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ABSTRACT Owing to the increasing use of machine learning in our daily lives, the problem of fairness
has recently become an important topic in machine learning societies. Recent studies regarding fairness
in machine learning have been conducted to attempt to ensure statistical independence between individual
model predictions and designated sensitive attributes. However, in reality, cases exist in which the sensitive
variables of data used for learning models differ from the data upon which the model is applied. In this paper,
we investigate a methodology for developing a fair classification model for data with limited or no labels,
by transferring knowledge from another data domain where information is fully available. This is done by
controlling the Wasserstein distances between relevant distributions. Subsequently, we obtain a fair model
that could be successfully applied to two datasets with different sensitive attributes. We present theoretical
results validating that our approach provably transfers both classification performance and fairness over
domains. Experimental results show that our method does indeed promote fairness for the target domain,
while retaining reasonable classification accuracy, and that it often outperforms comparative models in terms
of joint fairness.

INDEX TERMS Fair machine learning, fair classification, demographic parity, equal opportunity, domain
adaptation, transfer learning.

I. INTRODUCTION
Machine learning is now widely used in a variety of
decision-making scenarios such as health care, criminal risk
assessment, and financial lending. As machine learning is
permeating our everyday lives, its fairness is becoming a real
issue, and researchers are investigating the problem. Machine
learning models are trained to predict outcomes for new
samples using a given set of labeled examples. Because the
process relies significantly on the selected dataset, and the
training data might possess intrinsic bias toward historically
discriminated groups, there has been emerging concern that
models can inherit and reproduce such unfair treatments.

Traditional machine learning models for classification
were designed to maximize the accuracy of their predictions;
however, accurate predictions may still be unfair. This led to
the growth of the literature on fairness in machine learning.
Usually, these works consider one of the following two types:
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individual or group fairness. Individual fairness [1] claims
that similar users should be treated similarly, while group
fairness, which we consider in this study, attempts to obtain
decisions that are fair in the sense that the outcomes should
not allow inferences on the specific group information [2].
Such group information includes variables such as gender,
age, and race, which are known as ‘‘sensitive attributes.’’
Demographic parity (DP), or statistical parity, is one of

the most widely used criterion for fairness. It requires statis-
tical independence between model predictions and sensitive
attributes [3]. That is, DP is achieved when the ratio of each
output is equal for the set of inputs belonging to each sensitive
group. For example, in a financial lending problem in which
the sensitive attribute of choice is gender, lending approval
rates for male and female groups should be the same.

However, when the base rates between sensitive groups
differ significantly, DP might not completely encapsulate
the concept of fairness. Equal opportunities (EOp) has been
suggested as an alternative fairness notion for binary classifi-
cation setting under such circumstances [4]. It only enforces
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non-discrimination over the ‘‘advantaged’’ outcome, i.e., it
requires equal true positive rates for each sensitive group.
Hence, achieving fairness in terms of EOpmay result in more
accurate, reasonable predictions.

DP and EOp both enjoys popularity as fairness metrics, but
they have several technical differences. In the training phase,
minimizing EOp violation requires access to label informa-
tion, whereas DP does not. Some researchers insist that the
two criteria are incompatible, except in special cases wherein
the sensitive attribute is independent of the target variable [5].
Therefore, it is important to set an appropriate fairness goal
compatible with the setting. In this study, we considered both
DP and EOp as fairness criteria.

Several distinct streams of works have been done to
develop machine learning models with fair results. The first
approach directly enforced the designated fairness criterion
as constraints during model training, for example, by using
kernel methods or by reducing the Wasserstein distance
[6]–[9]. Another major approach was to search for represen-
tations of data in which information pertaining to sensitive
attributes is removed [10]–[12]. Some recent works along
this trend have applied adversarial training to generate similar
data representations for different sensitive groups, so that any
classifier acting on the representations will be agnostic [12].
The method that we propose is related to both approaches,
as it trains a fair classifier by learning appropriate latent
representations.

Previous studies regarding fair classification were mainly
focused on removing DP or EOp for a single sensitive
attribute. However, in reality, models could be applied to mul-
tiple tasks, each with a distinct sensitive attribute of interest.
Additionally, the sensitive attribute in labeled training data
may differ from that in the target data with limited or no
labels. For example, if one is provided with a substantial
amount of labeled data with sensitive attribute race, but the
trained model should also be applied to a similar dataset with
gender as sensitive attribute, then traditional fair classifica-
tion algorithms would fail to achieve fairness in terms of
gender.

In this study, we investigate a methodology to develop
fair classification models that can be applied to datasets with
different sensitive attributes, while using the label informa-
tion from only one dataset. This problem is equivalent to
constructing a model that achieves fairness over multiple
sensitive attributes from a dataset with limited label access.
To that end, we exploit and present ideas stemming from the
intersection of domain adaptation and fair machine learning
literature.

Domain adaptation is an aspect of transfer learning that
attempts to train a machine learning model from labeled
source data, so that it performs well on similar, but different,
target data. It is assumed that the source and target domains
are associated to the same classification task, but have differ-
ent underlying distributions. Our research question could be
regarded as a domain adaptation problem in which the source
and target domains have distinct sensitive attributes. We have

labeled source data and unlabeled target data, and the goal
is to construct a model that ensures fairness in terms of both
sensitive attributes.

Figure 1 summarizes the experimental results for our
method, in the form of confusion matrices. The acceptance
rate for each sensitive group is shown at the bottom of the
matrices, and the difference between acceptance rates mea-
sure the degree of violation of DP. Figure 1a shows the results
obtained by a previous fair classification method [7]. The DP
gapwith respect to the sensitive attribute in the source domain
(race) is successfully minimized (1DPrace = |0.121 −
0.130| = 0.009); however when applied to the sensitive
attribute in the target domain (gender), it fails to reduce the
DP gap (1DPgender = |0.040 − 0.166| = 0.126). In con-
trast, our proposed method effectively reduces the DP gap in
both the target (1DPgender = |0.117−0.126| = 0.009) and
the source domains (1DPrace = |0.100 − 0.112| = 0.012),
as shown in Figure 1b.

We rewrite the fairness metric in terms of Wasserstein dis-
tance, and combine this with domain adaptation techniques
based on Wasserstein distance to produce training objectives
that can be computed efficiently. This could be done by
replacing Wasserstein distance between multi-dimensional
distributions with sliced Wasserstein discrepancy, and taking
advantage of a simple closed-form expression forWasserstein
distance for certain types of one-dimensional distributions.
It turns out that usage of Wasserstein-based objective makes
our method capable of addressing the disparity of the clas-
sifier for virtually all threshold values τ , by matching the
cumulative distribution of score values in both the source and
target domains.

In Section 2, we provide a brief review of previous
studies related to domain adaptation and fair classification.
In Section 3, we present the theory behind the formulation
of our method and its actual implementation. In Section 4,
we verify the effectiveness of our method through experi-
ments on three real datasets. Finally, in Section 5, we discuss
the contributions of our study and future works.

II. RELATED WORK
In this section, we review previous studies related to fair
classification and domain adaptation. Additionally, we briefly
mention methods similar to ours for comparison to the pro-
posed method in later sections.

A. FAIRNESS
In a general fair classification problem, we consider train-
ing observations (X ,A,Y ), where X ∈ Rd is an input or
feature vector, Y ∈ {0, 1} is the label, and A ∈ {0, 1} is
the sensitive attribute. The main purpose of fair classifica-
tion is to learn Ŷ ∈ {0, 1} to accurately predict the true
label Y , while maintaining fairness with respect to sensitive
attribute A.

The fairness criterion of DP enforces statistical indepen-
dence between the predicted outcome Ŷ and the sensitive
attribute A, i.e., Ŷ ⊥ A. Therefore, the model satisfies DP,
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FIGURE 1. Confusion matrix for a previous method and our proposed method, applied to domains with different sensitive attributes. Training was
done using labeled source data and unlabeled target data. Previous fairness method minimized the DP gap for the source domain sensitive
attribute (1DPrace:0.009), but failed to transfer fairness to the target domain (1DPgender :0.126). In contrast, our method successfully reduced
the DP gap for both sensitive attributes (1DPrace:0.012; 1DPgender :0.009).

if the following holds: PrX (Ŷ = 1|A = 0) = PrX (Ŷ =
1|A = 1). This amounts to saying that the sensitive-
group-conditional acceptance rates are equal. Despite its wide
use, DP has shown limitations in many supervised tasks [4],
e.g., it does not necessarily produce ‘‘reasonable’’ predic-
tions. Even if we randomly select individuals to be accepted
in one group, regardless of their true labels (i.e., whether they
deserve acceptance), DP is achieved whenever the acceptance
percentages match. Hence, the alternative criterion EOp has
been suggested [4]. A binary predictor Ŷ satisfies EOp if
PrX (Ŷ = 1|A = 0,Y = 1) = PrX (Ŷ = 1|A = 1,Y = 1).
It focuses on matching the acceptance rates across groups on
the ‘‘advantaged’’ outcome (Y = 1).
Imposing the aforementioned fairness constraints is known

to conflict with learning a well-calibrated classifier [11].
For instance, when the true label depends on the sensitive
attribute, DPwould be incompatible with the ideal prediction.
Thus, it is important to build a model satisfying the fairness
requirements, while minimizing utility losses.

There has been vast literature on algorithmic approaches
to fair classification. A number of works have been devoted
to directly optimizing the classifier by imposing fairness con-
straints [7]–[9], or seeking for fair representations by solving
appropriate minimax problems [10]–[12]. Some researchers
have attempted to prepossess (or repair) the input in order to
remove the disparate impact [2], [3].

Among various works on fair classification, we have been
inspired primarily by methods related to Wasserstein dis-
tance. Fairness with respect to some sensitive attribute is
closely related to similarity between conditional distributions
for each sensitive group, and Wasserstein distance has been
suggested as an associated discrepancy measure in several
works, for it reflects the metric on the sample space [2], [7].

In some works, the Wasserstein metric has been used
to repair the input data to achieve fairness [2], [3].
Gordaliza et al. [2] theoretically demonstrated that the
Wasserstein metric is a natural choice for measuring the dis-
tance between conditional distributions in fairness problems.
Based on findingWasserstein barycenters of the distributions,
geometric repair [3] and random repair [2] methods have been
proposed. However, these repairing methodologies are based
on solving a costly linear program, and they do not provide
any guidelines for optimizing a classifier for a specific task.

Jiang et al. [7] suggested model training via logistic
regression with 1-Wasserstein distance penalty for group-
conditional score distributions, based on gradient descent.
Another study used 2-Wasserstein distance in training
neural-network based models, in which optimization was
done using gradient approximation [8].

In this paper, we attempt to learn a model that is fair
with respect to sensitive attributes from both source and
target domains, while retaining its classification performance
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by taking advantage of the properties of Wasserstein
distance.

B. DOMAIN ADAPTATION
The basic assumption of domain adaptation is that the
training (source) and test (target) data are from similar,
but different, distributions. There are two scenarios in
domain adaptation that are actively studied: unsupervised
and semi-supervised settings, which are categorized based on
whether the target data is completely unlabeled or partially
labeled. Because unsupervised domain adaptation involves
more challenging and general conditions, it has been more
widely investigated.

There have been two main approaches developed to
address domain adaptation problems. The first solution is
instance-based learning [13], [14], which focuses on training
a classifier that takes into account the difference between
domains. The second solution utilizes the idea of represen-
tation learning [15]–[20], and it seeks transferable repre-
sentations for the source and the target domains. The latter
approach, which is compatiblewith deep neural networks, has
been studied extensively in recent years.

Theoretical analysis shows that the empirical risk of
the target domain can be bounded using the risk of
the source domain and the H-divergence between two
domains [21]. Therefore, by minimizing H-divergence
between two domains, one can reduce the gap between
empirical risk values. This can be achieved by render-
ing indistinguishable the representations of the source and
the target domain data in the latent space. Based on the
theory, several recent studies have focused on obtaining
domain-invariant representations using maximum mean dis-
crepancy (MMD) [15] or adversarial training [16]–[18].
In [22], usingWasserstein distance in adversarial training was
suggested to minimize the dissimilarity between the source
and target domain distributions.

So far, few studies have considered transfer of a model’s
knowledge on fairness to other domains. In [23], a fair
transfer learning problem was addressed via instance-based
domain adaptation technique, under the assumption that the
sensitive attribute for only one of either the source or the
target domain was available. Madras et al. [11] partially
considered the problem by testing whether the fairness of
their method (LAFTR) was preserved over different tasks.

Schumann et al. [24] mainly investigated the transferabil-
ity of a fair model for different sensitive attributes. This is
the study that is closest to ours in terms of the problem
definition. They handled the problem in which the sensitive
attributes differ over the source and the target domains, but
the prediction tasks were the same. By extending the general
theory of domain adaptation from [21], they developed a
representation-learning-based method, using MMD regular-
izers to minimize H-divergence between the two domains.
Unlike in previous studies [21], [24], we advocate the

employment of Wasserstein distance when building a trans-
ferable model, instead of H-divergence, which is difficult to

deal with directly and requires approximation using MMD
[15], [24], [25] or Jensen–Shannon divergence [11], [17].
In the next section, we present a new generalization bound
for the fair domain adaptation problem using the Wasserstein
metric. Subsequently, we propose our algorithm to reduce
both the upper bound on the risk and the disparity in the target
domain.

III. METHOD
A. THEORETICAL BACKGROUND
1) NOTATION
We consider classification tasks in which X ⊂ Rd is an input
space and h : X → {0, 1} is a binary classifier that assigns
either success (which corresponds to 1) or failure (which
corresponds to 0). Binary class prediction h is determined by
score function η : X → [0, 1], which estimates the probabil-
ity of success for each sample x, i.e., the probability that the
true label associated to the sample is 1. The dataset consists of
samples drawn from the joint distribution of (X ,A,Y ), where
X ∈ X denotes the data, A ∈ {0, 1} the sensitive attribute,
and Y ∈ {0, 1} the label.

Given a classifier h, the DP gap with respect to sensitive
attribute A is defined as

1DP(h) =

∣∣∣∣PrX (Ŷ = 1|A = 1)− Pr
X
(Ŷ = 1|A = 0)

∣∣∣∣ . (1)

Similarly, the EOp gap is given by

1EOp(h) =

∣∣∣∣PrX (Ŷ = 1|Y = 1,A = 1)

− Pr
X
(Ŷ = 1|Y = 1,A = 0)

∣∣∣∣ (2)

In our setting, we consider a family of thresholded classifiers
{hτ }τ∈(0,1) with the classification rule

hτ (x) = 1{η(x)>τ }(x),

i.e., hτ predicts success if and only if the score value η
exceeds τ . We often denote hτ (X ) as Ŷτ under this setting.
Based upon these concepts, we introduce the notion of Strong
Pairwise Demographic Disparity (SPDD), which has been
originally proposed by [7], and Strong Pairwise Disparity
of Opportunity (SPDOp), which is a corresponding concept
for the criterion EOp. Roughly speaking, they measure the
averaged gap of (conditional) success probabilities across
groups, over the family of classifiers under consideration.
Definition 1: Let η : X → [0, 1] be a score function, and

let Ŷτ = hτ (X ). Thenwe define SPDD and SPDOp associated
to η respectively as

SPDD(η) = Eτ∼U ([0,1])1DP(hτ )

SPDOp(η) = Eτ∼U ([0,1])1EOp(hτ ).

In our scenario, we consider the source and target data dis-
tributions on X , each having a joint relationship to a distinct
sensitive attribute. The sample distribution underlying the
source data is denoted asDS , and that of the target data isDT .
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Likewise, the sensitive attribute for each data is expressed
as AS and AT .

2) OPTIMAL TRANSPORT AND WASSERSTEIN DISTANCE
For the sake of completeness, we briefly introduce some
preliminary facts about Wasserstein distance.

Wasserstein distance is a measure of discrepancy between
two probability distributions based on a binary cost function
on the sample space. LetZ be the latent space and fix a binary
function c : Z ×Z → R≥0. Given two probability measures
ν0 and ν1 onZ satisfying

∫
c(x, y) dνi <∞ for all y ∈ Z and

i = 0, 1, the (Monge) optimal transport problem attempts to
find a transport map T : Z −→ Z that minimizes the total
transport cost ∫

Z
c(z,T (z)) dν0(z)

under the condition T#ν0 = ν1, meaning that T
push-forwards ν0 to ν1. The optimal transport (OT) map T ∗

is the one that minimizes the above quantity.
Kantorovitch [26] gave a generalized formulation of the

optimal transport problem in terms of joint probability
distributions:

minimize
∫
Z×Z

c(z0, z1) dγ (z0, z1)

over γ ∈
∏
(ν0, ν1) = {γ |πi#γ = νi, i = 0, 1}, where

πi’s denote marginal projections induced by the canonical
projections Z × Z → Z . An optimal solution γ ∗ for the
problem is called an optimal coupling.

Finally, suppose that Z has a metric space structure d .
In this case, for p ≥ 1, we define the p-Wasserstein distance
as

Wp(ν0, ν1) = inf
γ∈
∏
(ν0,ν1)

( ∫
Z×Z

d(z0, z1)pdγ (z0, z1)
) 1
p
. (3)

Note that, except the (1/p)-th power, this is a special case of
the previous definition with the choice c(z1, z2) = d(z1, z2)p

of cost function. An advantage of considering p-Wasserstein
distances is that they are indeed ‘‘distances’’ between prob-
ability measures, i.e., positivity, reflexivity, and triangular
inequality are satisfied.

For the 1-Wasserstein distanceW1, there is a useful equiv-
alent characterization due to Villani [27]:

W1(ν0, ν1) = sup
{∫

Z
f dν0 −

∫
Z
f dν1 : ‖f ‖L ≤ 1

}
,

wherein the condition ‖f ‖L ≤ 1 requires f to be 1-Lipschitz
as a function from Z to R with respect to the metric d ,
i.e., |f (z0)− f (z1)| ≤ d(z0, z1) for all z0, z1 ∈ Z .
Wasserstein distance has recently gained popularity as an

ingredient for loss functions in the field of artificial intel-
ligence, due to its advantage over other discrepancy mea-
sures between probability distributions, such as total variation
distance, Kullback-Leibler divergence, and Jensen-Shannon
divergence. References [22], [28]–[30]. Since Wasserstein
distance takes into account the properties of the underlying

geometry, unlike the other dissimilarity measures mentioned,
it assigns finite distance value even when two distributions do
not share support [28].Moreover, convergence with respect to
the topology induced by Wasserstein distance coincides with
convergence in distribution [31].

3) FAIRNESS IN TERMS OF WASSERSTEIN DISTANCE
In this subsection, we express the fairness criteria SPDD and
SPDOp in terms ofWasserstein distance as in [7], which have
originally proposed the idea. Then, we illustrate our frame-
work based on the reformulation and provide a theoretical
bound on the disparity between groups.

We first state a well-known fact regarding Wasserstein
distance between distributions on the unit interval� = [0, 1].
Suppose that R0 and R1 be random variables taking values
in �, and for i = 0, 1, let Fi be the cumulative distribution
function of Ri. If µi be the distribution on � induced by the
variable Ri, then we have

W1(µ0, µ1) =
∫
�

|F0(τ )− F1(τ )| dτ, (4)

provided thatµi’s have density functions. (For proof, we refer
the reader to [7].)

Importantly, we observe that (4) is directly related to the
Strong Pairwise Disparity concepts of fairness under the right
context. Consider the sensitive group-conditional source dis-
tributions DS

a = L(DS
|AS = a), where a = 0, 1. Suppose

then that we have a trained score function η : X → [0, 1],
and denote the push-forwarded distributions by

µSa := η#DS
a , a = 0, 1.

Then, by applying (4), we obtain

W1(µS0 , µ
S
1 )

=

∫ 1

0

∣∣∣∣∣ Pr
X∼DS

0

(η(X ) ≤ τ )− Pr
X∼DS

1

(η(X ) ≤ τ )

∣∣∣∣∣ dτ
=

∫ 1

0

∣∣∣∣∣ Pr
X∼DS

0

(η(X ) > τ )− Pr
X∼DS

1

(η(X ) > τ )

∣∣∣∣∣ dτ
=

∫ 1

0

∣∣∣∣PrX (Ŷτ = 1 |AS = 0)− Pr
X
(Ŷτ = 1 |AS = 1)

∣∣∣∣ dτ
= Eτ∼U ([0,1])1DPS (hτ ),

and the last term is precisely the SPDD that we defined
previously.

So far, we have observed bounding SPDD amounts control
the 1-Wasserstein distance between distributions of score
values. Our goal is to achieve fairness with respect to both
AS and AT while retaining some theoretical control over the
classification performance for the target dataset whose label
information is obscured. Based on the idea that the reduc-
tion of Wasserstein distance is the key for fairness, we take
advantage of neural network architecture with an intermedi-
ate (latent) layer. Aswe illustrate in the following, training the
latent representation to match major and minor groups from
the source and target distributions, one can establish bounds
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on both the disparity and the accuracy of the classifier on the
target dataset.

Let Z ⊂ RdZ be the latent space, and let gφ : X → Z be
the ‘‘encoding map,’’ parametrized by φ. Next, we consider a
parametrized family of latent score functions fθ : Z → [0, 1],
and we assume that for all θ , ‖fθ‖L ≤ K , for some fixed
constant K > 0. This assumption is not artificial when we
are working with neural network based score functions, since
the usage of nonexpansive activations such as ReLU, together
with spectral regularization on linear layers, provides ade-
quate control on the Lipschitz constant. We write ηφ,θ for the
score function fθ ◦ gφ : X → [0, 1].
Next, denote the latent distributions induced by gφ as

νSa = (gφ)#DS
a , νTa = (gφ)#DT

a

for a = 0, 1. The score distributions, again induced from ν’s
by fθ , are denoted as

µSa = (fθ )#νSa , µTa = (fθ )#νTa .

Note that all the above distributions have dependency on
parameters, but we have made them implicit in order to keep
notations concise. Clearly, W1(µS0 , µ

S
1 ) = SPDDS (ηφ,θ ) and

W1(µT0 , µ
T
1 ) = SPDDT (ηφ,θ ), as we have already shown.

However, we step further and show that, in the following
proposition, the deviation of SPDDT from SPDDS is bounded
by the discrepancy of the source and target latent distribu-
tions, in terms of Wasserstein distance.
Proposition 1: Let fθ : Z → [0, 1] be K-Lipschitz. Then,

SPDDT (ηφ,θ ) ≤ SPDDS (ηφ,θ )
+K [W1(νS0 , ν

T
0 )+W1(νS1 , ν

T
1 )]. (5)

Proof: Using Kantorovich-Rubinstein duality, we have

W1(µS0 , µ
T
0 ) = sup

u:�→R
‖u‖L≤1

Eτ∼µS0 [u(τ )]− Eτ∼µT0 [u(τ )]

= sup
u:�→R
‖u‖L≤1

Ez∼νS0 [u ◦ fθ (z)]− Ez∼νT0 [u ◦ fθ (z)]

≤ sup
f :Z→R
‖f ‖L≤K

Ez∼νS0 [f (z)]− Ez∼νT0 [f (z)]

= K ·W1(νS0 , ν
T
0 ),

where in the third line we used that fθ is K -Lipschitz and
thus its composition with any 1-Lipschitz u : � → R is
K -Lipschitz. Similarly,

W1(µS1 , µ
T
1 ) ≤ K ·W1(νS1 , ν

T
1 ).

Therefore, using the triangular inequality for 1-Wasserstein
distance,

SPDDT (ηφ,θ )

= W1(µT0 , µ
T
1 )

≤ W1(µT0 , µ
S
0 )+W1(µS0 , µ

S
1 )+W1(µS1 , µ

T
1 )

≤ K ·W1(νT0 , ν
S
0 )+ SPDDS (ηφ,θ )+ K ·W1(νS1 , ν

T
1 )

= SPDDS (ηφ,θ )+ K [W1(νS0 , ν
T
0 )+W1(νS1 , ν

T
1 )].

�

We would like to remark that using the distributions DS
a,y

doubly conditioned on AS = a and Y S = y with a = 0, 1,
y = 1, one could derive similar results for SPDOp.

4) GENERALIZATION BOUND FOR DOMAIN TRANSFER
Proposition 1 motivates the parameter selection which jointly
minimizes W1(µS0 , µ

S
1 ) and W1(νSa , ν

T
a ) for a = 0, 1. Indeed,

this is what our framework does. (see Figure 2.) We further
justify this methodology by providing a generalization bound
that is analogous to the error bound in classical domain adap-
tation problems using theH-divergence. Here, we generalize
the approach of [30] and give a careful analysis suitable for
our setting.
It is commonly assumed in the domain adaptation literature

that there exists true labeling function h∗ : X → {0, 1},
which is shared between the source and the target distribu-
tions and assigns a correct label to every sample. However,
in our scenario, the label means either success or failure
and there is usually no absolute sense of correctness on the
assignment of the label. Hence we promote an alternative
setup wherein we assume the existence of true score func-
tion η∗ : X → [0, 1], which assigns to each sample x
the (true) probability of its acceptance (or success) η∗(x).
It soon becomes clear that this also makes the following
analysis compatible with our choice of Wasserstein distance
as a discrepancy measure for distributions.

As we preferred scores to labels,
Definition 2: The relative risk between the two score func-

tions η, η′ : X → [0, 1] under the source distribution is
defined as

εS (η, η′) = EX∼DS |η(X )− η′(X )|.

The relative risk for each sensitive group AS = a (a = 0, 1)
is similarly given by

εSa (η, η
′) = EX∼DS

a
|η(X )− η′(X )|.

The risk of a score function η is then defined as

εS (η) = εS (η, η∗), εSa (η) = ε
S
a (η, η

∗).

Analogous concepts for the target distribution could be
defined in the same way, with superscripts S replaced by T .

To demonstrate that the definition is not a mere artifact for
the discussion, we present the following proposition, which
bridges our definition of risk and the traditional one based on
labels.
Proposition 2: Let η, η′ : X → [0, 1] be score functions,

and for each τ ∈ (0, 1), let hτ , h′τ be the corresponding
classifiers with threshold τ , i.e.,

hτ (x) = 1{η(x)>τ }(x), h′τ (x) = 1{η′(x)>τ }(x)

Then we have

ε(η, η′) =
∫ 1

0
Pr

X∼D
(hτ (X ) 6= h′τ (X )) dτ, (6)

where D is a distribution of interest and ε is the associated
relative risk.
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Equation (6) can be paraphrased as: The relative risk
measures the probability that hτ and h′τ disagree with their
predictions, averaged over τ .

Proof:We begin with noting that

Pr
X∼D

(hτ (X ) 6= h′τ (X )) = EX∼D [1{hτ (X )6=h′τ (X )}(X )]

= EX∼D
∣∣hτ (X )− h′τ (X )∣∣ .

Hence∫ 1

0
Pr
X∼D

(hτ (X ) 6= h′τ (X )) dτ

=

∫ 1

0

∫
X

∣∣hτ (x)− h′τ (x)∣∣ dD(x) dτ

=

∫ 1

0

∫
X
|1{η(x)>τ }(x)− 1{η′(x)>τ }(x)| dD(x) dτ

=

∫
X

∫ 1

0
|1{η(x)>τ }(x)− 1{η′(x)>τ }(x)| dτ dD(x)

=

∫
X
|η(x)− η′(x)| dD(x)

= EX∼D |η(X )− η′(X )| = ε(η, η′),

where the third equality used Fubini’s theorem and the fourth
equality comes from

|1{η(x)>τ }(x)− 1{η′(x)>τ }(x)| =

{
1 if τ ∈ (η(x), η′(x))
0 otherwise.

�
Let the latent encoding parameter φ be fixed, and let

θ∗ = θopt(φ) be the optimal parameter, in that it minimizes
the combined risk

λ(θ ) = εS0 (ηφ,θ )+ ε
S
1 (ηφ,θ )+ ε

T (ηφ,θ ).

Let λ∗ = λ(θ∗) be the optimal combined risk. We now state
the generalization bound for our setting.
Theorem 1: Let φ be fixed. Let νSa and νTa (a = 0, 1)

be corresponding latent distributions, and θ∗ = θopt(φ)
the optimal latent score parameter with minimal combined
risk λ∗. If fθ is K-Lipschitz for all θ , then the following holds
for any value of θ :

εT (ηφ,θ ) ≤ εS0 (ηφ,θ )+ ε
S
1 (ηφ,θ )+ λ

∗

+ 2K [W1(νS0 , ν
T
0 )+W1(νS1 , ν

T
1 )]. (7)

Proof: By definition of ν’s, for any θ, θ ′ and a = 0, 1
we have

εSa (ηφ,θ , ηφ,θ ′ ) = EX∼DS
a
|(fθ ◦ gφ)(X )− (fθ ′ ◦ gφ)(X )|

= EZ∼νSa |fθ (Z ) − fθ ′ (Z )|

and the same holds with superscripts T . Hence

εTa (ηφ,θ , ηφ,θ ′ )− ε
S
a (ηφ,θ , ηφ,θ ′ )

= EZ∼νSa |fθ (Z ) − fθ ′ (Z )| − EZ∼νTa |fθ (Z ) − fθ ′ (Z )|
≤ sup

f :Z→R
‖f ‖L≤2K

EZ∼νSa [f (Z )]− EZ∼νTa [f (Z )]

= 2K ·W1(νSa , ν
T
a ),

where the inequality holds since |fθ − fθ ′ | is 2K -Lipschitz.
Therefore, we may proceed as

εT (ηφ,θ , ηφ,θ ′ ) ≤ ε
T
0 (ηφ,θ , ηφ,θ ′ )+ ε

T
1 (ηφ,θ , ηφ,θ ′ )

≤ εS0 (ηφ,θ , ηφ,θ ′ )+ ε
S
1 (ηφ,θ , ηφ,θ ′ )

+ 2K [W1(νS0 , ν
T
0 )+W1(νS1 , ν

T
1 )].

Now plugging in θ ′← θ∗ and combining with

εT (ηφ,θ ) ≤ εT (ηφ,θ∗ )+ εT (ηφ,θ , ηφ,θ∗ ),

we obtain

εT (ηφ,θ ) ≤ εT (ηφ,θ∗ )+ εS0 (ηφ,θ , ηφ,θ∗ )+ ε
S
1 (ηφ,θ , ηφ,θ∗ )

+ 2K [W1(νS0 , ν
T
0 )+W1(νS1 , ν

T
1 )]

≤ εT (ηφ,θ∗ )+ εS0 (ηφ,θ∗ )+ ε
S
1 (ηφ,θ∗ )

+ εS0 (ηφ,θ )+ ε
S
1 (ηφ,θ )

+ 2K [W1(νS0 , ν
T
0 )+W1(νS1 , ν

T
1 )]

= εS0 (ηφ,θ )+ ε
S
1 (ηφ,θ )

+ 2K [W1(νS0 , ν
T
0 )+W1(νS1 , ν

T
1 )]+ λ

∗.

�
The moral of Theorem 1 is that, reducing the quantity

W1(νS0 , ν
T
0 )+W1(νS1 , ν

T
1 ) would result in a better upper bound

for εT (ηφ,θ ). Note that the quantity is also involved on the
right-hand side of (5) in Proposition 1, which upper bounds
the SPDD for the target group. Therefore, our framework,
which aims to minimize both of the upper bounds in (5)
and (7), is expected to achieve good model performance and
fairness over the source and the target datasets.

B. PROPOSED METHOD
1) IMPLEMENTATION
We have training observations (xSi , a

S
i , y

S
i )
nS
i=1 from the source

domain and (xTi , a
T
i , y

T
i )
nT
i=1 from the target domain (yTi are

not provided in the unsupervised domain adaptation setting).
We train the encoder gφ and the latent score function fθ with
parameters φ and θ to be as fair and accurate as possible over
both domains. Given an acceptance threshold τ , the predic-
tion (ŷτ )i for an input xi is 1{fθ (gφ (x))>τ }(xi).

a: SOURCE DOMAIN ACCURACY
To train the classifier to attain good prediction capability
through supervised learning using the source data, we include
the supervised cross-entropy loss

LCE =
1
nS

nS∑
i=1

l(fθ (gφ(xSi ), y
S
i )), (8)

where l denotes cross-entropy loss function.

b: SOURCE DOMAIN DEMOGRAPHIC PARITY (DP)
Since we should train a model with a score function that
promotes demographic parity, we wish to include in our
objective the 1-Wasserstein distance between score distribu-
tions between sensitive subgroups from the source domain.
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However, the exact computation of the true score distributions
is intractable, so we instead use empirical distributions µ̂,
defined by

µ̂Sa =
1
|BSa |

∑
i∈BSa

δfθ◦gφ (xSi )
(9)

for a = 0, 1, where δp is the Dirac measure centered at p ∈ R,
and Ba is a subset of the index set

ISa = {i = 1, . . . , nS : aSi = a}.

Then, we define the loss function

LfairS = W1(µ̂S0 , µ̂
S
1 ). (10)

The distributions in (9) are uniform mixtures of delta dis-
tributions centered at the sets BSa of samples drawn from the
respective underlying distributions (a = 0, 1). Despite its
simplicity, estimating empirical distributions in this manner is
conducive to calculating empirical versions of 1-Wasserstein
distance, because W1 distance can be computed exactly by a
simple closed-form expression for one-dimensional empirical
distributions with equal number of point masses [32], as we
present below. Note that the minimization of (10) can be
viewed as a stochastic minimization of SPDDS (ηφ,θ ), which
appears on the right-hand side of (5) in Proposition 1.

Let µ̂0 =
1
m

∑m
i=1 δpi and µ̂1 =

1
m

∑m
i=1 δqi , where pi,

qi ∈ R for i = 1, . . . ,m. Let ρ : Rm
→ Rm be a sorting

function such that given a vector r = (r1, · · · , rm), outputs

ρ(r) = (rσ (1), . . . , rσ (m))

where σ : {1, . . . ,m} → {1, . . . ,m} is a rearrangement
of indices such that 1 ≤ i < j ≤ m implies rσ (i) ≤
rσ (j). Then the optimal coupling γ ∗ is simply given as the
assignment ρ(p)i 7→ ρ(q)i for each i = 1, . . . ,m. That is, the
1-Wasserstein distance between µ̂0 and µ̂1 is given by

W1(µ̂0, µ̂1) =
1
m

m∑
i=1

|ρ(p)i − ρ(q)i|, (11)

wherem is the size of the mini-batch. Hereafter, we minimize
the 1-Wasserstein distance between two one-dimensional dis-
tributions using equation (11).

Note that the number of point masses should be the same
for the distributions to apply to this formulation. In our
implementation, this condition will always be satisfied, since
our choice of BS0 and BS1 are batches for stochastic gradient
descent, and the batch size is a fixed constant m for all
distributions under consideration.

c: DOMAIN ADAPTATION LOSS FOR DP
Taking as objective the weighted sum of the loss functions
LCE and LfairS we have introduced so far, and optimizing
it with respect to parameters φ and θ via gradient descent,
we obtain a classification model fθ (gφ(x)) that is accurate
and fair with respect to the source domain AS . To enforce
the model to attain predictive power and fairness in the target
domain, we introduce additional loss functions.

What we want to minimize is the 1-Wasserstein distance
between the group-wise latent distributions on Z induced
by the source and target domains. As for LfairS , we use the
empirical distributions

ν̂Sa =
1
|BSa |

∑
i∈BSa

δgφ (xSi )
, a = 0, 1,

whereBSa ⊂ ISa , and δz is the Diracmeasure centered at z ∈ Z .
Empirical distributions ν̂Ta for the target domain are defined
similarly with superscripts S replaced by T .

For multi-dimensional empirical probability measures,
however, calculating the Wasserstein distance is, in gen-
eral, computationally costly. It requires finding an optimal
coupling in (3), and for discrete distributions, this problem
is equivalent to solving a linear program with number of
variables proportional to the square of the number of samples.
To circumvent this problem and exploit the efficient formu-
lation (11), we adopt sliced Wasserstein discrepancy (SWD),
which has been utilized as an approximation to Wasserstein
distance in various works of machine learning literature
[29], [32].

Sliced Wasserstein discrepancy is computed by first mak-
ing random projections onto one-dimensional spaces, and
then calculating W1 distances between the projected mea-
sures. More precisely,

SWD(ν̂0, ν̂1) =
∫
S
W1(ν̂w0 , ν̂

w
1 ) dω(w), (12)

where ω is a uniform measure on the unit sphere S = SdZ−1
in Rdz such that

∫
S dω = 1, and the measures ν̂wa = wᵀν̂a

are one-dimensional projections of ν̂a onto the direction of
w ∈ S. In practice, the intractable integration over S is
usually replaced by an approximation through sampling.

Suppose that ν̂a has mass on {z1,a, . . . , zm,a} ⊂ Z , and
denote za = (z1,a, . . . , zm,a) for a = 0, 1. Then the SWD can
be approximated as

SWD(ν̂0, ν̂1) ≈
1

|Ŝ|

∑
w∈Ŝ

W1(ν̂w0 , ν̂
w
1 )

=
1

|Ŝ|

∑
w∈Ŝ

1
m

m∑
i=1

|ρ(wᵀz0)i − ρ(wᵀz1)i|,

(13)

where Ŝ = {wj}kj=1 consists of k uniform samples from S
and ρ is the sorting function mentioned previously. Using
SWD, we replace the highly inefficient computation of W1
by k one-dimensional optimal transport problems using (11),
resulting in a computationally efficient algorithm.

Now we define our domain adaptation loss function on the
minority group (AS = 0,AT = 0) as:

LDA0 = SWD(ν̂S0 , ν̂
T
0 ).

and similarly for majority subgroup (AS = 1,AT = 1):

LDA1 = SWD(ν̂S1 , ν̂
T
1 ).

123790 VOLUME 8, 2020



T. Yoon et al.: Joint Transfer of Model Knowledge and Fairness Over Domains Using Wasserstein Distance

FIGURE 2. Illustration of the overall architecture of the proposed method for fairness criterion DP.

Note that the distributions ν̂T0 and ν̂T1 are distinguished
according to sensitive attributes AT in the target domain.
Access to the label information from the target domain is not
required, and our algorithm remains unsupervised.

Summing up, we arrive at our total loss function, on which
we optimize the parameters φ and θ via stochastic gradient
descent:

Ltotal = LCE + λ1LfairS + λ2(LDA0 + LDA1 ), (14)

where λ1 and λ2 are hyperparameters to be tuned to bal-
ance the terms. The first and the third terms in (14) con-
sist of the upper bound of the target risk in Theorem 1
(except the irreducible term λ∗), while the second and the
third terms bound SPDD for the target domain, as shown in
Proposition 1. Therefore, the proposed framework attempts
to achieve model fairness as well as prediction performance,
over both domains.

The architecture of our methodology is illustrated in
Figure 2. This figure shows an example of our framework
in which the sensitive attribute of the source domain is race
(white/non-white) and that of the target domain is gender
(female/male).

In the latent space Z , by minimizing SWD(ν̂S0 , ν̂
T
0 ),

we align the (empirical) distributions of minority groups
‘‘non-white’’ and ‘‘female’’, as shown in the middle of the
figure. Similarly, the minimization of SWD(ν̂S0 , ν̂

T
0 ) aligns

the latent distributions of the majority groups (‘‘white’’ and
‘‘male’’). The effect ofminimizing the loss functionsLCE and
W1(µ̂S0 , µ̂

S
1 ) is shown in the rightmost figure. The supervised

loss functionLCE guides the model to maximize the accuracy
of its predictions, and the source domain DP lossW1(µ̂S0 , µ̂

S
1 )

enforces the cumulative distribution functions for the score
values of ‘‘non-white’’ and ‘‘white’’ groups to become
similar.

d: EQUAL OPPORTUNITIES (EOP)
When the fairness criterion of interest is EOp, we need access
to at least some of the labels from the target domain, because
in this case, distributions of the form

DT
a,1 = L(XT |AT = a,Y T = 1)

are involved in the definition of SPDOp. Therefore, in the
following, we assume a semi-supervised domain adaptation
setting in which we are partially provided with label infor-
mation from the target domain dataset. Other than this point,
one can carry out the analysis in the same way as one can
for DP.

To achieve EOp in the target dataset, we need to reduce the
Wasserstein distance between group-wise score distributions
from the source domain, conditioned on Y S = 1. Hence we
consider the corresponding empirical distributions:

µ̂Sa,1 =
1

|BSa,1|

∑
i∈BSa,1

δfθ◦gφ (xSi )

where δ denotes the Dirac measure and BSa,y are subsets of

ISa,y = {i = 1, . . . , nS : aSi = a, yi = y}

for a = 0, 1, y = 1. The source domain fairness loss LfairS in
terms of EOp then become:

LfairS = W1(µ̂S0,1, µ̂
S
1,1).

Similarly, the domain adaptation loss involve empirical
latent distributions conditioned on Y = 1:

ν̂Sa,1 =
1

|BSa,1|

∑
i∈BSa,1

δgφ (xSi )
,

ν̂Ta,1 =
1

|ITa,1|

∑
i∈BTa,1

δgφ (xSi )
.

With these notations, we define

LDAa = SWD(ν̂Sa,1, ν̂
T
a,1),

for a = 0, 1.
Finally, the total loss function Ltotal is given by the same

formula (14) as in the DP case.

2) ALGORITHM
Algorithm 1 outlines the detailed procedure for the proposed
method when the fairness criterion is DP. Parameters are opti-
mized stochastically through batch-wise gradient descent.
Implementation is done by using the deep learning library
PyTorch.
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Algorithm 1 Batch Training Procedure for the Proposed Method (DP)

Input: Labeled source dataset (xS` , a
S
` , y

S
` )
nS
`=1 ∼ DS , unlabeled target dataset (xT` , a

T
` )
nT
`=1 ∼ DT , and a randomly

initialized encoder gφ and latent score function fθ , hyperparameters λ1, λ2, number of projections k , batch size m,
latent dimension dZ , and learning rate α

Output: Trained encoder gφ and trained latent score function fθ .
1 for Mini-batch BS0 ,B

S
1 from source dataset, mini-batch BT0 ,B

T
1 from target dataset, where |BS0 | = |B

S
1 | = |B

T
0 | = |B

T
1 | = m

do
2 Calculate domain transfer SWD loss with minority subgroup (BS0 ,B

T
0 ) as:

3 Obtain representations in latent space gφ(BS0 ) and gφ(B
T
0 ) from mini-batch from minority subgroup;

4 Sample {wj}kj=1 from the unit sphere SdZ−1;
5 Sort wᵀ

j gφ(B
S
0 ) with sorting algorithm ρ such that ρ(wᵀ

j gφ(x))i ≤ ρ(w
ᵀ
j gφ(x))i+1, ∀x ∈ B

S
0 , 1 ≤ i < m;

6 Sort wᵀ
j gφ(B

T
0 ) with sorting algorithm ρ such that ρ(wᵀ

j gφ(x))i ≤ ρ(w
ᵀ
j gφ(x))i+1, ∀x ∈ B

T
0 , 1 ≤ i < m;

7 LDA0 = 1
m

1
k

∑m
i=1

∑k
j=1 |ρ(w

ᵀ
j gφ(B

S
0 ))i − ρ(w

ᵀ
j gφ(B

T
0 ))i|;

8 Calculate domain transfer SWD loss with majority subgroup (BS1 ,B
T
1 ) as:

9 Obtain representations in latent space gφ(BS1 ) and gφ(B
T
1 ) from mini-batch from majority subgroup;

10 Sample {wj}kj=1 from the unit sphere SdZ−1;
11 Sort wᵀ

j gφ(B
S
1 ) with sorting algorithm ρ such that ρ(wᵀ

j gφ(x̃))i ≤ ρ(w
ᵀ
j gφ(x̃))i+1, ∀x̃ ∈ B

S
1 , 1 ≤ i < m;

12 Sort wᵀ
j gφ(B

T
1 ) with sorting algorithm ρ such that ρ(wᵀ

j gφ(x̃))i ≤ ρ(w
ᵀ
j gφ(x̃))i+1, ∀x̃ ∈ B

T
1 , 1 ≤ i < m;

13 LDA1 = 1
m

1
k

∑m
i=1

∑k
j=1 |ρ(w

ᵀ
j gφ(B

S
1 ))i − ρ(w

ᵀ
j gφ(B

T
1 ))i|;

14 Calculate W1 loss with source data set(BS0 ,B
S
1 ) as:

15 Obtain classifier output fθ (gφ(BS0 )) and fθ (gφ(B
S
1 )) from mini-batch from source data set;

16 Sort fθ (gφ(BS0 )) with sorting algorithm ρ such that ρ(fθ (gφ(x)))i ≤ ρ(fθ (gφ(x)))i+1, ∀x ∈ BS0 , 1 ≤ i < m;
17 Sort fθ (gφ(BS1 )) with sorting algorithm ρ such that ρ(fθ (gφ(x̃)))i ≤ ρ(fθ (gφ(x)))i+1, ∀x̃ ∈ BS1 , 1 ≤ i < m;
18 LfairS = 1

m

∑m
i=1 |ρ(fθ ◦ gφ(B

S
0 ))i − ρ(fθ ◦ gφ(B

S
1 ))i|;

19 Calculate Supervised loss ;
20 LCE =

∑
(xSi ,y

S
i )∈B

S
0
l(fθ (gφ(xSi )), y

S
i )+

∑
(x̃Si ,ỹ

S
i )∈B

S
1
l(fθ (gφ(x̃Si )), ỹ

S
i ) ;

21 Calculate total loss;
22 Ltotal = LCE + λ1LfairS + λ2(LDA0 + LDA1 );
23 Update φ and θ with gradient descent;
24 φ← φ − α∇φLtotal ;
25 θ ← θ − α∇θLtotal ;
26 end

In Algorithm 1, we denote the mini-batch of data from the
minority group AS = 0 of the source dataset as BS0 and that
of the majority group AS = 1 as BS1 . The counterparts for the
target dataset are denoted as BT0 and BT1 , respectively. Size of
all mini-batches are set to a fixed integerm. The algorithm for
EOp is basically the same, except that the batches are drawn
among samples with Y = 1.

IV. EXPERIMENTS
In this section, we present how fairness was transferred
over domains via our proposed algorithm for three real
datasets. All datasets used contained two distinct sensitive
attributes, and we experimented two-ways for each dataset,
switching the roles of source and target. For example, when
two sensitive attributes of a dataset were race and gender,
we first tested the case where the attribute race belongs
to the source domain and the gender to the target domain.
Then, we performed the test again with the opposite scenario,

i.e., where the sensitive attribute of the source data is gender
and that of the target data is race.

A. EXPERIMENTAL SETTINGS
1) DATASETS
Adult: The UCI Adult dataset contains census information
of 32565 individuals describing adults from the 1994 US
Census. The classification goal of this Adult dataset is
to predict whether an individual’s annual income exceeds
$50K/year. All categorical variables were converted into mul-
tiple binary variables using one-hot encoding. The numerical
variables, age and workhours were minimax normalized to
exhibit values in [0,1]. The resulting preprocessed dataset had
15 input variables. We used the following choice of sensitive
variables, to measure the fairness metric and to split the
source and the target datasets: race [non-white (A = 0) /
white (A = 1)] and gender [female (A = 0) / male (A = 1)].
COMPAS: The ProPublica COMPAS dataset contains
6172 instances that predict whether a criminal defendant will
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recidivate within two years. All of the categorical variables
were one-hot encoded and the numerical variable # of pri-
ors was minimax normalized to exhibit values in [0,1]. The
resulting preprocessed dataset had 13 input variables. For
sensitive attributes, we considered race [non-white (A = 0) /
white (A = 1)] and gender [female (A = 0) / male (A = 1)].
German: The UCI German credit data contain 1000 data
samples and attempts to predict each individual’s credit risk
(good/bad). All of the categorical variables were one-hot
encoded and all of the numerical variables duration, amount,
installment, present resid, # of credits, and # of people were
minimax normalized. As a result, we used 56 input variables.
For sensitive attributes, we used age [young (≤ 30) (A = 0) /
old (≥ 30) (A = 1)] and gender [female (A = 0) / male
(A = 1)].

2) COMPARATIVE MODELS
In this paper, we compared our method with following three
models.
Baseline: Basic linear neural network classifier with no fair-
ness constraints, trained using the loss function LCE only.
W1(Source): Neural network classifier with fairness con-
straints on the source data only, trained using the loss func-
tions LCE and LfairS .
MMD [24]: Domain adaptive fairness approach that tries to
minimize discrepancy of fairness metrics between source and
target domains by applying MMD loss in the latent space.

3) TRAINING DETAILS
All of the experimented models (three comparison mod-
els and ours) in this paper share the same neural network
architecture. The encoding map gφ is composed of two
fully connected layers with ReLU activation functions
FC(d −→ d/2) - ReLU - FC(d/2 −→ d/4) - ReLU, where
d is the input space dimension. The latent score function fθ
has the neural network structure FC(d/4 −→ 2) - ReLU -
FC(2 −→ 1) - Sigmoid.
All datasets were divided as follows: 70% training set,

10% validation set, and 20% test set. As explained above,
our framework enables one to select a fairness criterion to
be satisfied by taking appropriate conditional distributions.
In our work, we selected and experimented with two of the
most widely used fairness criteria: DP and EOp.

In the case of DP, our method does not require any infor-
mation regarding the true label; therefore, we worked on
a completely unsupervised domain adaptation setting. We
simply split the training set to obtain equally sized source
and target datasets. The source data instances contained both
the inputs X and the label Y , while the target data instances
contained only the input X . (Hence, the target labels were not
used in model training.)

However, to achieve EOp, label information for the target
data was partially required because we had to match the
cumulative distribution of class and label-conditional scores.
Thus, in this case, we assumed a semi-supervised domain

adaptation setting, in which 20% of the target data contained
label information.

We used Xavier initialization to initialize the weight with
mini batch size m = 128 for Adult and COMPAS, and
m = 32 for German. We optimized the network with
ADAM [33] optimizer with learning rate α = 0.001 for
100 epochs. The sampling number k = 10 was used for
approximating SWD. To control the Lipschitz constant of
score functions, we used L2 spectral regularizers designed for
network weight decay. We used the validation set to select
values of λ1, λ2.

4) METRIC
To evaluate the models based on experimental results,
we introduce metrics that measure the domain transfer per-
formance of the model in terms of fairness. When we are
interested in attaining demographic parity, we want both the
source and the target values of SPDD to be close to 0. Hence,
we take the maximum value of SPDD over domains,

SPDDmax = max{SPDDS (ηφ,θ ),SPDDT (ηφ,θ )},

which can be viewed as the worst-case of fairness in terms of
SPDD, as our measure of model performance for fairness in
the DP setting.

In the same way, in the EOp setting, we define and use:

SPDOpmax = max{SPDOpS (ηφ,θ ),SPDOpT (ηφ,θ )}.

B. RESULTS
Table 1 shows the experimental results for the transfer of DP
on the three datasets. Values of the accuracy and SPDDmax
on the test data, averaged over 10 repeated experiments,
are shown. Here, superscript ∗ indicates a statistically sig-
nificant difference between the results of our method and
MMD, according to Wilcoxon signed rank test with level
of significance 0.05. As shown, our method more effectively
reduced SPDDmax in both the source and the target domains,
as compared to other models. We observed thatW1(Source),
in general, could not reduce SPDD in both domains, except
for the case of gender → race in theAdult dataset and age→
gender in the German dataset. Additionally, theMMD often
did transfer fairness from the source domain to the target
domain, but Ours showed the lowest value of SPDDmax in
five out of six experiments, and four were significantly better
thanMMD.
Due to the aforementioned intrinsic trade-off between

prediction performance and fairness, in models with fair-
ness consideration, accuracy degradation compared to the
Baseline was observed. However, note that, while the other
methods failed to meet the fairness criterion in some tasks,
ours successfully achieved fairness in all of them. That is, our
method best repaid the accuracy loss.

Table 2 shows the cumulative distribution of scores in
the source and target domains. For the Adult and COMPAS
datasets, red: male; orange: female; navy: white; and green:
non-white. For the German dataset, red: male; orange:
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TABLE 1. Experimental results comparing the suggested model and comparative models in an unsupervised domain adaptation setting. We aim to jointly
minimize the demographic parity in the source and the target data. Values of models’ test set accuracy and SPDDmax are shown. The numbers in bold
indicate the best performance.

TABLE 2. Experimental results that show cumulative distributions of score predictions µ0, µ1 in source and target domains. Each domains is denoted in
capital letters, as ‘‘R’’: race,‘‘G’’: gender, and ‘‘A’’: age. The red and orange lines indicate distributions for major and minor groups in one domain, and navy
and green lines denote the major and minor distributions in the other domain.(The closer the four lines are, the better.)

female; navy: white; and green: non-white. The difference
between the red and orange lines indicates the SPDD in one
domain, whereas that between the navy and green lines indi-
cates the SPDD in the other domain. In this figure, the closer
the four lines are to each other, the fairer is the result.

In the results for the Adult dataset with Baseline applied,
the navy and green lines are already close to each other, but
the red and orange lines are distant from each other. Thus,
in this task, the DP gap for race is small, but that for gender
is large. Therefore, the results from W1(source) for the task
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TABLE 3. Experimental results comparing the suggested model and comparative models in semi-supervised domain adaptation setting. We aim to jointly
minimize the Equalized Opportunity (EOp) gaps in the source and the target data. Values of models’ test set accuracy and SPDOpmax are shown. The
numbers in bold indicate the best performance.

TABLE 4. Experimental results that show cumulative distributions of score predictions µ0,1, µ1,1 in source and target domains. Each domains were
denoted in capital letters, as ‘‘R’’: race,‘‘G’’: gender, and ‘‘A’’: age. The red and orange lines indicate distributions for major and minor groups in one
domain, and navy and green lines denote the major and minor distributions in the other domain.(The closer the four lines are, the better.)

gender → race were successful, with SPDDmax reduced.
However, it failed to achieve fairness in the reverse task
race → gender . On the other hand, all four lines for Ours
were made close to each other, in both domain adaptation

settings. This implies that our method was capable of making
fair decisions in all given settings.

Results for Baseline and W1(source) models on
COMPAS and German data show that it would be more
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FIGURE 3. t-SNE visualization of latent representations from Baseline and Ours.

challenging to train a jointly fair model for these datasets,
because no pair of lines for any sensitive attribute is aligned.
EvenMMDwas not very successful, except in the gender →
race task on the COMPAS dataset. However, the proposed
method consistently showed superior results in terms of
fairness, as illustrated by the tightly bound four lines in the
column for our method.

The experimental results for EOp are summarized
in Table 3, which shows the average accuracy and SPDOpmax
on the test data over 10 repeated experiments. The proposed
method showed the best transfer of fairness in four out of
six experimental settings, and three of them were signifi-
cantly better than the comparative modelMMD.W1(source)
demonstrated good results on the task gender → race for
the Adult dataset, but failed to achieve joint fairness on other
situations.

Cumulative distributions of predicted scores for EOp are
shown in Table 4. Similar to the case of DP, in this experiment,
results from the Baseline and W1(source) models showed
gaps in the four lines representing the cumulative distribu-
tions. On the other hand, Ours demonstrated satisfactory
results, with the four lines all aligned.

In standard transfer learning problems, negative transfer
might occur [34]. It is a phenomenon in which transfer learn-
ing degrades the performance on the target domain, instead of
improving it, usually when the source domain is irrelevant to
the target domain. However, in our task, the only difference
between the domains is that the source and the target domain
have distinct sensitive attributes. Therefore, negative transfer
is less likely to occur in our settings, since the source and

the target domains are closely related to each other. The
experimental results verified that our method was indeed
effective in improving the target domain disparity compared
to Baseline and W1(Source).

C. VISUALIZATION
The domain adaptive loss function LDA0 is designed for
learning latent representations in which the distribution of
two minority groups (non-white and female) is similar. In the
same way, the latent distribution of majority groups (white
and male) should become alike in the presence of LDA1 .
To verify that the suggested model is as well trained as we
intended, we visualized the latent embedding of the source
and the target data using t-SNE [35].

Figure 3 shows the visualization of ν̂S0 , ν̂
T
0 , ν̂

S
1 , and ν̂

T
0

from the Adult dataset, produced by Baseline andOurs with
SPDDmax as fairness criterion. While the latent distributions
from the two domains tended be separated when the base-
line method was used, our method successfully aligned the
distribution of minor groups and major groups. For example,
in the right figures, embedded distributions of the red (male)
and blue (white) samples seem to be concentrated on distinct
clusters (Figure 3c), whereas, in the latent space of our model,
the distributions are more evenly blended (Figure 3d).

V. DISCUSSION
In this study, we solved a fair classification problem, wherein
the sensitive attributes of the data used for model learning dif-
fered from the sensitive attributes of the test data. We applied
the concept of domain adaptation for fair machine learning to
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address the problem. We proposed a new method that learns
similar latent representations for the source and the target
domain minority groups via introducing sliced Wasserstein
discrepancy loss function, and for the majority groups as
well. Simultaneously, 1-Wasserstein distance between the
predicted score distributions of the minority and the majority
groups in the source domain was also minimized. Adapting
ideas from the domain adaptation literature, we derived a
generalization bound that provided control over the classi-
fication performance of the trained model in two domains.
Consequently, we arrived at a method that achieves joint
fairness for different sensitive attributes, with some flexibility
over the choice of fairness criteria (DP and EOp). Notably,
the classification fairness of our model was robust to the
choice of threshold on predicted score values, as our method
aligns the cumulative score distributions of each demographic
subgroup.

We empirically tested our method on three standard
datasets: Adult, COMPAS, and German. Comparison of
SPDDmax showed that our method outperformed previous
methods in terms of mutual fairness and, as we had predicted
by the theory, the accuracy degradation was within a rea-
sonable range. Additionally, by visualizing latent represen-
tations, we demonstrated that using Wasserstein-based loss
was indeed effective in blending latent distributions.

We believe that our method could be extended to more
intricate tasks pertaining to domain adaptation and fair
machine learning. We plan to continue pursuing the study
of model fairness, possibly by incorporating more challeng-
ing domain adaptation settings. We also anticipate that our
method could be generalized for different notions of fairness,
including individual fairness.
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