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ABSTRACT Although neural network-based speech recognition models have enjoyed significant success
in many acoustic systems, they are susceptible to be attacked by the adversarial examples. In this work,
we make first step towards using generative adversarial network (GAN) for constructing the targeted speech
adversarial examples. Specifically, we integrate the target speech recognition network with GAN framework,
which can then be formulated as a three-party game. The generator in GAN aims at generating perturbation
that could make the target network misclassified to a specific target, while simultaneously fooling the
discriminator treating the adversarial example as a beguine one. The discriminator is to distinguish the
crafted examples from the geniue samples. The classification error of the target network is back-propagated
via gradient flow to the generator for updating. The target network is responsible for back-propagating the
classification error via gradients to the generator for updating, but the target network itself is freezed.With the
carefully designed network architecture, loss function and training strategy, we successfully train a generator
that could generate the adversarial perturbation for a given speech clip and a target label. Experiential results
show that the generated adversarial examples could effectively fool the state-of-the-art speech classification
networks, while attaining an acceptable auditory perception quality. In addition, our proposed method
runs much faster than the prevalent optimization-based schemes. To facilitate reproducible research, codes,
models and data are publicly available at https://github.com/winterwindwang/SpeechAdvGan.

INDEX TERMS Targeted adversarial example, generative adversarial network, speech recognition.

I. INTRODUCTION
Nowadays, the speech user interface is becoming one of the
most prevalent human-machine-interaction ways. It has been
widely adopted in numerous size-constrained smart equip-
ments, wearable devices, and hand-free intelligent systems,
where the user input via a physical or screen keyboard is
often inconvenient. In general, these automatic speech recog-
nition (ASR) systems are dependent on running a speech
classification model in an always-on mode, receiving the
voice and interpret it as commands. Due to the recent sig-
nificant advances of deep neural networks, many state-of-
the-art commercial products, e.g., Apple Siri, Google Now
and Amazon Alexa, are shifting to the network-based speech
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classification model. Considering the widespread applica-
tions of ASR in real-world, the security concerns of these
systems have drawn the attentions of researchers. Unfortu-
nately, many works have demonstrated that neural networks
are susceptible to the specially crafted speech adversarial
examples, which are typically constructed by adding peculiar
perturbation on the legitimate samples, causing the target
acoustic system misbehave. One typical way is to generate
a malicious perturbation based on the given legitimate sam-
ple, which thus could intentionally make the target acoustic
system to produce the incorrect results. The existence of
adversarial example is ubiquitous in many vision tasks such
as image classification [1], [2], object detection [3], [4],
face recognition and authentication [5], to name a few.

Compared with extensive research in the vision field, there
are less investigations for the speech adversarial example
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generation. Vaidya et al. [6] is the first to report speech
recognition system is vulnerable to adversarial examples.
They constructed the adversarial examples by adding pertur-
bation on the Mel-Frequency Cepstral Coefficient (MFCC)-
transformed feature, and then converted the processed feature
back to the waveform domain. Generally, their generated
samples were noise-dominated, which cannot be interpreted
by humans, but intelligible to the speech recognition sys-
tem. Similarly, Carlini et al. [7] also suggested to perturb
the MFCC feature vector of the given speech. Their results
shown that the constructed adversarial examples could effec-
tively attack the HiddenMarkovModel-based ASR. Later on,
Carlini and Wagner [8] extended the seminal fast gradient
sign method (FGSM), which is well-known on image clas-
sification adversarial attack, to create the speech adversar-
ial examples. By solving an iterative optimization problem,
they could found a proper adversarial sample that indistin-
guishable to human but can fool the target ASR network.
Alzantot et al. [9] proposed a genetic algorithm-basedmethod
to generate speech adversarial examples. Their attack modi-
fies the least significant bits of a subset of the given audio
clip, which is equivalent to injecting the background noise
directly into the original speech. More recently, Du et al. [10]
devised a method termed as SirenAttack, which employed
the heuristic particle swarm optimization algorithm, to search
the adversarial examples in a stochastic fashion. Experi-
ments have shown the sought examples could trigger many
CNN-based speech classification systems to produce incor-
rect results.

However, most of the aforementioned speech adversar-
ial example generation methods have at least one of the
following two drawbacks: First, the computational cost for
generating the adversarial example for a given speech is
quite high (e.g., the method [8] spends almost one hour
to generate a single adversarial example, even with GPU
acceleration), due to the high-complicated iterative optimiza-
tion problem to be solved. This inefficiency issue barriers
the practical usage of the adversarial examples. Second,
the perception quality of the adversarial examples was not
always satisfactory (some generated examples are even noise-
dominated [6], [7]), which could clearly draw the attention
of a common listener. In this work, we attempt to tackle
the above issues using GAN. Specifically, we propose to
integrate the target network with a GAN framework, which
is formulated as a three-party game. The generator aims at
generating perturbation that meets two goals simultaneously:
1) fooling the discriminator treating the adversarial exam-
ple as the geniue one, and 2) making the target network
misclassified to a specific target. The discriminator is to
distinguish the crafted adversarial examples from the geniue
samples. It could guide the generator to generate limited
perturbation that resembles to the distribution of geniue
ones. The target network participate the training as fixed
role. Its classification error is feedback via gradient flow to
the generator, guiding the generator to adjust the perturba-
tion towards the misclassification directions. To implement

the three goals, the GAN network architecture is carefully
designed, with deliberately designed loss function. We also
suggest an effective training strategy to train the proposed
GAN networks stably. Experimental results validate
the attacking capability of proposed method on some
widely-used ASR networks, while retaining acceptable per-
ception quality. The contributions of this work are summa-
rized as follows
• By incorporating the target ASR into our specially
devised GAN framework, we successfully trained a gen-
erator that could generate the adversarial perturbation.
Moreover, the loss function and training strategy were
carefully designed, which could stabilize the training of
our proposed GAN framework.

• The proposed GAN-based attacking method could effi-
ciently generate adversarial examples with pre-specified
target label, comparing with the recent state-of-the-art
speech adversarial example generation schemes.

• We conduct extensive experiments to demonstrate our
generated adversarial examples could effectively fool
the ASR systems with high confidence, while retaining
reasonably good perception quality.

The rest of this work is organized as follows. We first
briefly review related work in Section II, and then formulate
the adversarial example generation problem in Section III.
Our proposed targeted speech adversarial example generation
using GAN is presented in Section IV, with a thorough dis-
cussion on the network architecture, loss function and train-
ing strategy. Experimental results are provided in Section V,
and finally we conclude this work in Section VI.

II. RELATE WORK
In this section, we first review the generative adversarial
networks, and then survey the recent advances of the speech
adversarial example generation task.

A. GENERATIVE ADVERSARIAL NETWORK
The generative adversarial network (GAN)was first proposed
by Goodfellow et al. [11]. The essential idea of GAN is
to establish a contest between two networks, i.e., the gen-
erator and discriminator networks. Through adequate com-
peting, the generator acquires the capability to generate the
instances that (approximately) follow the distribution of train-
ing data. GAN has harvested great success in many vision
tasks such as realistic image generation [12], image-to-image
translation [13], and text-to-image synthesis [14]. Recently,
the methods using GAN to generate image adversarial exam-
ple emerge. For example, Hu and Tan [15] proposed to use
GANs to generate adversarial image examples, which could
bypass detection systems. Xiao et al. [16] utilized GAN to
generate realistic adversarial image examples, which could
learn and approximate the distribution of the original data
samples. Compared with extensive research of GAN in the
image domain, there are far less works in the speech domain.
Pascual et al. [17] devised a generative adversarial network
for speech enhancement task, which could remove noise from
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speech and obtain much more cleaner clips. Latif et al. [18]
employed GAN as defense measures to the adversarial attack.
They usedGAN to eliminate suspicious noise exists in a given
speech, which make the target network perform classification
correctly as intended. Tang et al. [19] proposed GAN-based
data augmentation method. Li et al. [20] utilized improved
GAN to efficiently address signal processing task. Note that,
GAN has also entered into the digital forensics filed. For
instance, to resist the audio source identification (ASI) foren-
sics, Li et al. [21] proposed to use GAN to falsify the source
information of an audio clip by adding specific disturbance.
The doctored audio clips can effectively deceive numerous
ASI forensic methods.

B. SPEECH ADVERSARIAL EXAMPLE GENERATION
Recently, the adversarial examples generation in the speech
domain has also drawn attention of researchers. Carlini and
Wagner [8] employed the conventional fast gradient sign
method (FGSM)method to generate adversarial perturbation.
The results have shown that the generated adversarial exam-
ples can successfully attack a speech recognition network.
Qin et al. [22] also proposed optimized-based algorithms
to find the optimal perturbations under the small-magnitude
perturbation constraint. Du et al. [10] then proposed a particle
swarm optimization algorithm based method to construct
speech adversarial examples. This method involves solv-
ing complicated optimization problem with multiple heuris-
tic tricks. Note that, the computational cost of the above
optimization-based methods are all huge. This is mainly
because, for each sample, a complex optimization problem
must be solved once to generate its corresponding adversarial
example. Instead, our proposed framework implants the target
network to a generative adversarial network, and uses the
gradient information feedback by the target network to guide
the training of the generator. Once completing the training,
the generator can efficiently generate perturbation for a given
speech.

III. PROBLEM FORMULATION
Currently, adversarial attacks can be roughly classified into
untargeted attack and targeted attack. The untargeted adver-
sarial examples generation aim to make the output of system
deviate from the original classification, to arbitrary incorrect
label, e.g., introducing spelling errors to attack the ASR
systems. In contrast, the targeted attack attempts to make
the recognition systems outputs a pre-specified target label.
Compared with the untargeted attack, the target attack is
practical andmuchmore challenging. Therefore, in this work,
we focus on investigating the targeted attack. Furthermore,
for technical tractability, we assume a white-box attacking
scenario, where one can access the necessary information
about the target system f (·), e.g., the network architecture,
weight parameters, hyperparameter settings.

Specifically, let X be the speech audio waveform space,
and Y be its ground-truth text label space. A well-learned
ASR is expected to receive a speech sample clip x ∈ X ,

and outputs its transcription y ∈ Y , i.e., f (x) = y. Given
such ASR f (·), an input speech sample x, and a pre-specified
transcription yt 6= y, the goal of our targeted speech adver-
sarial example generation scheme is two-folds. First, we shall
to generate a speech adversarial example xadv that could
effectively fool the given ASR classification, i.e.,

f (xadv) = yt , where yt 6= y. (1)

Second, the generated adversarial example xadv should be
similar to the original sample x, in terms of human audi-
tory perception. That is, a common human listener cannot
distinguish xadv from x when listening to them.
More formally, to fulfill the aforementioned two goals,

we aims at finding a small perturbation δ such that
xadv
= x+δ. Under this setting, the adversarial example gen-

eration algorithm can be converted into solving the following
optimization problem

δ∗ = arg min
δ

l(f (x + δ), yt ) (2)

s.t.: yt 6= y, and ‖δ‖ < ε. (3)

where l(·) is the loss function to evaluate the predic-
tion/classification accuracy, which achieves theminimawhen
f (xadv) = yt . Here ‖·‖ is the norm operator, e.g., l1, l2, l∞,
and ε denotes themaximum incurred perturbationmagnitude.
However, most of the existing adversarial example genera-

tion schemes seek the perturbation by solving complicated
optimization problems [9], [10]. Thus, for a given speech
sample, it is costly for generating its adversarial example.
Furthermore, their results have shown that the adversarial
perturbation is often large-magnitude, making the audio clip
sounds much noisy, especially in the silent frames. Instead,
as will be detailed shortly in next section, we propose to
employ a generative adversarial network to generate such
perturbation, which could atomically determines where is
suitable to add adversarial noise for the given speech clip.
In addition, once completing the training procedure, our
method could generate the adversarial examples quite effi-
ciently.

IV. TARGETED SPEECH ADVERSARIAL EXAMPLE
GENERATION USING GAN
In this section, we first present the network architecture of
our proposed method. The loss function is then thoroughly
discussed and finally the training strategy is provided.

A. FRAMEWORK OVERVIEW
Figure 1 illustrates the overall architecture of our proposed
method. The key idea of our method is to employ the genera-
tive adversarial network (GAN) to produce a specific pertur-
bation for the given speech sample. In general, our framework
is mainly composed of three components: a generator G,
a discriminator D, and the target ASR network f . This is a
game among three players: generator G, discriminator D and
ASR network f , where the ASR part is fixed. The goal of
the GAN components is to learn the latent knowledge to fool
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FIGURE 1. The overview of the proposed framework.

the target ASR network, under small perturbation constraint.
Mathematically, the original speech x is fed into generator
and its output G(x) as the adversarial perturbation, which can
be expressed as

xadv
= x + G(x). (4)

Then, xadv is fed into the discriminatorD and the target ASR
network f , respectively. The function of discriminator D is
to distinguish the constructed adversarial examples from the
geniue ones, driving the generator G to produce the perturba-
tion that is unnoticeable to the discriminator. The target clas-
sifier f is involved to guide the generator to craft adversarial
examples that would be misclassified to a pre-specified target
label. The detailed network architecture of the generator G
and discriminator D are presented as follows.

B. GENERATOR
As aforementioned, the aim of generator G is to gener-
ate adversarial perturbation, making the adversarial example
misclassfied but not harming the perception quality of speech
severely. To realize this goal, we adopt the encoder-decoder
like network structure to design our generator. In practice,
such encoder-decoder framework has successfully applied to
many applications, e.g., U-Net for image segmentation [23],
SEGAN for speech enhancement [17].

The architecture of the generator is illustrated in Figure 2.
It contains 8 convolutional layers as encoding component and
8 deconvolutional layers as the decoding component. Specifi-
cally, each convolutional layer contains multiple convolution
filters,1 with the kernel size 1 × 32 and stride 2. The para-
metric rectified linear units (PReLU) activation function [24]
is used, which could benefit the training stability in our
experiments. The deconvolutional component is composed
of the quasi-symmetrical structure of the convolutional com-
ponent. Each deconvolutional layer also contains multiple
deconvolution filters, with the kernel size 1×32 and stride 2,
followed by PReLU activation. Inspired by SEGAN [17],
in order to make the gradients flow through the network
without suffering vanishing, we add the skip connection that
wires the convolutional layer with its deconvolutional layer
counterpart. Skip connection could make the deconvolutional

1The number of filters is labeled right below the output of the convolu-
tional layer. For instance, the first layer contains 16 filters, which transforms
the input of 1× 16384 into a tensor of size 16× 8192.

layer directly share the features that extracted by the convo-
lutional layer, preventing to generate exaggerate perturbation
that deviate from original signal. Finally, it is worth pointing
out that, in the output of last layer, we use tangent activation
function to replace PReLU. This goal of this action is to
the enforce the generated perturbation into the same sam-
pling values of the speech, i.e., [−1, 1]. To ensure the final
adversarial sample being a valid speech sample, the generated
adversarial example will be hard truncated into [−1, 1] when
overflow occurs.

C. DISCRIMINATOR
The discriminator D in our framework is required to dis-
tinguish the original speech samples from the constructed
adversarial ones. It could motivate the generator to produces
peculiar perturbation that mimics the noise distribution exists
in geniue samples. The detailed architecture of the discrim-
inator is presented in Figure 3. In more detail, the discrimi-
nator is formed by 12 convolutional blocks. For the first 11
convolutional blocks, each contains certain number of filters
with kernel size 1× 31, followed by batch-norm and Leaky-
ReLU. For the last convolution layer, there is only filter with
1× 31 and Leaky-ReLU, aiming to squeeze the feature maps
into a one-dimensional vector. No batch-norm operation is
used in this layer. The last two layers are fully connected
layer and softmax layer, respectively, which are used to output
the final prediction probability in the range [0, 1]. In other
words, the output of D(x) indicates the confidence that the
input speech sample is classified as a genuine one.

D. LOSS FUNCTION
To learn a generator that mislead the ASR to recognize adver-
sarial example as a specified target, the loss is the critical
element to drive the training process. Thus, we design the
loss function elaborately. In general, there are two networks,
i.e., generator G(·) and discriminatorD(·), to be trained. Each
network shall be trained with a well designed loss function.
More specifically, for the generator, we define its loss func-
tion as

LG = L fadv + αLfool + βLhinge + γL2, (5)

where L fadv is the adversarial loss, representing the attack-
ing ability of generator on the target classifier; Lfool is the
loss to denote the fooling capability of generator on the
discriminator. The last two terms Lhinge and L2 are the hinge
and l2-norm loss of the adversarial example, respectively.
These two regularization terms are adopted here to expect an
acceptable auditory quality of the adversarial speech exam-
ple. The parameters α, β and γ are the weights to balance the
importance among the four loss terms. In the next, we give
more detailed explanation on each term in (5).

1) TARGET CLASSIFIER LOSS Lf
adv

One primary goal of the generator is to fool the target ASR
network. Then the target classifier loss L fadv shall measure the
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FIGURE 2. The architecture of the generator.

FIGURE 3. The architecture of the discriminator. Different color represents
different layer types. The text in green blocks all follow the syntax:
K convolution filters with kernel size 1× 31 followed by batch-norm (BN)
and Leaky-ReLU (LReLU) is abbreviated as Conv@1× 31, K , BN, LReLU.

difference between the targeted label with the classifier pre-
diction of the adversarial example. Mathematically, we have

L fadv = Ex
[
lce

(
f (xadv), yt

)]
, (6)

whereEx[·] denotes the expectation operator over the training
samples; yt is the pre-specified target labeled of an adversary,
xadv is the generated adversarial examples, and lce(·) denotes
the cross-entropy loss function. As one can see, minimizing
the loss L fadv encourages the ASR network classifier to clas-
sify the adversarial speech as the target label yt .

2) ADVERSARIAL LOSS Lfool
To encourage the generator to seek a suitable perturbation
that misleads the classification of discriminator, the generator
should receive the feedback of its adversary (i.e., the discrim-
inator) to improve its fooling ability consistently. To this end,
the adversarial loss is designed as follows [11]

Lfool = Ex
[
log(1−D(xadv))

]
. (7)

It can be seen that minimizing Lfool is equivalent to maxi-
mizing the classification probability D(xadv) towards 1. This
essentially guides the generated adversarial example tomimic
the geniue speech data distribution.

3) REGULARIZATION TERMS Lhinge AND L2
The key goal of this two terms is to ensure the auditory quality
of constructed adversarial examples. First, the soft hinge loss
on Lhinge norm is imposed on the generated perturbation,
which can be expressed as follows

Lhinge = Ex [max(0, ‖G(x)‖2 − c)] , (8)

where c denotes a user-specified bound. Intuitively, this
loss function pushes the generator to generate more sparse
perturbation throughout the all the sampling locations. i.e.,
the perturbation that modifies fewer speech sampling values
is preferred. In addition, as shown in [13], such hinge loss
could also stabilize the GAN training process.

Second, to make the adversarial example similar to the
geniue one, we further incorporate following l2-norm to
bound the magnitude of the adversarial perturbation, i.e.,

L2 = ‖xadv
− x‖2. (9)

This loss function could control the total energy of the per-
turbation, avoiding the situation that perturbation explodes.
That is, the perturbation with smaller magnitude is preferred
when training the generator.

For the discriminator, its goal is to distinguish the gener-
ated adversarial example (fake) from the geniue ones (true).
We adopt the following loss function

LD =
1
2

(
Ex
[
log(1−D(x))

]
+Ex

[
log(D(xadv))

])
, (10)

where D(xadv) ∈ [0, 1] denotes the probability that the
crafted adversarial example is classified as geniue by the
discriminatorD. Note that this loss function for discriminator
is similar to the one employed in LSGAN [25], in which its
effectiveness was validated for the GAN training procedure.
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Algorithm 1 Training Strategy to Solve Problem (11)
Input: Target label yt , training dataset, iteration index i,

number of warm-up epochs N , number of maximum
epochs M , min-batch size m, hyperparameters α, β, γ .

Output: The well trained generator G∗ parameterized by θG .
1: Initialization: Initialize the network parameters of gen-

erator θG and discriminator θD using Xavier.
2: for ith iteration smaller than M do
3: Randomly draw m samples from the training dataset.
4: Generatem adversarial examples via xadv

= x+G(x).
5: if (i ≤ N ) then
6: Update the generator parameters θG via the back-

propagated gradients ∇θGαLfool + βLhinge + γL2.
7: else
8: Update the generator parameters θG via the back-

propagated gradients ∇θGLG . // ASR joins the
training, receives and backpropagates the gradients
but without updating.

9: end if
10: Update the discriminator parameters θD via the back-

propagated gradients ∇θDLD.
11: end for

Finally, by combining the loss function for genera-
tor (LG) and discriminator (LD), we can obtain the gen-
erator by solving the following min-max optimization
problem

G∗ = argmin
G

max
D

(
LG + LD

)
, (11)

where G∗ is the well-trained generator we sought. Upon train-
ing completion, one can efficiently generate the adversarial
for the given input and specified target with G∗. However,
solving (11) is not a trivial task. We in the next discuss the
training strategy that deliberately designed for the targeted
adversarial example generation task.

E. TRAINING STRATEGY
The GAN network component in our proposed framework
(i.e., the generator G and D) is first trained for N epochs
(N is empirically set as 3 in our experiments). Then, the target
ASR system, i.e., the speech classifier network, joins for the
remaining training. The underlyingmotivation of this training
strategy is to ensure the discriminator could has reasonably
good capability for distinguishing the adversarial samples
from the geniue ones, which could warm-start the training
process. The generator and discriminator are trained in an
alternating way, i.e., when training the generator, the discrim-
inator is fixed and vice versa. It is also worth pointing out
that the network parameters of the target network are fixed
during the entire training stage. That is, the ASR prediction
errors can be backpropagated via gradients to the generator G,
but the weights of target network itself are not updated.
Algorithm 1 presents the complete description of our training
strategy.

V. EXPERIMENTAL RESULTS
In this section, we first introduce the dataset and experien-
tial settings that are used throughout the experiments. Then,
an adversarial attack on the state-of-the-art network-based
ASR is implemented, to verify the effectiveness of our pro-
posed method. Following that, the perceptual quality of the
generated adversarial example is evaluated. Afterwards, abla-
tion study on the loss terms L2 and hinge loss is conducted.
Finally, robustness of our proposed method is analyzed.

A. EXPERIENTIAL SETTINGS
1) DATASET
Our experiments are conducted on two datasets: the Google
single-word speech command dataset SpeechCmd [26] and
the musical genre collection GTZAN [27]. The speech com-
mands dataset SpeechCmd is composed of 65000 speech
files, where each file is one-second speech clip that falls
into the following ten classes: ‘‘yes’’, ‘‘no’’, ‘‘up’’, ‘‘down’’,
‘‘left’’, ‘‘right’’, ‘‘on’’, ‘‘off’’, ‘‘stop’’, and ‘‘go’’. The GTZAN
genre collection contains 1000 speech files, where each file is
about 30-second music recording excerpts belonging to one
of the following ten genres: ‘‘blues’’, ‘‘classical’’, ‘‘country’’,
‘‘disco’’, ‘‘hiphop’’, ‘‘jazz’’, ‘‘metal’’, ‘‘pop’’, ‘‘reggae’’, and
‘‘rock’’. To unfiy the length of the input speech clip, in our
experiments, each file of GTZAN is spitted into multiple
one-second clip. Finally, the total speech files in the GTZAN
is 29000.2 For each dataset, we split it into a training set,
a validation set and a test set in the ratio 80% : 10% : 10%.
As practiced in previous work [17], before feeding into the
generator, each speech shall be first normalized into [−1, 1]
with

Normlize(x) =
2

65535
· (x − 32767)+ 1, (12)

and the final adversarial speech examples can be recon-
structed using the inverse-normalize function,

Inversion(x) = (x − 1) ·
65535

2
+ 32767. (13)

2) IMPLEMENTATION DETAILS
a: PARAMETER SETTINGS
The weight hyperparameters α, β and γ in Eqn. (5) are set
to 1, 1 and 100, respectively. Note that, our experiments
shown that the setting of γ is crucial to preserve the quality
of generated adversarial examples. In general, a large value
γ leads to higher perception quality of the generated speech
samples. The parameter c in Eqn. (8) is empirically set to 0.
The initial random seed is set to 1024. The learning rate is set
to 2 × 10−4. The number of training epoch is set to 50. The
min-batch size is 64. Throughout the entire training process,
the Adam optimizer [28] is adopted.

2Notice that, in the original GTZAN dataset, the duration of some files are
not exactly the 30 seconds. To account this fact, we in practice take the first
29 seconds of each file and then divide it into multiple non-overlap clip of
one second duration. This yields 29× 10000 = 29000 files.
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b: STOPPING CRITERION
The training process of our method would be halted when
meets one of the following two conditions: First, the number
of the training epoch reaches the specified maximum value.
Second, the attacking success rate does not change within
5 epochs and no training instability such as gradient vanish
or explosion exists.

3) PERFORMANCE METRIC
The performance of our proposed method is evaluated by
the attack success rate of the generated adversarial examples,
which can be expressed as

success_rate =
#{misclassified samples}

#{test samples}
, (14)

where #{·} returns the cardinality of the input set.
To evaluate the objective quality of generated adversarial

example, the Signal-to-Noise Ratio (SNR) metric is used,

SNR(xadv) = 10 · log10
Px
Pδ
, (15)

where xadv, x are the adversarial example and the geniue
speech, respectively; δ is the generated perturbation noise.
Px and Pδ denote the energies of the intrinsic speech signal
and the perturbation noise, respectively. In general, SNR
compares the level of the intrinsic signal to level of pertur-
bation noise. Clearly, a larger SNR value indicates a cleaner
speech. In addition, the Perceptual Evaluation of Speech
Quality (PESQ) is employed to assess the human perception
quality of the generated adversarial example. This metric
ranges from −0.5 (bad) to 4.5 (excellent).

B. ATTACKING TO THE NETWORK-BASED ASR
The attacking is assumed implemented under white-box set-
tings, where an adversary can exploit the gradient of the target
network for attacking.More specifically, considering the goal
of this work is to implement a targeted attack, we train
our proposed network model for each target on each target
network.3 For a given target label, one can feed the training
data except the ones belonging to the target label into the
generator to obtain perturbation. Then, the constructed adver-
sarial examples are fed into the target network to compute
the loss between the output and the designated target label.
The network parameters of the generator is then updated with
the gradient information that back-propagated from the loss.
Finally, we can obtain a well-trained model to realize the
targeted attack on a ASR network. That is, our trained model
can be used to generate adversarial examples for a given
speech clip, making it misclassfied as the specific target label
with quite high confidence.

The attacking experiments are conducted on two speech
recognition models WideResNet [29] and SampleCNN [30].
These two representative networks are selected as target

3Note that one can also train a unified network to realize targeted attack
on all targets under our proposed network framework.

due to their prevalent usage in practice. WideResNet is a
ResNet-based speech classification neural network, whose
goal is to classify the given speech into different classes.
It is reported that the classification accuracy of WideRes-
Net reaches 96.03% on the SpeechCmd dataset [29]. Sam-
pleCNN is a convolutional-based music genre classification
neural network, aiming to classify the music audio clips into
various genres. It can achieve 92.90% classification accuracy
on the GTZAN dataset [30].

Figure 4 shows the attack success rate results for the
WideResNet on SpeechCmd dataset, and Figure 5 shows
the attack success rate results for SampleCNN on GTZAN
dataset. The results are presented in the form of confusion
matrix. Note that, the diagonal values of the confusion matrix
are all deliberately set as zeros. This is because diagonal
entry indicates the source equals target, which is a cor-
rect classification rather than an intended attack. As shown

FIGURE 4. The confusion matrix of the attack success_rate for the
WideResNet speech classification network [29] on the SpeechCmd
dataset. Our targeted attack enforces a given speech that originally
belongs to the source label misclassified as the target label. The diagonal
entries are all set as zeros because they indicate the source equals target,
which is a correct classification rather than an intended attack.

FIGURE 5. The confusion matrix of the attack success_rate for the
SampleCNN speech classification network [30] on the GTZAN dataset. Our
targeted attack enforces a given speech that originally belongs to the
source label misclassified as the target label. The diagonal entries are all
set as zeros because they indicate the source equals target, which is a
correct classification rather than an intended attack.
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TABLE 1. Comparison the proposed method with Alzantot et al. [9] and SirenAttack [10].

in Figure 4, the attack success_rate of our method against
the WideResNet network generally larger than 90% (the
average attack success_rate is 92.33%). In other words,
the average accuracy of the target classification network
on generated adversarial examples is about 7.67%, which
means that our generated adversarial examples could almost
completely paralyze the WideResNet ASR system. Take the
targeted attack ‘‘no’’→ ‘‘yes’’ as an example. Our generated
adversarial example which sounds like ‘‘no’’ could be mis-
classified as the opposite ‘‘yes’’ byWideResNet ASR system
of high chance 94.44%. This could causes high security
risks for some critical ASR systems, e.g., the ASR equipped
in the automobile. With more careful examination, one can
notice that, on one hand, the attack success_rate’s of the
target ‘‘up’’, ‘‘right’’, ‘‘on’’ and ‘‘off’’ are all exceed 90%
(the average success_rate’s for ‘‘up’’, ‘‘right’’, ‘‘on’’ and
‘‘off’’ are 95.34%, 94.02%, 96.21% and 92.79%, respec-
tively). This implies that these particular words are more
prone to be as the targets when attacking the WideResNet
ASR system. On the other hand, when the source words are
‘‘no’’, ‘‘left’’, and ‘‘stop’’, the average attack success_rate’s
are 95.06%, 94.30% and 94.07%, all exceeding 90%. This
phenomenon suggests that these words would be much easier
to be attacked, which may guide an adversary to exploit
such vulnerable words when implementing an attack. The
similar observations can also be made Figure 5, which rep-
resents the attack success_rate for SampleCNN on GTZAN
dataset, where the maximum attack success_rate reaches
99.66%. In a short summary, the attack success_rate results
verify that our method can effectively attack the target
network-based ASR systems.

To better illustrate the results for attack success rates,
we further present a boxplot to describe the error margin
(note that, attack error rate = 1 – success_rate) on two ASR
networks, i.e., WideResNet and SampleCNN. Please refer
to Figure 6. As one can see, the average error rates for
both networks are below 10%, with a few outliers exceed-
ing 15%. More specifically, the margins of the attack error
rate on WideResNet and SampleCNN are [2.84%, 22.92%]
and [0.34%, 35.52%], respectively. However, the number of
outliers onWideResNet and SampleCNN are 6 and 5, respec-
tively, merely accounting for 6.67% (6/90) and 5.56% (5/90)
of the entire testing cases. Furthermore, the average error rate
for WideResNet is 7.67%, with standard deviation 3.9%; and
on SampleCNN is 9.42%, with standard deviation 6.45%.
This suggests that, despite there exist a few outliers, our

FIGURE 6. Attack error rates(%) of proposed method on WideResNet and
SampleCNN.

proposed method can effectively paralyze the target ASR
models for most cases.

Furthermore, we compare the proposed method with two
recent state-of-the-art works, Alzantot et al. [9] and SirenAt-
tack [10], under two same attacking settings: 1) attacking
WideRestNet model on SpeechCmd dataset, and 2) attack-
ing SampleCNN model on GTZAN dataset. The comparison
results are listed in Table 1, from which one can observe
that our method generally achieves superior performance.
For instance, when attacking WideResNet on SpeechCmd,
the average attack success rate for [9] is 84.96% with the
average SNR 15.72dB, and the average time for generating
an adversarial audio clip is 231.46 seconds; The average
attack success rate for [10] is 89.25% with the average SNR
17.57dB, and the average time for generating an adversarial
audio clip is 368.29 seconds. For comparison, our proposed
method yields attack success rate 92.33% with the average
SNR 20.27dB, and only takes 0.009 seconds for generating
an adversarial example in average.

C. QUALITY EVALUATION OF THE GENERATED
ADVERSARIAL SPEECH EXAMPLE
First, we compute the average SNR and PESQvalues between
the original sample with the generated adversarial example
for each target. The results are listed in Table 2. Specifi-
cally, the average SNR for WideResNet on SpeechCmd is
20.27dB, and the average SNR for SampleCNN on GTZAN
is 26.92dB. For reference, the average SNR values for
WideResNet on SpeechCmd of the recent state-of-the-art
attacking method [9] and [10] is 15.72 and 17.57dB respec-
tively, which is inferior to ours. Not surprisingly, adding

124510 VOLUME 8, 2020



D. Wang et al.: Targeted Speech Adversarial Example Generation With GAN

FIGURE 7. Comparison between the original speech sample with its generated adversarial example counterpart. The two rows show the results for attack
‘‘on’’→ ‘‘go’’ on WideResNet network using our method (top row) and Alzantot et al. (bottom row) [9], respectively. From left to right: (a) and (b) are the
waveforms of the original and the adversarial sample, respectively; (c) and (d) are the spectrograms of the original and adversarial sample, respectively;
(e) is the residual map between the original and adversarial sample, and (f) is 10× enlarged residual map.

TABLE 2. The SNR(dB)/PESQ of the generated adversarial examples.

perturbation to the original speech sample would cause cer-
tain degradation of the quality of adversarial speech sam-
ple. However, by examining the perception quality index
PESQ, we can see that the average PESQ for WideResNet
on SpeechCmd is 3.087, and the average PESQ for Sam-
pleCNN on GTZAN is 3.947, indicating an acceptable audi-
tory perception experience for a common human listener. For
more detailed listening comparison, the readers are suggested
to check the exemplar audio clips provided in our project
website https://winterwindwang.github.io/SpeechAdvGan/.
Moreover, as concrete examples, we visually compare

the original speech and its counterpart adversarial example
in Figure 7. As shown in Figure 7-(a)(b)(c) and (d), the wave-
forms and spectrograms of the original and adversarial exam-
ple are almost identical. To better illustrate the difference,
in Figure 7-(e), we compute and plot the residual (i.e., the per-
turbation) between original speech waveform and the one
of adversarial example. It can be seen that the perturbation
magnitude is quite small when comparing with the original
audio sample. Furthermore, compared with Alzantot et al. [9]
(bottom row), the magnitude of our produced perturbation
is much smaller. With more detailed inspection on the 10×
of the residual map Figure 7-(f), one can notice that, similar
to [9], the adversarial noise will be added throughout entire
speech clip. However, unlike the work [9] uniformly enforc-
ing noise on the all sampling points, our method demonstrates
certain preference at some sampling locations. One possible
explanation for the behavior of our generated perturbation

can be as follows. In our loss function (5) for generator, there
are two regularization terms, i.e., Lhinge and L2. The L2 loss
prefers the perturbation distribute uniformly across the entire
speech with limited energy, while Lhinge loss favors finding
some critical sampling points that could make the ASR sys-
tems misbehave. By trade-off those two losses, the sought
adversarial noise would exhibit the above-mentioned phe-
nomenon. We also would like to point that, this finding is
consistent with the results that reported in previous work [22],
in which the authors also suggested to add perturbation non-
uniformly, in order to obtain an imperceptible adversarial
example.

D. ABLATION STUDY
We have conducted an ablation study on the loss terms L2 and
hinge loss. As a concrete example, we implement the attack
‘‘yes’’ -> ‘‘right’’ under three different loss settings, i.e., L2
loss, hinge loss and L2&Hinge loss. Figure 8 illustrates the
perturbation of the generated adversarial examples. As one
can observe, the perturbation yielded merely with L2 loss is
somewhat uniformly, almost all the sampling points have per-
turbation noise. In contrast, the perturbation yielded merely
with hinge loss is relatively sparse, the perturbations of many
sampling points are close to zero, while some sampling points
have large-magnitude noise, and such points can be referred
to critical points. By jointly employing L2 and hinge loss,
the perturbation trends to trade-off among the two objectives,
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FIGURE 8. Comparison of the generated adversarial perturbation for the attack ‘‘yes’’ -> ‘‘right’’ with three different loss settings: Hinge
loss, L2 loss and L2&Hinge loss. (a) The waveform of the original audio clip ‘‘yes’’; (b) Generated perturbation merely using hinge loss;
(c) Generated perturbation merely using L2 loss; (d) Generated perturbation merely using both hinge loss and L2 loss.

FIGURE 9. Comparison of generator loss and attack success rate for
attack ‘‘yes’’ -> ‘‘right’’ with different loss. As shown, with ‘‘L2&Hinge
loss’’ can achieve higher attack success rate; while another two loss will
lead generator to explode.

i.e., finding critical sampling points while generating limited
perturbation across the entire speech.

In addition, we also would like to note that another impor-
tant motivation of jointly using both L2 and hinge loss is to
stabilize the GAN training process. To see this, we recorded
the training attack success rates for different loss settings for
several hundred iterations. As can be seen from Figure 9,
when merely using L2 loss or hinge loss, the training could
explode or vanish at early stage (less than 1000 iterations).
The maximum success attack rates attained with L2 loss and
hinge loss are 92.19% and 85.16%, but the performance
would significantly drop after 700 iterations. In contrast,
when jointly using L2 loss and hinge loss, the success attack
rate could grow up for a large number of iterations (in our
experiments, at least 2000 iterations), and the maximum suc-
cess attack rate achieved is 96.88%, outperforming usage of
L2 loss or hinge loss alone.

E. RUNNING TIME
One merit of our proposed method is its inference effi-
ciency. This is because our method is network-based. Once
completing the network training, the testing (inference)
is quite fast. In contrast, the work Alzantot et al. [9]
employed genetic algorithm and SirenAttack [10] used par-
ticle swarm optimization, which are all computationally
expensive evolutionary algorithms. Specifically, our method
spends approximately 0.009 seconds (i.e., 9 milliseconds)

to generate one adversarial example (Nvidia Titan X GPU)
on attack WideResNet. For comparison, Alzantot et al. [9]
needs 231.46 seconds (Nvidia Titan X GPU), and SirenAt-
tack [10] reported 368.29 seconds shall be spent (Nvidia
GeForce GTX 1080Ti GPU), to generate a single adversarial
example.

VI. CONCLUSION
In this work, we make the first attempt to employ gener-
ative adversarial networks to generate speech adversarial
examples, which could successfully paralyze network-based
speech classification networks. Our proposed method
implants the target network into a generative adversarial
network framework. The generator utilizes the gradient infor-
mation provided from the target network to generate perturba-
tions that can deceive the target network. Such perturbations
are directly added to the original speech waveform to form
an adversarial example. Meanwhile, the discriminator con-
stantly stimulates the generator to generate the limited per-
turbation, so that the adversarial examples it constitutes can
simultaneously fool the discriminator and attain acceptable
perception quality. Upon completing the training, the well-
trained generator could efficiently generate adversarial sam-
ples for a specified target. Extensive experiments demonstrate
the effectiveness and efficiency of our proposed method. As a
future work, we would like to extend the proposed method to
handle the adversarial generation problem under the setting
that the speech is played over-the-air.
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