that combine differ-
ent types of consensuses. For example, Tendermint com-
bines PoS and PBFT; EOS takes a hybrid design combining
PBFT and DPoS. Both target on improved performance and
enhanced security. Interested readers may refer to the pub-
lished surveys of blockchain consensus. Because of the deter-
ministic properties, BFT-based consensus algorithms have a
much lower transaction delay than PoW. But the expensive
communication cost makes it difficult to scale, especially in
a large network. Therefore, consensus design, evaluation and
optimization in DLTs still remain an active research topic.

5) NETWORK LAYER
A peer-to-peer (P2P) network is the foundation of a DLT
system. It takes care of peer discovery, transactions, and
block propagation. In a public blockchain such as Bitcoin,
this network is very large, with thousands of nodes working
together to reach consensus. For private blockchain systems,
the scale varies from several entities to over a hundred. Either
way, a basic requirement for the P2P network is to provide
speed and stablility. When a new participant wants to join,
this layer ensures that nodes can discover each other. Then, all
connected nodes communicate, propagate and synchronize
with each other to maintain the current state of the blockchain
network. Specifically, transaction broadcast, validation and
transaction commit are all completed via this layer, as well as
the world state propagation. In the P2P network, there are two
basic types of nodes: full nodes and light nodes. Full nodes
take care of mining, transaction validation and execution of
consensus rules, while light nodes only keep the header of the
blockchain (keys) and act as clients to issue transactions.
Therefore, the network layer is critical, especially for
communication-intensive DLTs. Peer discovery and ledger
synchronization among neighbours directly rely on the net-
work, so that the speed determines the efficiency. And some
detailed metrics, such as the number of transactions per net-
work data are also related to this layer. Moreover, the package
loss rate and network delay may have an impact on the
performance of DLT.
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Ill. EMPIRICAL ANALYSIS IN BLOCKCHAIN
PERFORMANCE EVALUATION

In this section, we investigate existing approaches to
blockchain performance evaluation from the perspective of
empirical analysis. Specifically, different solutions, includ-
ing benchmarking, monitoring measurements, self-designed
experiments and simulation, are reviewed and compared.
In practice, these approaches are usually used together to pro-
vide more evidence for blockchain performance evaluation.

A. BLOCKCHAIN BENCHMARKING TOOLS

The performance benchmarking has been well studied and
documented for the cloud (e.g., Hadoop, Mapreduce and
Spark) and database (e.g., relational and NoSQL) systems.
Some proposed benchmark frameworks such as TPC-C [50],
YCSB [51] and SmallBank [52] are well-established and
have essentially formed the industrial standards. For example,
YCSB is widely used for benchmarking NoSQL databases
such as Cassandra [53], MongoDB [54] and HBase [55]; and
SmallBank is a popular benchmark for OLTP workload.

However, these frameworks cannot be directly applied to
benchmark distributed ledger systems due to the diversity
of consensus mechanisms and APIs. As more and more
blockchain systems emerge striving to improve DTL per-
formance, it becomes imperative to devise a solution for
comparing different platforms in a meaningful manner.

Up to date (June 2020), there are three popular perfor-
mance benchmarks dedicated to evaluating blockchain sys-
tems, as listed in Table. 2.

Blockbench [49] is the first benchmark framework
designed for evaluating private blockchains in terms of per-
formance metrics on throughput, latency, scalability and
fault-tolerance. Presently, it supports measurement on four
major private blockchain platforms, namely Ethereum, Parity,
HLF and Quorum. However, it claims to support the evalua-
tion of any private blockchain by accordingly extending the
workload and blockchain adaptors.

In the design of Blockbench, four abstraction layers in
blockchain are identified: consensus, data model, execution
engine and application, from the bottom (low level) to the
top (high level). The consensus layer is in charge of setting
the rule of agreement and getting all network participants to
agree on the block content so that it can be appended to the
blockchain. The data model defines the data structure, content
and operations on the blockchain data. The execution engine
contains resources of the runtime environment such as the
EVM and Docker, which support the execution operations of
blockchain codes. The application layer includes all kinds of
blockchain applications such as smart contracts and different
types of DApps. Itis worth noting that Blockbench adopts and
designs various workloads to test the performance of different
layers, as shown in Table 3.

Hyperledger Caliper [57] is a performance evaluation
framework mainly focusing on benchmarking Hyperledger
blockchains such as Hyperledger Fabric, Sawtooth, Iroha,
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TABLE 2. A comparison of three popular blockchain benchmarks.

Frameworks

Supported DLTs

Workloads Used

Evaluated Metrics

Pros & Cons

Blockbench [49]

Ethereum, Hyperledger
Fabric (HLF), Parity and
Quorum.

e macro: YCSB(k-
v store),
Smallbank(OLTP),
Etherld, Doubler, and
WavesPresale

o micro: DoNothing,
Analytics, IOHeavy,
and CPUHeavy

throughput, latency,
scalability and
fault-tolerance.

adaptor-based framework,
scalable; carefully
designed workloads;
but they are constant.

o value/data transfer
o transaction query:
1) input/output

throughput, latency,
scalability, success
indicator, resource

adaptor-based framework,
scalable; specific for

Caliper [57]

Burrow and Besu),

configuration file

resource consumption,

DAGbench [56] IOTA, Nano and Byteball transaction numbers consumption, transaction DAG DLT: workloads
and 2) balance for a . . .
. data size and transaction are not representatives.
given account fee
Hyperledger blockchains throushput. latenc adaptor-based framework,
Hyperledger (Fabric, Sawtooth, Iroha, Self-defined in the ghput, Y, scalable; no pre-defined

workload design, but

Ethereum, FISCO BCOS

success rate

support more DLT systems.

TABLE 3. Blockbench workloads for evaluating each layer of blockchain.

Layer Benchmark Workload Workload Description M:gz:]l:ie;iz :nt
YCSB Key-value store throughput and latency
Smallbank OLTP workload throughput and latency
Application Macro Workloads Etherld Name registrar contract throughput and latency
Doubler Ponzi (pyramid) scheme throughput and latency
WavesPresale Crowd sale throughput and latency
Execution Engine CPUHeavy Sort a large array latency
Data Model Micro Workloads VersionKVStore Keep state’s ve?sions (HLF only) latency
IOHeavy Read and write a lot of data latency
Consensus DoNothing Simple contract, do nothing latency

Burrow and Besu. In the system architecture, there are two
main components: Caliper core and Caliper adaptors. The
former defines system workflow, while the latter are used to
extend evaluation for other blockchains such as Ethereum and
FISCO BCOS. Before running a test, benchmark workloads
and necessary information interfacing adaptor to the system
under test (SUT) need to be predefined in configuration files.
During the test, a resource monitor runs to collect resource
utilization information (e.g., CPU, RAM, network and I10)
and all clients publish their transaction rate control infor-
mation to a performance analyzer. When a test is finished,
a detailed test report is generated by a report generator.
DAGhbench [56] is a relatively recent framework dedicated
to benchmarking DAG distributed ledgers such as IOTA,
Nano and Byteball. The currently supported indicators are
throughput, latency, scalability, success indicator, resource
consumption, transaction data size and transaction fee. From
the system design perspective, DAGbench shares the same
approach with Blockbench and Caliper which adopt a mod-
ular adaptor-based architecture. Users just need to choose
(or develop if not available) associated adaptors for different
workloads and blockchain systems under evaluation.
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Besides the general performance metrics evaluation, there
are also studies focusing on specific metrics for particular
blockchain. For example, OpBench [58] and another bench-
mark framework [59] are proposed to evaluate if a miner’s
award is proportional against to the CPU execution time or
consumed computation power for Ethereum smart contracts.

B. BLOCKCHAIN PERFORMANCE MONITORING
Blockchain benchmarking usually requires a standardized
environment and a well-documented workload as input. How-
ever, for public blockchain systems, it is impossible to have
a good control against the real workload and consensus par-
ticipants, which makes the benchmarking more challenging.
In terms of evaluating public blockchains, there are two
potential solutions.

The first solution is to build a private version of the asso-
ciated test network and leverage the existing benchmarks
mentioned above to evaluate blockchain under artificially
designed workloads. This may require new adapter develop-
ment for either workload or blockchain network. In addition,
this approach should take into consideration the scalability
problem of blockchain because the tested private version of
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blockchain may encounter scaling issues when implemented
publicly. Therefore, the tested result may show better values
of performance metrics compared to the real public network.

The second solution is to monitor and evaluate the live
public system’s performance under realistic workload [60].
Zheng et al. [61] proposed a detailed, real-time performance
monitoring framework using a log-based approach. It has
lower overhead, more details, and better scalability compared
to its counterpart solution via remote procedure call (RPC).
The high-level system framework is shown in Fig. 4.

& Anomaly detection

Asynchronous
interaction
RESTful AP Back-end calculation
User/Manager
JSON-RPC Interaction J [
Deploy/Invoke smart contract

Validating Validating Validating
Peer Peer Peer

Monitoring
Web Frontier
Visualization

Synchronize
Peer

Log Parser/
Analyzer

Log Parser/
Analyzer

Log Parser/
Analyzer

FIGURE 4. Blockchain performance monitoring framework [61].

C. EXPERIMENTAL ANALYSIS OF BLOCKCHAIN SYSTEMS
In this section, we look at DLT performance evaluation from
the perspective of empirical analysis based on self-designed
experiments. Even though empirical analysis can hardly
provide standardized test results like benchmarking, this
approach is very flexible in parameterization. It can be used
to identify potential bottlenecks and pave the way to further
performance improvements.

Experiment-based approaches have been widely employed
to evaluate distributed ledger systems such as Hyperledger,
Ethereum and DAG-based ledger. Various private blockchain
platforms and different versions of a certain blockchain can
be compared on performance by running tests under a well-
controlled test environment. In addition, some studies exam-
ined the detailed performance, for example, the performance
of different encryption and hash algorithms, from the data
layer in the blockchain abstraction model.

1) HYPERLEDGER PERFORMANCE ANALYSIS

Nasir et al. [62] conducted an experimental performance
analysis of two versions of HLF (v0.6 and v1.0) on their
execution time, latency, throughput and scalability by varying
the workloads and node scales. The overall results indicate
that HLF v1.0 consistently outperforms HLF v0.6 across all
evaluated performance metrics.

Baliga et al. [63] took an experimental approach to study
throughput and latency of HLF v1.0. Using Caliper as the
benchmarking tool, the authors configured different transac-
tion and chaincode parameters to explore how they impact
transaction latency and throughput under micro-workloads.
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Fabric’s performance characteristics were also studied by
varying the number of chaincodes, channels and peers. The
results show that the throughput of HLF v1.0 is sensitive to
the orderer settings, and it is a significant drawback for the
commiter in this version that it does not process transactions
in parallel, incapable of taking advantage of multiple vCPUs.

Another comprehensive empirical study was conducted by
Thakkar et al. [64] who explored the performance bottlenecks
of the HLF v1.0 under different block sizes, endorsement
policies, number of channels, resource allocation and state
database choices (GoLevelDB vs. CouchDB). The experi-
mental results indicated that endorsement policy verification,
sequential policy validation of transactions in a block, and
state validation and commit (with CouchDB) were the three
major bottlenecks. Accordingly, the authors suggested three
optimization solutions, including parallel VSCC validation,
cache for membership service provider (MSP), and bulk
read/write for CouchDB. All these optimizations have been
implemented in release HFL v1.1.

A study completed at IBM by Androulaki er al. [65]
focused on HLF vl1.1 to explore the impact of block size,
peer CPU, and SSD vs. RAM disk on blockchain latency,
throughput and network scalability under different numbers
of peers. The results show that HLF v1.1 achieves end-to-
end throughput of 3500+ TPS in certain popular deployment
configurations, with the latency of a few hundred ms, scaling
well to 1004 peers.

Nguyen et al. [66] conducted an experimental study to
explore the impact of large network delays on the perfor-
mance of Fabric by deploying HLF v1.2.1 over an area net-
work between France and Germany. The results reveal that an
obvious network delay (3.5s) brings 134 seconds offset after
the 100th block between two clouds, which indicates that the
tested version of Fabric can not provide sufficient consistency
guaranties. Therefore, HLF v1.2.1 cannot be used in critical
environments such as banking or trading. This was the first
work that experimentally demonstrated the negative impact
of network delays on a PBFT-based blockchain.

Another HLF performance evaluation work focusing on
the underlying communication network was conducted by
Geyer et al. [67] using Caliper [57] and a dedicated testbed
on which network parameters, such as latency or packet
loss, can be configured. In the experiments, the influence of
transaction rate, chaincode, network properties, local network
impairment, and block size have been separately examined
and quantitatively analyzed. The experiment results identified
the validation of the transactions as the major contributor to
the transaction latency in HLF.

As the first long-term support release, HLF v1.4 caught the
attention of several blockchain researchers. Kuzlu et al. [68]
investigated the impact of network workloads on the per-
formance of a blockchain platform in terms of transaction
throughput, latency, and scalability (i.e., the number of par-
ticipants serviceable by the platform). Following network
load parameters were varied in the experiment: number of
transactions, transaction rate and transaction type.
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Although the practical Byzantine fault tolerance (PBFT)
algorithm has been adopted as the consensus protocol since
its version 0.6, dishonest participants and their attacks such as
intentionally delaying messages, sending inconsistent mes-
sages and distributed-denial-of-service (DDoS) never stop.
Malicious behaviour may significantly undermine the system
in terms of both security and performance. To explore the
performance of HLF with malicious behaviour, Wang [69]
designed multiple malicious behaviour patterns and exper-
imentally tested the transaction throughput and latency on
HLF. The results show that delay attacks, along with keep-
ing some replicas out of working, dramatically decrease the
system performance.

Apart from Fabric, Shi et al. [70] empirically studied
the performance of Sawtooth, another well-known permis-
sioned blockchain platform from Hyperledger. The examined
performance metrics include consistency (i.e., whether the
platform’s performance behaves consistently each time with
the same workload and cloud VM configuration), stability
(i.e., whether the platform’s performance remains stable with
the same workload, but different cloud VM configurations)
and scalability (i.e., how the platform performance achieves
scalability with different workloads and configuration param-
eters). The adjustable configuration parameters identified for
optimizing the performance of Sawtooth are scheduler and
maximum batches per block.

From the results of empirical performance analysis
summarized above, it is obvious that Hyperledger needs
improvement on both geographical scalability (limited by the
network latency) [66] and size scalability (the platform fails
scaling beyond 16 nodes [49]). The bottleneck is the adopted
PBFT consensus, which is a communication bound mech-
anism as opposed to the computation intensive PoW [71]
consensus.

2) ETHEREUM PERFORMANCE ANALYSIS

Rouhani and Deters [72] studied the performance of
Ethereum on a private blockchain by analyzing two most
popular Ethereum clients: PoW-based Geth and PoA-based
Parity. The results indicate that, compared to Geth, Parity is
89.82% faster in terms of transaction processing, on average,
under different workloads.

Yasaweerasinghelage et al. [73] introduced an approach to
predict the latency of blockchain-based systems using soft-
ware architectural modelling tool Palladio workbench [74]
and simulation. They leveraged the proposed method to test
latency on a private Ethereum (Geth) experimental environ-
ment. The results show a low relative error of response time,
mostly under 10%.

Bez et al. [75] conducted an initial quantitative analysis on
the scalability of Ethereum. The transaction throughput was
evaluated under an extensible test environment with synthetic
benchmarks. The results indicate that Ethereum follows the
scalability trilemma, which claims that a blockchain platform
can hardly reach decentralization, scalability and security
simultaneously.
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3) DAG DLT PERFORMANCE ANALYSIS

In traditional blockchain systems, transactions are stored in
blocks that are then organized as a ledger in a single chain data
structure. This structure makes it incapable of concurrently
generating blocks, and thus limiting the transaction through-
put. In DAG-based distributed ledgers, transactions or blocks
are organized in different vertices of the directed graph, which
allows parallel block generation and inclusion. Based on
this idea, many distributed ledgers have been proposed with
their own consensus mechanisms. For example, IOTA [37]
employs a cumulative weight approach for transaction con-
firmation and Markov chain Monte Carlo (MCMC) sampling
algorithm for random tip selection; Byteball [38] achieves
consensus by relying on 12 selected reputable Witnesses;
and Nano [39] adopts a balance-weighted vote mechanism
to reach agreement on transaction confirmation.

Even though DAG-based ledgers are designed to theo-
retically have faster transaction speed than blockchain, it is
necessary to evaluate the performance of existing DAG dis-
tributed ledger implementations and identify their potential
bottlenecks. Fan et al. [76] demonstrated the scalability of
IOTA under IoT scenarios in a private network with 40 nodes.
The experiment results indicated that transaction through-
put (TPS) has good linear scalability against the transaction
arrival rate. Three representatives of DAG-based distributed
ledgers, namely IOTA, Nano and Byteball, were compara-
tively evaluated using the proposed DAGbench in [56]. From
the experimental results, some useful observations, such as
the advantages and disadvantages of the three tested DAG
implementations, can be obtained.

4) COMPARATIVE ANALYSIS

Before developing a blockchain-enabled application, deci-
sion makers should first assess the suitability of blockchain
implementation. Then, a comparative performance analysis
is often necessary to select a blockchain platform that will
perform well in the target application environment.

After developing Blockbench, Dinh et al. [49] used this
tool to conduct a comparative performance analysis on
three mainstream private blockchains, namely Ethereum
(geth v1.4.18), Parity (v1.6.0) and HLF (v0.6.0-preview).
Their findings can be summarized as follows: 1) HLF
performs consistently better than Ethereum and Parity
across all macro (e.g., throughput and latency) and micro
(e.g., IOHeavy) benchmarks, but it fails to scale up to more
than 16 nodes; 2) The consensus protocols are identified
as major bottlenecks for HLF and Ethereum, while transac-
tion signing is a bottleneck for Parity. The authors further
compared the performance of two different versions of HLF
v0.6.0 and v1.0.0 against IOHeavy workload in their more
recent work [71].

Because of the lack of interface standards, evaluating
different blockchains remains difficult. To overcome this
problem, a generic workload performing the same functions
on different blockchain interfaces was designed in [77] to
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comparatively evaluate three prominent consortium
blockchain platforms for IoT. They were HLF v0.6 with
the PBFT consensus, HLF v1.0 with the Byzantine fault-
tolerant state machine replication (BFT-SMaRt) consensus,
and Ripple with the Ripple consensus. Results confirmed that
the evaluated blockchains could offer reasonable throughput
but with very limited scalability.

Pongnumkul et al. [78] conducted a preliminary perfor-
mance analysis of two popular private blockchain platforms
HLF (v0.6) and Ethereum (geth 1.5.8, private deployment)
under varying workloads. The experimental results demon-
strated that HLF outperforms Ethereum in terms of all
evaluated metrics (execution time, latency and throughput).
However, this study also pointed out that the performances
of both platforms are still not competitive with current main-
stream database systems, especially under high workloads.
This conclusion was tested and confirmed by another, more
recent study [79], in which Ethereum and MySQL were
compared.

Comparative analysis can also be conducted on con-
sensus algorithms of different blockchains. For example,
Hao et al. [80] compared the performance between Hyper-
ledger (PBFT) and private Ethereum (PoW) via their pro-
posed benchmark framework constructed with four modules:
workload configuration module, consensus smart contract
module, data collector module and the target blockchain
platforms. The evaluation results show that HLF consistently
outperforms Ethereum in terms of average throughput (TPS)
and latency. This study also points out that the consen-
sus mechanism induces performance bottleneck in private
blockchains. Another example is the performance analy-
sis conducted on PoW and the Proof-of-Collatz Conjecture
(PCC) [81]. PCC [82] is a recently introduced number-based
theoretic POW using a new metric called Collatz orbits, which
are defined in the Collatz Conjecture algorithm. Authors
evaluated these two consensus algorithms with respect to the
execution time, the deployment time and the latency on a
private blockchain network. The experiment results demon-
strate that PCC-based blockchain consistently outperforms
PoW-based blockchain in terms of all tested metrics and even
steadily achieves 1000 x faster execution speed than of PoW.

To provide system designers suggestions on smart con-
tract platform selection, Benahmed et al. [83] conducted a
comparative performance analysis of Hyperledger Sawtooth,
EOS and Ethereum. Following the workloads used in Block-
bench [49], the authors modified and defined three types of
workloads, namely CPUHeavy, KV Store (Key-Value Store),
and SmallBank, to comparatively test CPU consumption,
memory consumption, load scalability and network scalabil-
ity in distributed ledgers. The results reveal that the third
generation platform EOS outperforms the other two in both
resource consumption and speed, but with some shortcom-
ings such as centralization. In addition, according to their
performance in the test, Sawtooth was suggested for use in
the Internet of Things and Ethereum’s PoA implementation
for the fast development of web-oriented applications.

VOLUME 8, 2020

To explore whether existing blockchain solutions can scale
to large IoT networks, Han et al. [84] comparatively evalu-
ated the performance of five selected prominent distributed
ledgers using classic consensus protocols: Ripple, Tender-
mint, Corda and v0.6 and v1.0 of HLFE. A series of exclusive
tests were run to evaluate the throughput and latency with
different numbers of nodes (ranging from 2 to 32) for each
of the ledgers. The results show that even though these sys-
tems can sometimes provide thousands of TPS throughput,
their networks usually do not scale to tens of devices as the
performance drops dramatically when the number of nodes
increases. Table 4 lists an overview of various DLTs’ per-
formance extracted from the reviewed experimental analysis
studies.

5) ENCRYPTION PERFORMANCE ANALYSIS

In addition to the end-to-end performance metrics, there
are also some evaluation works focusing on the detailed
performance of a certain step or subprocess such as the
efficiency of encryption and hash function. According to
Park et al. [85], the transaction processing time equation
is

T=ti+tcZ(tv+tp0w+tn+te)+tc, (D

where 1; refers to the issuance time, 7. to the con-
firmation time, #, to the validation time, f,,, to the
PoW time, t, to the network overhead, and 7, to the
processing overheads. The processing overheads include
encryption/decryption, hashing and authentication. Efficient
encryption and hashing algorithms contribute to transac-
tion issuance speed in DLT. Chandel er al. [86] analyzed
and compared the performance of the two most commonly
used encryption algorithms in blockchain, Rivest-Shamir-
Adleman (RSA) and elliptic-curve cryptography (ECC).
Their comprehensive analysis results based on the key size,
key generation performance and signature verification per-
formance show that the ECC algorithm (adopted by Bitcoin
and Ethereum) outperforms RSA in general. This study also
points out that ECC satisfies the security needs of blockchain
better than RSA.

More recently, Ferreira et al. [87] conducted a study on
Blockchain-based IoT (BIoT) [88] to explore the perfor-
mance of hash function in blockchains. Particularly, authors
developed a blockchain in an IoT scenario to evaluate the
performance of different cryptographic hash functions such
as MDS5, SHA-1, SHA-224, SHA-384 and SHA-512. The
test results show that SHA-224 and SHA-384 are the best
hash functions for blockchain due to their lack of collision
attacks. In hashing ciphers, a collision attack is the problem
that there exist two different messages m; and my, such that
hash(m) = hash(my). In addition, these two hash functions
are more time-efficient than others to process blockchain
functions with the advantage of producing a smaller average
block size.
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TABLE 4. Overview of different DLT performance (throughput and latency) under various evaluation environments.

Throughput . Node
DLT Consensus (TPS) Latency (Secs) ‘Workload Network (Size) Configuration
PBFT 1273 38 YCSB 8 nodes
HLF V0.6 [49] PBFT 1122 51 Smallbank 8 nodes
Ethereum geth PoW 284 92 YCSB 8 nodes 255 éﬁg
V1418 [49] PoW 255 114 Smallbank 8 nodes CPU, 32GB
. PoA 45 3 YCSB 8 nodes RAM, 2TB HD
Parity v1.6.0 [49] PoA 46 4 Smallbank 8 nodes
Raft 2,000+ 1.5 write-only/null 3 nodes 8 vCPUs
Quorum 2.0 [63] IBFT 1,900 3.2 null 4 nodes 4 cores 3.6
. GHz, 16GB
IBFT 1,800 3.5 write-only 4 nodes RAM
Proof of
Hle ?azwgg%h Elapsed 3 - Smallbank 6 nodes D\?;/[kzr; ;:; rle
o ) Time (PoET)
Delegated
vl ?23[83] Proof of 21 - Smallbank 6 nodes C);%"‘i ()X (73::;?@(:)5
o Stake (DPoS) ’
Ethereum Geth 2.93GHz,
v1.821 [83] PoW 10 - Smallbank 6 nodes 64GB RAM
HLF v1.0 [77] BFT-SMaRt 1,700 - Payment 16 nodes E5-2630 CPU
transaction
Invoking . 8 cores
HLF v0.6 [77] PBFT 2600 1.8 chaincode 16 nodes 2.4GHz,
Ripple Payment
v0.60.0 [77] XRP 1450 6 transaction 16 nodes 64GB RAM
. Invoke
Tendermint PBFT and 6,000 0.15 Payment 16 nodes E5-2630 CPU
v0.22.4 [84] Casper .
transaction
Tendermint PBFT and Query Payment . 4 cores
v0.22.4 [84] Casper 3,600 0.05 transaction 16 nodes 2.4GHz,
RS Corda BFT-SMaRt 50 8 Query Payment 4 nodes 12GB RAM
v3.2 [84] transaction
Geth
v1.7.3 [80] PoW 130 1,297 YCSB(N=10,000) 4 nodes
e . 235 569 YCSB(N=10,000) 4 nodes $GB RAM,
HLF v1.0 [80] BFT-SMaRt 535 78 YCSB(N=10,000) 4 nodes 128GB SSD
HLF v1.0 [80] - 1,033 40 YCSB(N=10,000) 4 nodes
Geth [72] PoW - 0.199 Payment 1 node Core i7-6700
transaction
. Payment CPU, 24GB
Parity [72] PoW - 0.105 transaction 1 node RAM
TransferMoney AWS EC2
Geth 1.5.8 [78] - 21 361 (N=10,000) 1 node Intel E5-1650
TransferMone 8 core CPU,
HLF v0.6 [78] - 160 4 (N=10,000) ¥ 1 node 15GB RAM,
7 128GB SSD

D. SIMULATION

All the evaluation solutions mentioned above (i.e., bench-
marking, monitoring and experimental analysis) require the
availability of the systems, no matter private or public
blockchains. However, the system under evaluation is not
always available. For instance, when a company needs to
make a selection between two blockchain platforms under
development according to their performance, none of the
previously discussed solutions is feasible. Moreover, it is
usually costly on both time and resources to construct
a real blockchain network for testing. This brings us to
explore another evaluation approach, namely, simulation.
A blockchain simulator can mimic the behaviours of network
nodes in reaching the consensus, providing performance sim-
ilar to a real system. Besides, a blockchain simulator usually
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provides a convenient way for users to tune the system param-
eters to run different settings for the sake of comparison.
In this subsection, we will take a look at the role of simulation
in the blockchain world.

1) BlockSIM

In 2019, there were three similar simulators with the same
name, BlockSim (or BlockSIM), proposed for simulating
blockchain systems. Alharby and van Moorsel [89] pro-
posed and implemented a framework called BlockSim to
build discrete-event dynamic system models for PoW-based
blockchain systems. This framework was organized in three
layers: incentive layer, connector layer and system layer.
Using the proposed simulation tool, the authors explored
the block creation performance under the PoW consensus
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TABLE 5. A comparison on different empirical performance evaluation solutions for blockchain system.

Solutions Characteristics Efficiency
Node Network Workload Parameterization Extensibility Difficulty
Monitoring Real Real Low Low Easy
Benchmarking Real Test Artificial Low High Easy
Experimental Real Test Artificial High Low Medium
Analysis
Simulation Virtual Virtual Virtual Very High Very High Hard

algorithm. This simulator helped to understand the details
of the block generation process in PoOW. The predefined test
cases were validated and verified in their extension study,
where the simulation outcomes were compared with results
of real-life systems such as Bitcoin and Ethereum to show
the feasibility of this approach. However, the extensibility of
this simulator is still a problem for future research.

To help architects better understand, evaluate and plan
for the system performance, Pandey et al. [90] proposed
and developed a comprehensive open-source simulation tool
called BlockSIM for simulating private blockchain systems.
This tool is designed to evaluate system stability and trans-
action throughput (TPS) for private blockchain networks by
running scenarios, and then decide on the optimal system
parameters suited for the purposes of architects. The compar-
ison results between BlockSIM and a real-world Ethereum
private network running PoA consensus show that BlockSIM
can be used effectively.

More recently, Faria and Correia [91] presented a flexible
discrete-event simulator (also called BlockSim) to evaluate
different blockchain implementations. With a good design of
APIs, new blockchains can be easily modelled and simulated
by extending the models. Running this simulator for Bitcoin
and Ethereum, the authors got some interesting performance
conclusions. For instance, doubling the block size (number
of transactions) had a small impact on the block propagation
delay (10ms), while encrypting communication had a higher
impact on that delay (more than 25%).

2) DAGsim

Similarly, Zander et al. [92] presented a continuous-
time, multi-agent simulation framework called DAGsim, for
DAG-based distributed ledgers. Specifically, the performance
of IOTA in terms of the transaction attachment probability
was analyzed using this tool. The results indicate that agents
with low latency and high connection degrees have a higher
probability of having their transactions accepted in the net-
work. Another multi-agent tangle simulator [93] built with
NetLogo simulates both random uniform and MCMC tip
selection in a visualized and interactive way.

In addition to pure simulators, some other studies lever-
age simulations combined with analytical results to conduct
validation or exploration. Park et al. [85] proposed and imple-
mented a general DAG-based cryptocurrency simulator using
Python. This simulator was used to validate the proposed
analytical performance model, through which they found
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that by issuing a transaction with a smaller average number
of parents n in DAG, the transaction speed (TPS) can be
increased. Kusmierz et al. [94] ran IOTA tangle simula-
tions in a continuous-time model to explore how different
tip selection algorithms, i.e., uniform random tip selec-
tion (URTS) and unbiased random walk (URW), affect the
growth of the tangle. Simulations under varying transaction
arrival rates were used to analyze the performance of the
tangle.

E. COMPARISON OF DIFFERENT EVALUATION SOLUTIONS
In the previous subsections, we introduced four types of
empirical evaluation solutions and surveyed existing studies
which adopted the associated approaches. In this subsec-
tion, we comparatively discuss the advantages and disad-
vantages of the above-mentioned solutions. This comparison
is based on both the general characteristics of the individ-
ual approaches and their suitability in evaluating different
types of blockchains. The compared items are divided into
two categories: solution requirements and solution efficiency,
see Table 5. Solution requirements describe the network spec-
ifications for evaluating blockchain systems in terms of the
node, network and workload. Solution efficiency provides
three dimensions, namely parameterization, extensibility and
difficulty, to compare the efficiency and effectiveness of dif-
ferent solutions.

Monitoring the performance of a blockchain system
requires a realistic deployment of the system in production
with real workloads. Even though this approach can also
be used to evaluate a private blockchain in an experimental
setup, we argue that it is more suitable to evaluate public
blockchain when compared with benchmarking. In the con-
text of evaluating a public blockchain, it becomes difficult to
change any parameters for multiple tests. The challenge of the
extensibility lies in the development of adaptable log parser
for various blockchains. But, it is easy to deploy for certain
blockchains using the existing solutions [61].

Benchmarking requires a well-controlled evaluation envi-
ronment with a test network and artificial workloads. Once a
benchmark tool is selected, the supported workloads and test
metrics are limited, as well as the parameters which can be
tuned. For example, Blockbench doesn’t support tuning the
network layer parameters such as network delay and, up to
date, it only supports evaluating four types of blockchain
platforms, i.e., Ethereum, HyperledgerFabric (HLF), Par-
ity and Quorum. However, the well-designed APIs allow
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users to develop their own adaptors and extend its feasi-
bility to evaluate any private blockchains. So, the extensi-
bility of benchmarking is relatively higher than monitoring.
In addition, this solution is easy to deploy since there have
been several popular and well-documented benchmark tools,
see Table 2.

Experimental analysis refers to the evaluation solution
based on self-designed experiments. This is a very general
solution that is commonly used. It is very similar to bench-
marking but different in two main aspects. First, self-design
gives more flexibility in evaluating impact factors, pro-
viding a high capability of parameterization. For example,
the impact of network delay on HLF performance can be
evaluated in a self-designed experiment, which is not sup-
ported by benchmarking. Second, the test is usually dedicated
to a specific blockchain and is not as standardized as bench-
marking, which limits the extensibility. So, the deployment
difficulty partly depends on the complexity of the SUT and
what to evaluate.

Simulations have a relatively greater difficulty in the stage
of simulator design and development. But, once it is com-
pleted, the simulator usually provides a number of advan-
tages in comparison to other approaches. The simulation
solution is very extensible and can be used to quickly test
different configuration parameters at a low cost. As men-
tioned in subsection III-D, another obvious advantage of
simulation is that it does not require the availability of the
blockchain. However, as for the evaluation results, there
may be a relatively large difference (e.g., 10%) between
simulation and experiment, which induces concerns about
the accuracy of this solution. Moreover, some metrics can-
not be evaluated in simulators such as the transactions per
CPU, transactions per memory second, transactions per disk
IO, and transactions per network data for a blockchain
system.

IV. ANALYTICAL MODELLING IN BLOCKCHAIN
PERFORMANCE EVALUATION

Analytical modelling of performance leverages mathemati-
cal tools to formalize blockchain system in an abstract way
and to solve ensuing models with rigor. The model output
(e.g., average transaction latency being expressed as a func-
tion of network indicators) provides analytical evidence for
blockchain performance evaluation. In this section, we survey
the performance evaluation solutions of distributed ledger
systems based on analytical modelling. We aim to summa-
rize the mainstream techniques, explore how and why these
models are employed for certain distributed ledgers, and then
identify the current challenges in blockchain performance
modelling. In particular, we focus on surveying the stochastic
models, which have been used to successfully model many
cloud systems.

In Table. 6, we classify the existing popular solutions
of performance modelling for distributed ledgers into four
categories: Markov chains, queueing models, stochastic Petri
nets and other models.
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A. MARKOV CHAINS FOR MODELLING DLT CONSENSUSES
In probability theory, Markov processes are a type of stochas-
tic process with Markov property. Also called memoryless
property, it refers to the fact that the future states of the
process depend only on the present state, but not on the previ-
ous ones. Markov chain is defined as a Markov process with
discrete state space. It is a fundamental mathematical tool to
evaluate the performance of distributed ledger systems [111].
In this subsection, we investigate how Markov chains are used
to model two different consensus algorithms: Raft and the
tangle for IOTA. The specific type of process used for this
modelling is called discrete time Markov chain (DTMC).

DTMC for Modelling Raft: In a Raft [112] cluster, each
node is at any given time in one of the three states: follower,
candidate and leader. Normally, there is only one leader in
a Raft cluster. We call it network split in the case of two
or more leaders being elected simultaneously, which may
dramatically impact the performance of the system. After
the leader has been elected, it handles all requests from the
client and sends them to followers for validation. Followers
simply receive requests from and respond to leaders and can-
didates. Candidates are a mid-state transiting from follower
to leader. The whole Raft consensus can be divided into
several ever increasing timely manners called terms which
have two processes: leader election and ledger replication.
Each term starts with a leader election, in which all nodes
start from follower state. Then, a node transits to candidate,
candidate to leader or back to follower according to the rules
depicted in Fig. 5 [112]. Once a leader is elected successfully,
the ledger replication process starts with the leader sending
heartbeat messages to all other nodes to establish its authority
and prevent new elections. Once the leader receives responses
of writing new transaction entry to the ledger from the major-
ity of the followers, it notifies them and the client that the
transaction is committed.

times out,

. new election
times out,

; receives votes from
starts election

majority of servers

starts up

Candidate Leader

discovers current
leader or new term

discovers server
with higher term

FIGURE 5. Node states transition illustration in Raft consensus.

To explore the impact of network properties on the
blockchain performance, Huang et al. [95] have built a simple
Markov chain model for the process of a node transferring
from follower state to candidate. They consequently present
the network split probability as a function of the network size,
the packet loss rate, and the election timeout period. Let us
define the packet loss probability as a constant value p for a
given network, the timeout period for each round of election
as E; uniformly initiated from a range [a,b], and interval
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TABLE 6. A summary of blockchain performance modelling studies.

Model Types Models Consensus DLs Model Outputs
network split probability
Absorbing Discrete Time . . as a function of packet
. Markov chain (DTMC) [95] Raft private blockchains loss rate, election
Markov chains timeout, and network size
Discrete Time Markov cumulative weight and
chain (DTMC) [96] the tangle IOTA transaction confirmation delay
M/GB/1 queue variant [97] PoW Bitcoin tx confirmation time
mean number of txs in
CTMC GI/M/1 queue [98] PowW Bitcoin the queue and in a block;
average tx-confirmation time.
- mean stationary number of txs
CTMC GI/M/1 queue [99] PoW Bitcoin in the queue and in the block
M/G/1 queue variant [100] PoW Bitcoin confirmation time and tx delay
mean number of txs and
non-exhaustive queue [101] PoW NA mean confirmation time
of txs in the system
: Discrete-time . . system queue size
ueueing models _of- ¥y q
queucing GUGIN/1 queue [102] Proof-of-Authority Ethereum and tx waiting time
M/MB/1 queue [67] BFT-SMaRt HLF tx latency
M/G/1 and M/M/1 queue [103] PBFT NA system delay
blocks commitment delay,
. vote-based permissioned block validation response
(n.k) fork-join queue [104] consensus blockchain time and synchronization
processes among mining nodes.
conflicting txs cannot coexist
Fluid queue [105] the tangle I0TA when a random tip-selection
algorithm is employed
Generalized stochastic latency and throughput
stochastic Petri nets Petri nets (GSPN) [106] PBET HLF v1.2 of each phase
Stochastic Reward throughput, utilization and
Nets(SRN) [107] PBFT HLF v1.0 mean queue length at each peer
World State Prediction PoW Ethereum transaction time cost
model [108]
other models Stochastic network model [109] PoW Ethereum tx processing rate
i . Lo block propagation delay
Random Graph model [110] PoW Bitcoin and traffic overhead

between two heartbeats as . Thus, the maximum number of
heartbeats for an election to timeoutis K € {K|, K>, ..., K,},
where K1 = |a/t] and K, = |b/t]. Then, two discrete
time stochastic processes at time n can be defined: g(n) as
the stage status {1,2,...,r} of a given node, and b(n) as the
remaining steps (i.e., number of heartbeats) for the election
phase to timeout in a term.

Therefore, the transition process for an observed node from
follower to candidate can be modelled as a two-dimensional
stochastic process {g(n),b(n)}. It can be further trans-
formed to an absorbing DTMC on the state space
{(1,K1),...,(1,0),..., (i,K1),...,(7,0),...,(r,.Kp),...,(r,0) }.

Using the mathematical derivations proven in [95], the net-
work split probability before n-th step can be obtained.

DTMC for Modelling IOTA Tangle: 10TA tangle [37]
is a DAG-based distributed ledger designed for the
microtransactions in the IoT. Its consensus encourages
all participants to contribute in maintaining the ledger
through referencing (i.e., approving) two unapproved trans-
actions called tips before issuing any new transaction. For
the new coming transaction, IOTA tangle leverages the
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MCMC random walk algorithm to select two tips. All trans-
actions directly or indirectly approved by this new transaction
then add its weight to their cumulative weights, as shown
in Fig. 6. For an approved transaction, its cumulative weight
gradually increases to reach a predefined threshold. Finally,
the corresponding transaction is considered confirmed and
permanently recorded in the ledger.

vg indirectly
approves v

0y directly approves vg

U

MCMC Random
Walk Path

Cumulative
weight

—
o e [cenimed

Own weight vy
FIGURE 6. An example of the I0TA tangle.
To explore the impact of various transaction arrival rates on

the cumulative weight and confirmation delay of an observed
transaction, Cao et al. [96] built a Markov chain model to
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analyze the tangle consensus. They classified the network
into four different regimes, according to the load situations:
high load (HR), low load (LR), high-to-low load (H2LR)
and low-to-high-load (L2HR). In each regime, the consensus
process can be divided into two stages, namely the reveal
stage and accumulating stage [37]. Since the first two steady
regimes HR and LR have been analyzed in [37], the authors
only focus on two unsteady regimes H2LLR and L2HR.

The system can be modelled as a two-dimensional stochas-
tic process S(¢) = W (t), L(¢) at an arbitrary time ¢, where W (¢)
is the cumulative weight of a transaction observed at time ¢,
and L(?) is the total number of tips in the tangle at time ¢, t =
kh,k = 0,1,2,...,00. Considering that W(¢ + h) and L(t + h)
are only determined by the current states W(¢) and L(¢), but
not related to the earlier status, the consensus process for a
new observed transaction from issuance to confirmation can
be formulated as a Markov process. Furthermore, this Markov
process can be formalized as a DTMC on discrete transaction
arrival time intervals. Here, one step transition of the observed
transaction is defined as the arrival of an incoming transaction
with randomly selecting two tips for reference from L(#) tips.
Based on this DTMC model, the expected cumulative weight
and confirmation delay at a certain time in both H2LR and
L2HR can be obtained.

B. QUEUEING THEORY FOR MODELLING

DLT CONSENSUSES

Queueing theory was originally proposed by Agner Krarup
Erlang in 1909, to describe the Copenhagen telephone
exchange. It was later developed to solve different types
of system problems that involve waiting, such as customers
waiting for teller service in banks. In recent years, queueing
theory has been widely used to model computer networks and
systems, cloud computing centers, and blockchain systems.
In a blockchain system, transactions issued by clients need to
wait for servers (e.g., miner, validator or orderer) to provide
service (e.g., mining, validating or ordering), and finally get
confirmed.

Using queueing theory, different consensus processes of
DLTs can be modelled as different types of queue systems,
which are named according to the Kendall’s notation [113].
Within a queue system, it is possible to quantitatively answer
some system performance questions such as what is the
expected number of transactions in the system, what is the
transaction throughput of the system and what is the aver-
age service time (i.e., transaction time). In this subsec-
tion, we focus on introducing the typical queueing models
(e.g., M/M/1, M/G/1 and G/M/1 queues) used for addressing
these performance questions of some mainstream consensus
algorithms for blockchain.

1) QUEUEING MODELS FOR PROOF-BASED CONSENSUSES

Proof-based consensus is a type of consensus mechanism that
requires the network participants to provide enough proof
to compete for the chance of updating the ledger. Here,
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we review the queue systems for modelling some popular
consensus mechanisms such as PoW and PoA.

Queueing Models for PoW: In PoW-based blockchain such
as Bitcoin [1], the ledger is maintained and updated by the
mining process. In the mining process, a bunch of nodes
called miners compete for solving very difficult puzzle-like
problems, which consume a lot of computation power. Trans-
actions issued by users are grouped into a container called a
block, and the mining competition winner who first finds the
algorithmic puzzle answer specialized for the block has the
right to add the new block to the blockchain and accordingly
gets incentives.

In 2017, Kawase and Kasahara [97] first built a modified
M/G®/1 queue with batch service to model the Bitcoin mining
process, trying to deal with the transaction-confirmation time.
In this model, transaction arrival was assumed to be a Poisson
process and service time interval to be a general (or arbitrary)
distribution. Arriving transactions are served in a batch man-
ner with a maximum batch size b. In a typical M/GB/1 queue
system, an idle server starts service immediately if there are
one or more customers awaiting service in the system [114].
But in this variant model, newly arriving transactions wait in
the queue for getting served until the next block-generation
time, even when the number of transactions is smaller than b.
This is regarded as the service with multiple vacations. This
is a very straightforward model description from the Bitcoin
block generation and mining process based on Nakamoto’s
consensus, in which new transactions are grouped into a block
to wait for being mined in the next block-generation time or
even later on.

To analyze this queue system, the authors leveraged
the joint distribution of the number of transactions in the
system and the elapsed service time to derive the mean
transaction-confirmation time. Then, by using the method of
supplementary variables, a system of differential-difference
equations was set up to formalize the problem. However, they
have not successfully provided the unique solution of the
differential-difference equations’ system, leaving analysis of
the blockchain queue system as an interesting open problem
for future research.

To overcome the difficulties encountered in the original
model [97], Li et al. introduced a new blockchain queue-
ing model [98] by decomposing the mining process into
two different exponential service stages: block-generation
and blockchain-building processes. The sum of both stages’
times is regarded as the transaction-confirmation time, also
called service time. In this model, all Bitcoin transactions
are assumed to be arriving according to a Poisson process,
namely the arrival interval times follow an exponential dis-
tribution with arrival rate A. Service times in two stages
of batch services are also simply assumed to be i.i.d. and
exponentially distributed with rates @y and 1, respectively.
First, each transaction enters a queue waiting room and waits
for services. Then, in the first service process, a group of
transactions are mined into a block with rate @y and, simul-
taneously, a nonce is appended to the block by the mining
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winner. The block has a limited transaction capacity of b, also
called batch size in the model. In practice, the selection of
transactions may not follow a first-come-first-serve (FCES)
discipline, meaning that some latter coming transactions in
the queue may be preferentially first selected into the block.
But in this model, all computations are based on the FCFS
discipline for the reason of simplification. Finally, a generated
block with all transactions wrapped in it is attached to the
blockchain in a transaction rate of 1. The simple blockchain
queueing model is illustrated in Fig. 7.

two stages of batch services

blockchain

block-generation  blockchain-building

FIGURE 7. Blockchain queueing model with two batch service processes.

To analyze this queueing model, the authors defined two
random variables /(¢) and J(¢) as the numbers of transactions
in the block and in the queue at time ¢, respectively. Thus,
the system can be modelled as a two-dimensional continuous-
time Markov chain (CTMC) X(t) = {I(t), J(¢)} on the state
space Q = {(i,j) : i =0,1,...,b;j=0,1,2...}. By ana-
lyzing the state transition diagram (see [98] for details),
the only three possible transitions from an arbitrary state
(i, j) are to state: (i, j+1), the same level; (0, j), i levels
up; or (I, ij—10), 1 (1 < [ < b) levels down. With all
these characteristics, the corresponding Markov transition
matrix (or infinitesimal generator) Q is a lower Hessenberg
matrix, which is constructed by different repetitive small
matrix blocks. Therefore, X(¢) is a continuous-time Markov
process of GI/M/1-type. This block-structured Markov chain
(the other two examples are M/M/1-type and M/G/1-type)
can be solved using the matrix-analytic (or matrix-geometric)
approach.

However, this model has very strong assumptions on trans-
action arrival and service processes. It is too specific and not
suitable for many practical conditions of blockchain systems.
To generalize this model, in their more recent work [99],
the authors changed the transaction arrivals from Poisson to
Markov arrival process (MAP), the service times from expo-
nential to phase-type (PH), and the service discipline from
FCFS to service-in-random-order. Under the new assump-
tions, the blockchain queueing model description keeps the
same. Note that this is also a structured GI/M/1-type Markov
chain. For the solution, matrix-geometric approaches are
adopted to analyze and find the stable condition. This is
the same as the stationary condition of the previous model.
The simple expressions for the average stationary number
of transactions in the queue waiting room E(N;) and the
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average stationary number of transactions in the block E(N>)
are obtained separately.

Because of the batch service and the Service-In-Random-
Order discipline for choosing transactions from the queue-
ing waiting room into a block, the Markov chain structure
becomes more complicated. This makes the computation
of transaction-confirmation time very difficult. To over-
come the challenge, the authors borrowed a computational
technique by means of both the PH distributions and the
RG factorizations [99].

There have been other blockchain queueing models pro-
posed for analyzing the performance of PoW consensus.
Ricci et al. [100] proposed a framework combining machine
learning with queueing theory to study Bitcoin transaction
delays. They introduced a simple queueing model for char-
acterization of the transaction confirmation that can be con-
siered a variant of M/G/1 queue. Different from complicated
mathematical derivations, the authors mainly leveraged the
operational laws in queueing theory, such as Little’s Law to
solve the queue system. The most important result, namely
average transaction delay experienced by a user, is given as
E(D) = oE(B) + E(B,), where « is the expected number
of blocks that a user needs to wait until a transaction is
confirmed, E(B;) denotes the residual time of the inter-block
time, and E(B) stands for the average time between block
confirmations. This formalization is inspired by the standard
M/G/1 queueing model, where the coefficient of the residual
service time equals the system utilization. In this variant
of the model, a block is always being mined, making the
utilization 100% all the time.

Zhao et al. [101] established a type of non-exhaustive
queueing model to study the average transaction confirma-
tion time in a PoW-based blockchain system. For such sys-
tem, any block has a size limitation, and the block cannot
be confirmed during the mining process. Therefore, a non-
exhaustive queue with a limited batch service and a possible
zero-transaction service is naturally more suitable to capture
the system features. In this queueing model, the mining pro-
cess is treated as a vacation, and the block-verification pro-
cess is regarded as a service. Transaction arrival is assumed
to be a Poisson process with rate A. The time duration
V for a mining process and the time duration S for a
block-verification process are both i.i.d. variables that follow
a general distribution with distribution functions V(¢) and
S(t), respectively. Laplace-Stieltjes transform (LST) has been
widely used in modelling both mining and block-verification
processes to provide integral expressions for E[V] and E[S].
Through a series of mathematical transformations and deriva-
tions, the authors eventually obtained the following expres-
sion for average transaction confirmation time: E[C] =
E[S]+ E[V] (refer to [101] for details).

Queueing Models for PoA: To evaluate the performance
of the mining process in Proof-of-X based blockchains,
Geissler et al. [102] proposed a generic discrete-time
GI/GIN/1 queueing model. Their goal was to investigate key
performance indicators, such as the mean queue size and
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mean transaction waiting time, and to identify significant
impact factors. To make this model general, the authors
abstracted the blockchain network as a single server by
neglecting the information propagation delays among net-
work nodes. Then, the model was built around a fixed-point
iteration of the queue size distribution by representing the
system state with queue size Q,,.

In this system model, the transaction interarrival time A
follows a general distribution a(k) described as A(k) =
PA < k) = Y jatk), k € [0, 00). The service time T
is also assumed to follow a general distribution. Every time
a new transaction arrives, the size of queue Q(k) increases
by one, while every block generation decreases the queue
size by confirming a batch of transactions from the queue.
Thus, the queue size distribution can be defined recursively,
with iteration based on an embedded Markov chain with
embedding times right before a block generation event. Fur-
thermore, the distribution of key performance indicator trans-
action waiting time can be defined by the recurrence time
distribution of the block generation process rr(x) and the
coefficient of weighted probability c(k). The corresponding
expressions are obtained through recursive solutions, Little’s
law of queueing theory and basic probability mathemati-
cal derivations, see [102] for details. In the evaluation part,
the authors obtained a good match by comparing the model
data and the experimental measurements, which showed
the effectiveness and accuracy of the model. Unfortunately,
this general model was only validated by using a specific
Ethereum implementation based on the Proof-of-Authority
(PoA) consensus. It discounts the versatility of this model,
since the more popular PoX consensuses such as PoW and
PoS have not been examined.

2) QUEUEING MODELS FOR VOTE-BASED CONSENSUSES
Vote-based consensus is a type of high performance algo-
rithms relying upon voting to reach agreement on trans-
action processing among participant nodes in a distributed
system. It is the most popular consensus mechanism used
in permissioned blockchain. Three widely used represen-
tatives of the vote-based consensus implementations are
PBFT [115], BFT-SMaRt [116], and delegated Byzantine
fault tolerance (dBFT).

Queueing Models for PBFT: The classic PBFT algorithm
was firstly proposed in 1999 to solve the transmission errors
and Byzantine faults in distributed systems [115]. It consists
of five steps: request, pre-prepare, prepare, commit and reply.
When the PBFT is adopted in constructing blockchain sys-
tems such as Hyperledger Fabric v0.6 [65], Zilliga [117],
and EOS [47], it has different implementations and/or com-
binations with other protocols. For example, EOS takes a
hybrid consensus of combining PBFT with DPoS, to greatly
reduce the required consensus time. Zilliqa uses an optimized
version of classic PBFT binded with sharded PoW to achieve
consensus in an efficient manner, yielding a high throughput
for the blockchain system. HLF, as the most well-known
permissioned enterprise-level distributed ledger platform,
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implements the PBFT consensus algorithm among the net-
work peers (i.e., endorser, orderer and committer) mainly
through three phases: endorsement, ordering and validation,
as illustrated in Fig. 8.

Endorsement Validation

E Ordering
" )
- \ \7/ | \ W
Endorser \ , \ 4
Endorser m

N\

FIGURE 8. Hyperledger Fabric transaction workflow.

Orderer (Solo)

Phase 1. Endorsement (also called proposal or execution):
(D The client generates transaction proposals and sub-
mits to endorsers for execution. @ The endorsers
simulate the transactions by executing the operation
previously written on the chaincode, and then return
responses with signed endorsements to the client. The
endorsements contain the values read or written called
read/write set (or rw-set) by the chaincode.

Phase 2. Ordering: The client sends the transaction together
with the endorsements to the Solo orderer for ordering
service. @ The orderer collects transactions submit-
ted from different clients, establishes a total order on
them for each channel, packages multiple transactions
into blocks and generates a hash-chained sequence of
blocks. As for HLF v2.0, there are three implementa-
tions of ordering peers: Solo, Kafka, and Raft.

Phase 3. Validation (also called validation and commit): @
The ordered blocks are delivered to committers through
gossip protocol broadcasting. All peers are committers
by default, including pure committers and committers
with additional endorser responsibilities. Subsequently,
the peers validate each transaction contained in the
received blocks. If all validations are passed, the trans-
action’s write set is applied to the peer’s world state,
and the client gets a notification about the successful
execution of the transaction 3. Otherwise, any check
fail will mark the transaction as invalid, and its effects
are disregarded.

Geyer et al. [67] modelled the Solo ordering process of
HLF as an M/MB/1 queueing system. According to the pre-
viously described three phases, transactions with endorse-
ments arrive at the orderer at different times and are queued.
While the queued transactions reach a threshold number B
(called batch size), the orderer immediately provides ordering
service and packages them all at once into a block. If the
transactions arrive according to a Poisson process with rate A
and the ordering service time is assumed to follow exponen-
tial distribution with rate p and FCFES discipline, the service
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process can be described as an M/MB/1 queueing system,
as shown in Fig. 9.

- > blocks

ik

FCFS batch Ordering service

FIGURE 9. Hyperledger Fabric ordering service illustration and
M/MB/1 queueing model.

To solve this model, the authors borrowed the results
from a well-studied general bulk service queueing model
M/M,p/1 [118]. They simply modified the batch size range
to a = b = B. Then, the average time spent in the ordering
phase E(T) can be expressed by the given parameters, among
which the batch size B is approved to be significant to E(T')
from the numeric evaluations. This model well captures the
characteristics of the ordering phase in Solo implementation.
However, its shortcomings are obvious: 1) it is not suitable for
Raft or Kafka implementations; and 2) it does not describe the
whole transaction delay in the HLF system.

Alaslani et al. [103] focused on PBFT blockchain system
end-to-end delay evaluation in IoT. To study the system
delay, the authors built a model with two standard queues
to capture the features of PBFT consensus from the sys-
tem level. In this system, there are M IoT devices working
as clients to send transaction requests, and K intermedi-
ate switches and R consensus replicas working together to
process transactions. Since different IoT applications have
different latency requirements to guarantee their service level
agreement (SLA), network parameters need to be analyzed
to meet the requirements. In the first part of the model,
an M/G/1 queue is considered in which the maximum number
of network hops K* needs to be calculated under the appli-
cation latency constrains. In the second part of the model,
an M/M/1 queue is used to calculate R, the number of consen-
sus replicas (i.e., blockchain consensus participants) needed
to maintain the end-to-end requirements. Next, operational
laws such as Little’s law are used to analyze the network
hops, and the number of consensus replicas, where three main
phases (i.e., preprepare, prepare, and commit) of PBFT and
its fault tolerance capability f out of N = 3f + 1 replicas are
taken into consideration.

Fork-Join Queue for Vote-Based Consensus: In vote-based
permissioned blockchain systems, transactions are broadcast
to all authenticated voting peers of the P2P overlay after
being proposed. These voting peers, called miner nodes or
validators, are selected and authorized to validate transac-
tions, generate new blocks and record data to the local ledger
if a transaction gets enough validation votes, e.g., k out of n.
For example, in the PBFT, a block is accepted and recorded
if 2f 4+ 1 out of n = 3f + 1 peers independently agree on
the block of transactions, where f is the maximum number of
Byzantine fault peers this system can tolerate.
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The idea of leveraging an (n, k) fork-join queue to model
vote-based blockchain is based on the fact that the ser-
vice process of this queue system matches well with the
above-mentioned transaction propagation and validation pro-
cedure. In an (n, k) fork—join queue, the incoming jobs are
split/forked on arrival for simultaneous and independent ser-
vice by numerous servers and joined before departure. While
in a vote-based blockchain system, if we consider the con-
firmation of a transaction as a big job requiring enough
validations from n nodes, this job can be split into n sub-
tasks, associated with being broadcast to n nodes and being
validated independently at the same time. Once any k out
of n sub-tasks are finished, they are joined to finish the
service and make the transaction confirmed and recorded to
the local ledger. The remaining n—k sub-tasks keep executing
until being finished. This is called a non-purging (n, k) fork-
queue. By contrast, a purging (n, k) fork-join queue removes
all remaining sub-tasks of a job from both sub-queues and
service nodes once it receives the job’s kth answer.

In the literature, this model is highly prevalent for per-
formance modelling (e.g., estimating the sojourn time of
jobs in the queues) of parallel and distributed systems.
Recently, it has been found effective for use in studying
the delay performance of the synchronization process of the
vote-based permissioned blockchain systems [104]. A typical
non-purging (n, k) fork-join queueing model is illustrated
in Fig. 10.

Fork Join

Block

7-9%

FIGURE 10. A typical fork-join queueing model. All blockchain voting
nodes are homogeneous with the common service rate u.

Even though few analytical results exist for fork—join
queues, various approximation solutions are known.
An example is the linear transformation approach [119],
which can be used to approximately compute the sojourn time
t(n, k) of a general non-purging (n, k) fork-join queue for the
vote-based blockchain system.

3) FLUID QUEUE FOR IOTA TANGLE

In queueing theory, a fluid queue (also called fluid model)
is a mathematical model used to describe the fluid level in
a reservoir, for which the periods of filling and emptying
are randomly determined. It can be viewed as a large tank
connected to a series of pipes that pour fluid into the tank
and a series of pumps that remove fluid from the tank. The
capacity of this tank is typically assumed to be infinite.
The fluid level X (¢) of this tank at time ¢ is a random variable
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that can be calculated if the fluid arrival and leaving rates are
given.

This model was successfully used to describe the dynamic
behaviour of the IOTA tangle [105]. First, a fluid model
was heuristically built based on some requisite stochastic
models and the assumptions on the transaction arrival rate.
Through solving the proposed delay differential equations
system, the authors analyzed the stability of conflicts, which
impacted the performance in return.

C. STOCHASTIC PETRI NETS FOR MODELLING DLT
CONSENSUSES
Another type of commonly used analytical tool for
BFT-based consensus performance modelling is stochastic
Petri net (SPN), especially its variants generalized stochastic
Petri net (GSPN) and stochastic reward net (SRN). Petri
nets (PNs) are a type of powerful mathematical modelling
language used to model and simulate discrete-event dis-
tributed systems. They are graphs consisting of two types of
nodes: places and transitions, which represent variables of
system states represented by circles and actions made by the
system represented by rectangles. When the firing times of all
transitions are exponentially distributed (timed transitions),
the model is called SPN. Built on SPN, a GSPN allows
transitions to have zero firing times (immediate transitions)
and inhibitor arc — an arc from a place to a transition that
inhibits the firing of the transition when the input place is not
empty. According to the literature, any GSPN model can be
converted to an equivalent CTMC, and vice versa. At the net
level, an SRN substantially improves the modelling power of
the GSPN by adding guard functions, marking dependent arc
multiplicities, general transition priorities, and reward rates.

HLF V1.0+ adopts a highly modular architecture design
by decomposing the transaction process into three main
stages as shown in Fig. 8. They can be also refined into
five phases, namely HTTP, endorsement, ordering, valida-
tion & committing, and response [106]. HLF’s modular
design makes it possible to separately build a model for
each phase and then cascade them to analyze the perfor-
mance from the net/system level. There have been two stud-
ies on HLF performance analysis using GSPN [106] and
SRN [107], respectively. Both follow these general steps:
1) clarify transaction process steps and the business logic
behind them; 2) create the associated transition diagrams
of Petri nets according to the corresponding rules under
reasonable assumptions; 3) translate to Markov chains for
analytical solutions or directly leverage mathematical tools
for numerical simulation solutions. The second step is critical
because it bridges the real system to an analytical model and
paves the way to solutions for the performance indicators
such as transaction throughput, latency, average queue length
and utilization. Here, we focus on the Petri nets’ transition
diagrams of the ordering phase from the two reviewed studies,
as shown in Fig. 11.

In Fig. 11 (a), the ordering service starts with taking
endorsed transactions as inputs under the assumptions of the
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FIGURE 11. SPN models for ordering service in HLF V1.0+: (a) GPSN [106]
(b) SRN [107].

exponentially distributed request arrival and constant size of
each transaction. The symbols in the figure are interpreted as
follows: T, is a transition signifying the arrival of an endorsed
transaction. P, o 1S a place signifying the transaction is
queuing, the number of token #(P,,4i: o) denotes the queuing
length. N is the batch processing size in number of trans-
actions. Pg.re o 1S a place signifying transactions are being
ordered. Pjg. , is a place signifying the server is idle now,
the number of token #(Pjg. ,) denotes the number of idle
servers. Tj, is an immediate transition whose enable predicate
i8S #(Pyait o) > 0 & #(Pigie_o) > 0, which means there are idle
servers and queuing transactions. P,y is a place signifying
the next processing phase.

Similarly, other phases can be modelled by following the
same methodology. Consequently, the proposed analytic sys-
tem model based on GSPN indicates that the HLF system is
composed of multiple successive M/M/1 queue networks, and
the system throughput is equal to the lowest throughput of
all those phases. Using a tool embedded in Matlab named
pntool, this system can be numerically solved to determine
the latency and throughput.

The second part of Fig. 11 describes a simple SRN model
for HLF ordering service in a network with one client, two
endorsers and one peer running the validation logic. After the
client receives a response from both endorsing peers, it sends
the endorsed transaction to the ordering service (transition
Try), specified by a token deposited in place Pps. When the
number of pending transactions reaches block size (denoted
by M) or block timeout for general, a number of transac-
tions are ordered into a block (transition Tpgs). The block is
delivered to the committing peers (place 7},¢y;) for validations,
such as VSCC validation and MVCC validation. Finally, all
successfully validated transactions in the block are recorded
into the local ledger. As for solving this SRN model, one
can use the simulation approach called Stochastic Petri net
Package (SPNP) [120] to numerically find answers for the
following performance metrics.

o throughput: corresponds to the rate of each transition,
using function rate() in SPNP to capture. E.g., the rate
of transition T ¢qger signifies the block throughput of the
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system, which can be used to multiply by M to obtain
transaction throughput.

o utilization: computed by the probability that the corre-
sponding transition in SRN is enabled, using func-
tion enabled(), or computed using reward functions for
transitions with function-dependent marking rate (such
as TVSCO).

o mean queue length: obtained by the number of tokens in
the corresponding phase, using function mark(). E.g.,
the mean number of tokens in place Ppg indicates the
mean queue length at the ordering service.

D. OTHER MODELS IN DLT PERFORMANCE MODELLING
Besides the stochastic models described earlier, there
have been other analytical models proposed for analyz-
ing blockchain performance. For example, a prediction
model [108] derived from the core Ethereum’s structure
called World State was proposed to provide companies with
a more accurate estimation of performance and required stor-
age. By analyzing the modified Merkle Patricia tree (MPT),
which is the implementation of the World State in Ethereum,
the expectation and the max tree height were derived as
a function of the total number of transactions n. These
results linked to the performance and storage, which were
meaningful for decision making and early warnings. Another
study [109] adopted stochastic network models to analyze the
overall block generation rate for the PoW-based Ethereum.
Through this model, the blockchain evolution and dynamics
can be captured and used to analyze the impact of the block
dissemination delay and hashing power of the member nodes
on the block generation rate.

Random graph (also called Erdés-Rényi model) is a power-
ful mathematical tool first introduced by Erdos [121] and Bol-
lobas and Béla [122] to model and analyze complex networks.
It has properties suitable for modelling the peer-to-peer over-
lay networks used by blockchain systems [110]. There are
two main variants of the Erdds-Rényi model. One of them is
G,(N), which is a graph constructed by randomly connecting
nodes. Each edge is included in the graph with probability p
independent from every other edge. Shahsavari et al. [110]
presented a random graph using G,(N) to model the Bit-
coin blockchain network, where N is the total number of
nodes, and p refers to the independent probability that there
exists a link between any two observed nodes in the peer-to-
peer overlay network. Based on the well-established random
graph analysis results, some key performance measures can
be derived in terms of block dissemination delay and traffic
overhead.

V. FINDINGS AND SUGGESTIONS FOR FUTURE
RESEARCH

In this section, we summarize the main findings from previ-
ous evaluation sections. First, we discuss the findings from
the empirical and analytical evaluations. We then take a look
at the performance bottlenecks identified from all reviewed
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solutions. Finally, we point out some open issues and provide
suggestions for future research.

A. FINDINGS FOR EMPIRICAL ANALYSIS

1) PERFORMANCE METRICS AND WORKLOADS

The evaluated performance metrics can be divided into two
categories: macro (or overall) metrics and micro (or detailed)
metrics. Macro metrics provide an overview of the system’s
performance for users from the application level, such as
transaction throughput, latency, scalability, fault tolerance,
transactions per CPU/memory second/disk IO/network data.
The first two metrics (transaction throughput and latency) are
evaluated most frequently, over all blockchains. Micro met-
rics depict the performance of different subprocesses of trans-
actions or specific layers in the blockchain abstract model
for developers, such as peer discovery rate, RPC response
rate, transaction propagating rate, contract execution time,
state updating time, consensus-cost time, encryption and hash
function efficiency. Both macro and micro metrics are evalu-
ated under well-designed workloads.

In blockchain performance benchmarking or monitoring
frameworks, these workloads have been designed to evaluate
the performance of different layers of blockchain. Macro
workloads, such as YCSB, Smallbank, Etherld, Doubler and
WavesPresale, are designed to evaluate the application layer
in blockchain. Micro workloads, such as DoNothing, Analyt-
ics, [IOHeavy and CPUHeavy, are designed to evaluate lower
layers of blockchain, including execution, data and consensus
layers [49].

In general, there are two popular ways to generate work-
loads for experiment-based performance evaluation. One is to
construct a synthetic application with commonly used func-
tions (e.g., CreateAccount, IssueMoney and TransferMoney),
and leverage a client node to send requests of transactions
(i.e., implemented functions) to a blockchain system [78].
The other is to leverage HTTP performance testing toolkit for
generating requests, for example, using the loadtest library
of Node.js to specify an HTTP request as a JSON-formated
object, and constructing workloads for blockchains as sepa-
rate JSON objects [77], [84].

2) EVALUATED BLOCKCHAINS

HLF (v0.6 with PBFT and v1.0+ with BFT-SMaRt), private
Ethereum (Geth with PoW and Parity with PoA/PoW) and
Ripple with XRP consensus are the most often compara-
tively evaluated blockchain platforms [49], [72], [78], [80].
Among them, HLF and Ripple can reach 1,000+ TPS within
a small network and outperform the Ethereum platforms in
terms of throughput and latency, under both macro and micro
benchmark workloads. However, because of the underlying
consensus algorithms they use, both HLF and Ripple fail
to scale beyond a certain number of nodes in the network
(e.g., 16 [49] for HLF v0.6). For HLF, it is well-known that
BFT-based consensuses (e.g., PBFT and BFT-SMaRt) rely
on a leader for processing transactions, which may act as
a bottleneck and cause performance limitations. For Ripple,
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a limited and fixed number of validators receive and process
numerous transaction requests, and finally fail to scale when
the number of requests goes beyond the capability of the
validators. This conclusion is shared by a number of early
evaluation studies such as [49], [77], [78], [80]. Between
the different versions of HLF, its new release v1.0+ has
better performance than v0.6 [62] across all evaluated macro
metrics such as execution time, latency, throughput and scal-
ability. In addition, another blockchain proposed for IoT (i.e.,
Tendermint) outperforms HLF V0.6 and Ripple on both the
throughput and the latency [84].

It is worth noting that we did not encounter any improve-
ment solutions such as off-chain, side-chain, concurrent exe-
cution and sharding in the evaluated blockchain systems.
In fact, many of the proposed solutions only exist at the
conceptual stage at the time of writing this survey. Some
of them provide a brief comparative evaluation and analysis
under a specific use case for the purpose of proof-of-concept,
but lack a systematic evaluation in a meaningful manner to
demonstrate their effectiveness and efficiency.

3) CONSENSUS FINALITY

Consensus finality refers to the deterministic property of a
blockchain where a block is considered confirmed once it is
appended to the ledger. BFT-based blockchains are all with
consensus finality, while those PoW-based are usually not.
This property has a direct impact on the transaction latency.
For example, Bitcoin usually requires six successive confir-
mations as a secure finality that a transaction will not end up
being pruned and removed from the blockchain, which makes
the latency reach an unacceptable time of almost one hour.
In contrast, HLF with BFT-based consensuses can finalize a
transaction within seconds right after it is appended to the
ledger. Therefore, BFT-based blockchains have an obvious
advantage over PoW-based blockchain systems in terms of
performance.

B. FINDINGS FOR ANALYTICAL MODELLING

Performance Modelling Strategies: Most models neglect
information propagation delays in the network and simply
collapse the whole network into a single node that provides
service to process and confirm transactions. These models
are usually queue systems that provide bulk services such as
M/MB/1 and M/GB/1 queues. Only a small portion of models
consider the system as separate disjoint nodes and take the
network latency among network nodes into consideration.
They aim to calculate system end-to-end output (e.g., delays)
using queue networks or by cascading different queues such
as M/G/1 and M/M/1 together to model the blockchain
network.

An (n, k) fork-join queue combines both modelling strate-
gies. It first regards the system as a single server when the
system receives a job request. Then, it splits the job into
several sub-tasks for independent and simultaneous processes
on different network nodes. In the joint phase, process results
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are collected from different nodes to finish the original job
(e.g., block validation).

C. IDENTIFIED PERFORMANCE BOTTLENECKS

From the perspective of users or managers, performance eval-
uation results can be used for decision making on blockchain
system selection. Developers and system designers, on the
other hand, may care more about the identified bottlenecks
rather than the comparison results. They can analyze these
bottlenecks and propose solutions for further performance
optimization. All bottlenecks identified in the reviewed
papers are listed in Table 7.

As we can see, most bottlenecks are still unresolved. This
means that corresponding effective solutions to solve the
performance problems have not yet been found. Another
observation is that most bottlenecks are identified by empir-
ical analysis, which can be attributed to two reasons. First,
there are more empirical analyses conducted than perfor-
mance modelling. Second, due to the involved mathematical
expressions, analytical modelling is much more difficult than
experimental solutions in exploring the impact of design
parameters. In blockchain performance modelling, even one
simple extra parameter can significantly increase the model
complexity. Therefore, empirical analysis becomes more effi-
cient and popular in bottleneck identification than its mod-
elling counterpart.

D. OPEN ISSUES AND FUTURE DIRECTIONS

As a fundamental component of blockchain research, per-
formance evaluation plays an important role in boost-
ing blockchain applications. Although numerous blockchain
improvements have been proposed and implemented, only a
small number of them have been well evaluated. The evalua-
tion methods also need more analysis and explorations. Here,
we identify some open issues and suggest potential directions
for future research in this area.

o For empirical analysis, difficulties lie in comparative
evaluation among different blockchain platforms, espe-
cially for those with very different consensus algorithms
and data structures. The main reason is the lack of
interface standards in running workloads. For example,
when evaluating blockchain platforms for IoT such as
HLF 1.0, Ripple and IOTA, it is difficult to design a
common interface for uploading workload. Since smart
contracts are not supported by Ripple or IOTA, one
solution is to design an equivalent workload such as
transferring a unity amount from account A to another
account B [77]. However, this approach has limited
extensibility, and requires to deploy a dedicated work-
load for each blockchain under evaluation. Thereby,
there is a great potential for future research to develop
more extensible tools for comparative evaluation of
blockchain platforms.

o Many methods of experimental analysis rely on RPCs
to communicate with blockchain consensus nodes and
collect transaction statistic data (e.g., the total number
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TABLE 7. Identified performance bottlenecks for different blockchain systems.

Blockchain Bottlenecks Identified Evaluation Approaches Latest State
Ethereum v1.5.9 peer discovery, transactions propagation, consensus-cost Monitoring [61] Unresolved
Geth v1.4.18 consensus protocols Benchmarking [49] Unresolved
HLF v0.6.0 consensus protocols Benchmarking [49] Unresolved
Parity v1.6.0 transaction signing Benchmarking [49] Unresolved
endorsement policy verification, sequential
HLF v1.0 policy validation of transactions in a block, and Experimental analysis [64] Resolved (HLF vl1.1)
state validation and commit (with CouchDB)
Byteball data storage which is a relational database Benchmarking [56] Unresolved
HLF v1.0 no parallel transaction processing on the committing peer Experimental analysis [56] Unresolved
HLF ordering service Experimental analysis [67] Unresolved
Private Ethereum module responsible for reading and writing data Experimental analysis [79] Unresolved
Private Ethereum consensus mechanism Experimental analysis [80] Unresolved
HLF consensus mechanism Experimental analysis [80] Unresolved
HLF v1.0+ transmission_ from client to th_e Analytical modelling [107] Resolved
ordering service and ledger write

HLF v1.2 ne | Eﬁd:iéfe?go?;ﬁirt ‘I’){l;ri“;f?i’:‘id‘r‘;e“ Analytical modelling [106] Unresolved

of confirmed transactions of certain duration). Although
the RPC API protocols (e.g., gRPC and JSON-RPC)
claim to be efficient, they still induce extra overhead
onto the consensus peers [61], which is counted as
the peer consumption and in turn makes the evalua-
tion results inaccurate. Therefore, a more light-weight
and low-overhead data collection approach, such as
log-based approach [61], deserves more attention in the
future.

o RPC methods are widely used for data collection in
empirical performance evaluation of blockchain sys-
tems. For micro metrics and micro workload design,
it is challenging to decouple the impact from other lay-
ers. For example, two queries on transaction values are
designed to evaluate the data model performance. For
Ethereum, both queries can be easily implemented via
invoking JSON-RPC APIs. However, for HLF, a chain-
code (VersionKVStore) must be implemented as there
are no APIs to query historical states in the system.
Inevitably, this involves execution of a smart contract
making the evaluation inaccurate by adding extra over-
head. Therefore, for detailed evaluation of performance
metrics in specific blockchain abstraction layers, it is an
open issue to design a reasonable workload that allevi-
ates the impact of other layers and improves accuracy.

« Besides the classic blockchain systems such as HLF and
Ethereum, there is an urgent need for evaluating the per-
formance of their proposed improvements. For example,
sharding claims to be a promising solution and has been
implemented in many blockchains. However, there is
no evaluation work for comparing different shard-based
blockchain systems. Different solutions, such as shard-
ing v.s. DAG and off-chain v.s. side-chain also need
to be comparatively evaluated. In addition, it would
be beneficial to combine empirical and analytical
approaches in blockchain performance evaluation in the
future.
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VI. CONCLUSION

As blockchain has matured to receive more and more atten-
tion, its performance problems (e.g., low throughput and
high latency) have became critical. To resolve these issues,
there have been many improvements proposed, from sys-
tem level optimization to new efficient consensus proto-
cols. However, such blockchain modifications need to be
evaluated in a meaningful manner to demonstrate their
performance advantages. In this paper, we present a sys-
tematic survey covering existing blockchain performance
evaluation approaches. From the high level perspective, they
can be categorized into empirical and analytical evaluation
methods.

The empirical analysis can be further divided into four
groups: performance benchmarking, monitoring, experi-
mental analysis and simulation. Three popular benchmark
frameworks (i.e., Blockbench, DAGbench and Hyperledger
Caliper) are introduced and comparatively analyzed. Per-
formance monitoring is recognized as the best solution for
performance evaluation of public blockchain.

Analytical modelling approaches are more powerful than
empirical solutions especially for analyzing the consensus
layer of blockchain system. There are three main types
of modelling approaches compared in this survey: Markov
chains, queueing models and stochastic Petri nets. This com-
parison can provide directions for selecting blockchain eval-
uation approach suitable for given purpose.

We also summarized the results of surveyed performance
evaluation studies and identified the bottlenecks of major
blockchain platforms. The survey concludes with identifi-
cation of open issues and ascertainment of future research
directions in this important area.
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