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ABSTRACT Integration of large-scale cluster electric vehicles (EVs) and their spatial-temporal transfer
randomness are likely to affect the safety and economic operation of the distribution network. This paper
investigates the spatial-temporal distribution prediction of EVs’ charging load and then evaluates the
reliability of the distribution network penetrated with large-scale cluster EVs. To effectively predict the
charging load, trip chain technology, Monte Carlo method and Markov decision process (MDP) theory
are employed. Moreover, a spatial-temporal transfer model of EVs is established, and based on which,
an EV energy consumption model and a charging load prediction model are constructed with consideration
of temperature, traffic condition and EV owner’s subjective willingness in different scenarios. With the
application of sequential Monte Carlo method, the paper further evaluates distribution network reliability
in various charging scenarios. In the evaluation, indices including per unit value (PUV), fast voltage stability
index (FVSI), loss of load probability (LOLP), system average interruption frequency index (SAIFI), system
average interruption duration index (SAIDI), and expected energy not supplied (EENS) are incorporated.
To validate the proposed prediction model and evaluation method, a series of numerical simulations are
conducted on the basis of taking the traffic-distribution system of a typical city as an example. The result
demonstrates that the proposed spatial-temporal transfer model is more practical in charging load prediction
than the popularly used Dijkstra’s shortest path algorithm. Moreover, high temperature, congestion and the
increment of EV penetration rate will further weaken distribution network reliability.

INDEX TERMS Electric vehicle, reliability evaluation, trip chain technology, Markov decision process,
sequential Monte Carlo method, spatial-temporal transfer randomness.

NOMENCLATURE
ABBREVIATIONS
EV Electric vehicle
MDP Markov decision process
SOC State of charge
TNN Traffic network node
DNN Distribution network node
DCP Dispersion of charging power
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PARAMETERS

µ Mean of the beginning time of each trip
σ Variance of the beginning time of each trip
vi,jmax Maximum speed allowed at the road (i, j)
x EV’s position in the travel path
Dx Distance between the origin of the trip and x
CEV Capacity of EV battery
Umin
sat Minimum value of Usat

Umax
sat Maximum value of Usat

pslow Rated power of slow charging
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pfast Rated power of fast charging
sociinit SOC of EV when arrived at the ith charging

station in a trip
socexp Expected SOC of EV
socthr Preset threshold of EV’s SOC
T ipark Parking time of EV at the ith charging station

in a trip
Dthr Distance that socthr can meet
|| Or operation
NEV Total number of EVs connected to power grid
pnw(t) Charging power for the nth EV at DNN w
PDN (t) Total charging power of EVs in distribution

network
W Matrix composed of Nw rows and 96 columns
PTG(t) Active power provided by the superior power

supply to distribution network at time t
PAL(t) Total power load of distribution network at

time t

I. INTRODUCTION
With a new round of scientific and technological revolution
and industrial transformation, the EV industry is entering a
new stage of accelerated development. Especially in China,
staying committed to sustainable development, the govern-
ment has been making great efforts to speed up innovations
of EV technologies and popularize the EVs [1]. However,
the broadscale running of EVs is likely to result in signif-
icant impacts on both traffic network and distribution net-
work [2], [3]. One key fundamental to ensure the positive
effects of popularizing EVs is to effectively forecast the
spatial-temporal distribution of EVs’ charging load, while
the other is to further evaluate the reliability of distribution
network penetrated with large-scale cluster EVs.

Based on the National Household Travel Survey data
released by the U.S. Department of Transportation, the fitting
curves of departure time, connection time and daily mileage
have been gained and then the EV charging load has been
computed by Monte Carlo method in [4] and [5]. In [6]
and [7], considering the stochastic nature of EVs moving,
the spatial-temporal distribution characteristics of charging
load of various types of EVs in different regions and periods
have been studied. Further, Ul-Haq et al. [8] have explored
the influence of drive intention of EV owners and electricity
price on the spatial-temporal distribution of charging demand.
These studies have established EV charging load model and
analyzed its spatial-temporal distribution characteristics, but
the EV locations and EV charging periods are fixed, which
have failed to reflect the specific EV travel process and
ignored the mobility of EVs.

Taking into account the fact that EVs are coupled with
traffic network and distribution network simultaneously,
Luo et al. [9] and Shao et al. [10] have constructed a fusion
system integrated with ‘‘vehicle-traffic-distribution’’ and
solved the spatial-temporal distribution of EV charging load
by origin-destination matrix. In [11], a dynamic evolution

model with EV spatial-temporal distribution has been pro-
posed on the basis of cell agent theory and Dijkstra method.
It aimed to plan EV trip path and predict EV charging load.
Furthermore, considering traffic energy consumption and
charging price, Chen et al. [12] have proposed a strategy
to optimize EV trip path, which is on the basis of origin-
destination matrix. Moreover, it acquires the charging load
by mixed integer programming. The works above have built
various spatial-temporal transfer models of EVs, which were
based on the shortest path algorithm or aimed to optimize the
EV path without taking into account traffic conditions [13].

Hence, to remedy the problem, trip chain theory has been
employed to simulate EVs’ dynamic driving process. To be
specific, based on random trip chain and MDP theory, an EV
spatial-temporal transfer model has been proposed in [14]
and [15]. With the incorporation of stochastic trip chain,
Tao et al. [16] have computed the spatial-temporal distribu-
tions of charging demands of EVs with the considerations
of different dates and regions. Besides, Markov chain Monte
Carlo method has been used to simulate EV travel and charg-
ing behavior in [17]. Despite the effectiveness and advantages
of the EV travel models presented in [14]–[17], various envi-
ronmental factors, including temperature, traffic congestion
and subjective charging willingness, have not been consid-
ered in the prediction of EVs’ charging load. It should be
noted that on high temperature day, EV users probably turn on
air conditioning, causing at least 20% increment in electricity
consumption [18]. Furthermore, traffic congestion can affect
charging behaviors and lead to the variance of connection
periods [19]. In addition, the subjective charging willingness
of EV users can give birth to extra charging demand [20].
Hence, these factors are of great significance for the predic-
tion accuracy of charging load and shall be carefully studied.

Besides, it has been shown that the uncertain character-
istics of EVs charging would be adverse to power system
reliability [21]. Thus, it is necessary to evaluate distribution
network reliability with the integration of EVs. Specifically,
Kamruzzaman and Benidris [22] have calculated the load
loss of distribution network with the maximum permissible
penetration level of EVs. In [14] and [23], different EV pen-
etration rates have been employed to compute correspond-
ing charging demand. Further, Wang and Infield [17] have
discussed the impact of various EV penetration levels on
the thermal performance of substation feeders. To reduce
the cost of EV aggregators and improve operators’ technical
problems, Clairand et al. [24] have proposed a smart charging
method with the deployment of different EV penetration
levels. It should be noted that the main ingredient among [14],
[17] and [22]–[24] is that they all have investigated the impact
of EV penetration level on power system. However, all of the
above works lack the systematic evaluation in the influence of
the variance of EV penetration rates on distribution network
reliability, which may create a barrier for the safe operation
of distribution system.

Apart from this, Liu et al. [25] have carried out gener-
ation adequacy analysis in light of the connection of EVs.
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In [26] and [27], analytical methods have been proposed, and
the main ingredient is to assess the impact on grid reliability
caused by large-scale EVs integration. With the application
of quasi-dynamic simulation method, Zhang et al. [28] have
studied the influence of EVs penetration and their battery
capacities on the reliability of distribution network. However,
these works have failed to quantitively analyze the impact
of EVs charging load on the distribution network reliability
resulting from high temperature and congestion.

Subsequently, to address the aforementioned problems
with the above considerations, a novel method of EVs charg-
ing load prediction has been proposed. Specifically, the pro-
posed method has taken into account the spatial-temporal
transfer randomness in vehicle-road-grid mode. More-
over, the reliability of distribution network penetrated with
large-scale EVs has been further evaluated. The main contri-
butions of the paper can be summarized as follows:

1) A novel spatial-temporal transfer model: a novel spatial-
temporal transfer model for urban EVs has been proposed.
To be technically precise, the methods of trip chain, Monte
Carlo and MDP for the novel model have been incorporated.
Compared with the popularly used Dijkstra’s shortest path
algorithm, the proposed model has fully reflected the ran-
domness of EV’smovement, which shall make it substantially
more accurate in real applications.

2) A novel method for charging load prediction: Taking
into account temperature, traffic condition and EV owner’s
subjective willingness, a novel method of charging load pre-
diction has been proposed. Particularly, the method can be
employed in different scenarios, including weekday, week-
end, high temperature day and congestion day.

3) The comprehensive study on the effect of different
scenarios of reliability evaluation: to be specific, the impact
of charging load caused by various EV penetration rates, high
temperature and congestion on distribution network reliabil-
ity has been extensively studied. In particular, except for the
reliability indices including PUV, LOLP, SAIFI, SAIDI and
EENS, FVSI has been further proposed to reflect the voltage
stability of distribution network.

The rest of the paper is organized as follows: Section II
describes the EV spatial-temporal transfer model and energy
consumption computation process in detail, so as to calculate
charging load. In Section III, the reliability evaluation of
distribution network in different charging scenarios of EVs
has been fully investigated. Furthermore, the comparison and
analysis of numerical simulation have been conducted in
section IV. Finally, conclusion is drawn in section V.

II. SPATIAL-TEMPORAL TRANSFER MODEL AND
CHARGING LOAD CALCULATION
In this section, the spatial-temporal transfer model is intro-
duced. In traditional transfer models, the shortest path plan-
ning algorithm such as Dijkstra is often applied to simulate
EVs’ driving path. However, due to the reason that EV users
may be affected by multiple environmental factors when
making path decisions, this kind of algorithm may fail to

reflect the randomness of EVs mobility. Therefore, a novel
spatial-temporal transfer model to address the problem has
been proposed. The main ingredient is that the proposed
model has incorporated trip chain, MDP and Monte Carlo
method. On the basis of the proposed model, the EV charging
load prediction is further conducted.

A. EV TRAVEL MODEL
In general, EV travel destinations can be divided into five
categories, home (H), working unit (W), shopping and eating
places (SE), social and entertainment places (SR) and others
(O). It should be emphasized that these locations are also
provided with EV charging services. As shown in Figure 1,
the trip chain mainly consists of three types, including H-W,
H-SR/SE/O and H-W-SR/SE/O. In addition, the composition
and proportion of the trip chains are different on weekdays
and weekends, which are listed in Table 1 as follows [28]:

FIGURE 1. Trip chain structure.

TABLE 1. Trip chain composition and proportion on weekdays and
weekends.

Specifically, the beginning time ts of each trip follows the
normal distribution, with probability density function f(ts)
given as follows [29]:

f (ts) =
1

√
2πσ

exp(−
(ts − µ)2

2σ 2 ). (1)

The value of µ and σ varies with trip chains, and different
scenarios and choices can be obtained in Table 2.

B. SIMULATION OF EV RANDOM PATH BASED ON MDP
The EV travel model has been discussed in the last sub-
section, next the EV path simulation based on MDP is to
be explained. Specifically, since the travel path of EVs can
directly affect the spatial-temporal distribution of charging
load, MDP is employed to simulate the travel path of EVs.
Subsequently, standard MDP model can be described by a
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TABLE 2. The probability distribution of different trip chains.

FIGURE 2. Schematic diagram of the transportation network.

five-element group {T, S, A, P, R} [30]. The application is
illustrated in Figure 2.

Here, the parameters are illustrated as follows:
a) T represents the decision time set in a trip chain. In a

trip with J locations, tj ∈ T is the moment when an EV
has passed j locations or started with the j + 1 location,
j ∈ {0, 1, 2, . . . , J − 1}.

b) S denotes the state space set in a trip chain. For a
transportation network with L locations, sj ∈ S indicates the
EV’s location at tj.

c) A prescribes the action sets in a trip chain, indicating
the possible optional actions made at each decision-making
time. In addition, a policy π means a set of ordered deci-
sions from t0 to tJ−1, which can be expressed by π =
{π (sj), j = 0, 1, 2, . . . , J − 1, sj ∈ S}. In other words,
a policy π can directly represent the specific path in a trip
chain. In Figure 2, the black blocks show where an EV
travels, i.e., the policy π or the EV’s path can be listed as
{L01 ,L

1
M ,L

2
M−1,L

3
1 , . . . ,L

j
m,L

j+1
q , . . . ,LJ−2M−1,L

J−1
M ,LJ1 }, M

is the total number of locations that can be selected when the
EV is at the jth location.
d) It should be noted that a transition probability is needed

to embody the possibility of an EV moving from one TNN
to another one. To be specific, let P denote the set of state
transition probability. When an EV makes a path selection
action at time tj, it will move from current state sj to another
state sj+1. Subsequently, the transition probability between
the two states can be expressed as:

pa
j,j+1
= P(S = sj+1|S = sj ∩ π (sj) = a). (2)

In the simulation of EVs random path, if sj = L jm, the state
transition probability can be derived. To be precise, letGj+1,qj,m

andV j+1,q
j,m denote the distance and speed between location L jm

and L j+1q , respectively, with m and q ∈ {1, 2, . . . ,M}. If the
EV can reach the next location L j+1st with the shortest time,
the transition probability is set to be Pj+1,stj,m , which is bigger
than the other transition probabilities in the same state, here
st ∈ {1, 2, . . . ,M}. Then the selection probability Pj+1,qj,m is

determined according to EV’s driving time between L jm and
L j+1q . The principle is that longer the driving time leads to the
smaller the transition probability, thus the probability can be
expressed as:

P_t j+1,qj,m = 1 M = 1

P_t j+1,qj,m =

M∑
k=1

Gj+1,kj,m

V j+1,kj,m

−
Gj+1,qj,m

V j+1,qj,m

(M − 1)
M∑
k=1

Gj+1,kj,m

V j+1,kj,m

M ≥ 2

P_tmax = max(P_t j+1,kj,m ),

(3)


Pj+1,qj,m = 1 M = 1

Pj+1,qj,m =
(1− Pj+1,stj,m )Gj+1,qj,m

(1− P_tmax)V
j+1,q
j,m

M ≥ 2, q 6= st.
(4)

e) Next, let R denote the reward set in a trip chain, which is
used to evaluate the advantage or disadvantage of EV actions
(i.e. path selection). In this paper, R refers to the driving time
of EVs. For instance, if an EV transfers from L jm to L j+1q

with transition probability Pj+1,qj,m , the action will be evaluated

as reward Rj+1,qj,m , as demonstrated in Figure 2. Note that the
greater the reward is, the shorter the driving time will be.

It is noteworthy that both P and R have a correlation with
driving time. The internal link between P and R is a causal
relationship. To acquire the maximum possible reward, the
transition probability of the pathwith the shortest driving time
is set bigger than that of others. In this way, both transition
randomness and optimal path (i.e. the least time consuming
path) have been taken into consideration in path simulation,
which is more realistic.

C. COMPUTATION MODEL OF ELECTRICITY
CONSUMPTION PER KILOMETER
In the urban traffic system, EVs’ speed is mainly affected by
road capacity and vehicle flow. To simulate the actual EV
speed within a day, a speed-flow model is introduced [31].
Specifically, let vi,jt (x) denote the EV speed at x on a directly
connected road, where i and j are the two ends of the road,
respectively. Here, vi,jt (x) can be computed via (5):

vi,jt (x) =
vi,j
max

1+ χβt
β = α1 + α2 · χ

α3
t

χt =
d i,jt (x)
Tr i,j

,

(5)

where: α1, α2 and α3 are adaptive coefficients; d i,jt (x) is the
traffic flow at x of the road (i, j), and Tri,j represents the traffic
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capacity of the road; χt denotes the saturation degree of a
road at time t , which is the result of d i,jt (x) divided by Tri,j.
It should be noted that χt is directly given out in Table 4 to
simplify the calculation [32].

Traditionally, EV electricity consumption per kilometer at
x, i.e., E i,jt (x), can be obtained via (6) [33].

E i,jt (x) = −0.179+ 0.004vi,jt (x)+
5.492

vi,jt (x)
. (6)

Additionally, the electricity consumption increases with
working air-conditioning because of high and low tempera-
tures. Therefore, incorporate another two parameters, namely
the probability of air-conditioning turning on Kpect and
energy proportion coefficient Ktemp to compute the energy
consumption with different temperatures:{

Kpect = k1U3
+ k2U2

+ k3U + c1
Ktemp = k4(U + c2)2 + c3,

(7)

where: k1 ∼ k4 and c1 ∼ c3 are constant values; U denotes
temperature. In particular, Kpect under different temperatures
is depicted in Figure 3. Moreover, the on-off decision for
air-conditioning is necessary to be discussed. Generate a
random number r submitted to uniform distribution for a
certain temperature. If r < Kpect is satisfied, turn on air-
conditioning. Otherwise, air-conditioning remains off.

FIGURE 3. Kpect under different temperatures.

Consequently, the electricity consumption per kilometer at
x considering the impact of air-conditioning, i.e. Et (x), can
be derived more accurately via (8):

Et (x) =

{
K temp
t E i,jt (x) r ≤ Kpect

E i,jt (x) r > Kpect .
(8)

Subsequently, the actual SOC of EVs at location x can be
further acquired as follows:

socx = (socinit −

∫ Dx
0 Et (x)dx
CEV

)× 100%, (9)

where dx represents an infinitesimal distance.
It should be noted in (9) that the SOC in the form cannot be

directly applied. Hence, in this paper, it is discretized for the

fact that the accuracy of x is 1 km. Subsequently, the equation
in (9) is approximated as follows:

socx = (socinit −

Dx∑
0
Et (x)

CEV
)× 100%. (10)

D. CHARGING DEMAND CONSIDERING EV OWNER’S
SUBJECTIVE WILLINGNESS
Now turn the attention to the charging demand. To start with,
the EV charging behavior is divided into two categories:

1) The SOC of an EV cannot guarantee the remaining
distance, and the EV owner chooses to charge at the current
charging station.

2) The remaining electricity is enough but the EV gets
charged at the end of the trip due to the owner’s anxiety about
the next trip. If the anxiety turns up, the owner will choose to
charge the EV out of subjective willingness. Moreover, there
is a negative correlation between the subjective willingness
of EV owner and EV’s SOC at the end of the finished trip,
i.e., the decrement of the latter will lead to the increment of
the former.

Additionally, the fuzzy theory is adopted and the index
‘‘electricity satisfaction degreeUsat ’’ is employed to describe
the subjective willingness of EV owner to charge as follows:

Usat =
socxCEV
Dnext∑
0
Et (x)

, (11)

where: Dnext denotes the distance of EV’s next trip.
Let Ffuz denote the fuzzy set of charging demand, then

its membership function Ffuz(Usat ) can be expressed as fol-
lows [20]:

Ff uz(Usat )=


1 Usat < Umin

sat

τ Umin
sat
≤ Usat < Umax

sat

0 Uf ≥ Umax
sat

,

(12)

τ = sin[
π

4
(1+

Umin
sat

2
(
Umax
sat
−2Usat+Umin

sat

Umax
sat
−Umin

sat

))]. (13)

In (12), Ffuz(Usat ) indicates the charging probability of
EV owner, which can explicitly quantify the referred anxiety
about the next trip. To be precise, if Usat < Umin

sat , there must
be charging demand for the reason that EV’s remaining elec-
tricity cannot meet the following trip. Conversely, if Usat ≥
Umax
sat , the charging probability decreases to 0 because the EV

has enough power to complete the next trip. Further, if Usat
stays between U min

sat and Umax
sat , the charging probability τ is

determined via (13).
Once charging demand is confirmed, the EV owner needs

to choose charging mode which is mainly divided into slow
charging and fast charging [34]. Considering the charging
cost and battery loss, slow charging is the default option.
However, if the EV’s SOC cannot reach the preset expectation
within the parking time, which is described in (14), fast
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charging will be chosen:

PslowT ip
CEV

+ sociinit < socexp. (14)

Furthermore, when the EV SOC on passage is lower than
socthr , the EV will choose to charge at a certain charging sta-
tion Lmidpar , and the charging time Tchar is further determined.
Specifically, Lmidpar and Tchar are given as follows:

Dthr∑
0

Et (x) = CEV (socinit − socthr )

rc∑
r=1

Dr < Dthr , rc ∈ {1, 2, . . . , J}

Lmidpar = f (rc),

(15)


Dmid =

rc∑
r=1

Dr

TChar =

Dmid∑
0
Et (x)−socinitCEV

(pfast ||pslow)
,

(16)

where:Dthr means the distance that the EV drives from socini
to socthr ;

∑
Dr is the distance between the origin of the trip

and the rth charging station that the EV has passed by; rc is
the number of charging stations that the EV has passed by
when the SOC of EV decreases to socthr ; f (rc) means the
TNN corresponding to rc.

E. IMPACT OF P j+1,st
j,m ON THE SPATIAL-TEMPORAL

DISTRIBUTION OF CHARGING LOAD
In this subsection, the impact of probability Pj+1,stj,m on the
spatial-temporal distribution of charging load will be fully
investigated for the reason that Pj+1,stj,m can change the driv-
ing path results. To embody the dispersion characteristic of
charging load in a whole area l (i.e. residential area (RA),
commercial area (CA) or working area (WA)), index I lDCP is
proposed and can be identified via (17) and (18) as follows:

I lDCP =

T∑
t=1

N l
w∑
wl

(Plw(t)− P
avr
w )2

T∑
t=1

N all
w∑
wl
Plw(t)

, (17)

Pavrw =

T∑
t=1

N all
w∑
wl

(Plw(t))

N all
w T

. (18)

where:N l
w is the total number of TNN in area l; Plw(t) denotes

the charging load of TNN wl ; N all
w means the total number

of TNN in all the three areas; Pavrw is the average charging
load in all the three areas. In general, the essence that I lDCP
can reflect the dispersion characteristecs of charging load is
because I lDCP is determined by the sum of the differences
between Plw(t) and P

avr
w .

F. CHARGING LOAD CALCULATION OF
DISTRIBUTION NETWORK
It is needed to gather the charging load information of
the whole system. Firstly, compile statistics of the spatial-
temporal information of each DNN according to the cou-
pling relationship between TNN and DNN. Subsequently,
the charging load of DNN w can be expressed as:

Pw(t) =
NEV∑
n=1

Pnw(t). (19)

Furthermore, the total charging load of distribution network
PDN (t) can be gained via (20):

PDN (t) =
Nw∑
w=1

pw(t). (20)

For the stopping criterion, let PDN (t) store inW. Then, when
the number of simulations y1 reaches the maximum value Z1
or meets the convergence criterion (21) [35], the simulation
is terminated. Otherwise, repeat charging load prediction.

max{|AWb
n − A

Wb
n−1|} ≤ ζ1. (21)

where: Wb is the bth column vector in matrix W; AWbn
denotes the mean value ofWb in the nth simulation; ζ1 is the
convergence accuracy in the simulation. Figure 4 displays the
charging load calculation in detail.

III. RELIABILITY EVALUATION OF
DISTRIBUTION NETWORK
The charging load prediction has been studied in the previous
section. In summary, the charging load prediction enjoys
high prediction accuracy with consideration of multiple real-
istic environmental factors. In this section, the impact of
predicted charging load on distribution network reliability
will be mainly analyzed. Specifically, factors including EV
penetration rate, temperature and traffic congestion will be
comprehensively taken into account.

A. RELIABILITY EVALUATION INDICES
OF DISTRIBUTION NETWORK
Firstly, a series of indices are adopted to evaluate the dis-
tribution network reliability which is demonstrated as fol-
lows [36], [37]:

1) Per unit value (PUV) is given as follows:

IPUV =
Vi − V ra

i

V ra
i

× 100%, (22)

where: Vi is the real-time voltage at the ith node; V ra
i

denotes the rated voltage at the ith node.
2) Fast voltage stability Index (FVSI) is yielded:

IFVSI =
4(Zij)2Qj
(Vi)2Xij

, (23)

where: Zij and Xij denote the transmission line
impedance and reactance, respectively; Qj means reac-
tive power at the receiving end.
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FIGURE 4. Charging load calculation flowchart.

3) Loss of load probability (LOLP) can be obtained as
follows:

ILOLP =
1

Ttotal

Nb∑
nb=1

T nbbre, (24)

Ttotal =
Nb∑
nb=1

(T nbnorm + T
nb
bre), (25)

where: Nb is the total simulation times; T nbnorm and T nbbre
denote the fault period and normal period, respectively;
Ttotal is the total period of Nb simulations.

4) System average interruption frequency index (SAIFI)
is presented as follows:

ISAIFI =

Nb∑
nb=1

Nw∑
w
Fwnb

NRNw
, (26)

where: NR represents the total years applied for relia-
bility evaluation; Fwnb denotes the interruption time at
DNN w.

5) System average interruption duration index (SAIDI) is
provided:

ISAIDI =

Nb∑
nb=1

Nw∑
w
T nb,wbre

NRNw
. (27)

6) Expected energy not supplied (EENS) is derived:

IEENS =
1
NR

Nb∑
nb=1

Nw∑
w=1

Ewnb , (28)

where: Ewnb is the load loss at DNN w in the nb_th simulation.

B. RELIABILITY EVALUATION PROCESS BASED ON
SEQUENTIAL MONTE CARLO
Next, continue to study the specific process of reliability
evaluation. In the distribution network, each component has
a failure rate λ and repair rate ρ. On the basis of this, employ
sequential Monte Carlo method to sample the component
sequence in the process of ‘‘Normal-Fault-Normal’’. Assume
that the duration of every component in each state follows the
exponential distribution [38]:

H (λ) = λe−λυ1

υ1 =
1
λ
lnϕ1

H (ρ) = ρe−ρυ2

υ2 =
1
ρ
lnϕ2,

(29)

where: ϕ1 and ϕ2 are both random numbers between 0 and 1.
Now it is in the position to discuss the calculation proce-

dure. According to the component state sequence and state
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duration, the operation state of the whole system can be
obtained. After that, the reliability indices are calculated
according to the equations (22)-(28). In general, it takes
5 years as the simulation period to evaluate the reliability
of the system. For convenience, summarize the computation
steps as follows:

1) Input the original data of the system, including the
topological connection relationship of distribution network,
basic load of each node and EVs charging load.

2) Sample the state sequence and state duration of compo-
nents so as to obtain the operation state of the system.

3) Judge whether the system state is in fault or satisfies the
condition listed in (30). If it is, calculate the system power
flow and the optimal load reduction:

PTG(t) < PAL(t). (30)

4) When the number of simulations y2 reaches the maxi-
mum value Z2 or the convergence condition equation (31) is
satisfied, terminate the simulation [35]:

η =

√
I (νZi)

U [νZi]
≤ ζ2, (31)

where: η is a variance coefficient; I (�) denotes variance func-
tion;U [�] prescribes the parameter expectation; νZi means the
estimation of reliability indices after Zi simulations. And ζ2
indicates the convergence accuracy in the simulation.

IV. CASE STUDIES AND ANALYSIS
The method of charging load prediction and reliability eval-
uation of distribution network have been elaborated. In this
section, comprehensive experiments are conducted to verify
the effectiveness of the proposed method. To be technically
precise, take a typical urban traffic network as an example,
the simulation of EV charging load in this area is conducted
and then the corresponding results are discussed. The regions
in the traffic network are mainly divided into RA (including
TNN 1 to TNN 17), WA (including TNN 18 to TNN 22) and
CA (including TNN 23 to TNN 30). The coupling between
TNN and DNN is listed in Table 3. Road saturation in each
period and the road length are displayed in Table 4 and
Table 5, respectively. In addition, the transportation system
consists of 30 TNNs and 52 roads, which all belong to urban

TABLE 3. Coupling between TNN and DNN.

TABLE 4. Road saturation within a day.

TABLE 5. Road length.

FIGURE 5. Topology between traffic network and IEEE 33-bus system.

trunk roads so as to simplify the calculation complexity and
improve simulation efficiency. In regards to the structure of
distribution network, IEEE 33-bus system is adopted, where
6 positions are equipped with sectionalized switches. The
topology between traffic network and distribution network
is illustrated in Figure 5. Each switch is with a failure rate
of 0.0006 and an average repair time of 0.5h. For the feeders,
the failure rate and average repair time are 0.002 and 2h,
respectively.

In the simulation, the total number of EVs in the traffic net-
work is 15000, and all EVs are under the same specification
where CEV is 32 kWh [39]. Additionally, pslow and pfast
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are 7kW/h and 30kW/h, respectively. Furthermore, socinit is
randomly distributed between 0.85 and 1 and is generated
by Monte Carlo method. And Umin

sat and Umax
sat are set to be

1.2 and 2, respectively.

A. SPATIAL-TEMPORAL DISTRIBUTION OF CHARGING
LOAD IN WEEKDAY AND WEEKEND
The charging load on weekday and weekend is conducted
numerically in the simulation, as illustrated in Figure 6. The
results demonstrate that during the weekday, the peak period
in WA mainly drops in 09:00 to 12:00, while that in RA and
CA is from 18:00 to 22:00. In other time slots, the charging
load of all the three areas keeps close to zero. Conversely,
on weekend, charging power inWA stays almost zero and that
of the other two areas performsmore uniformly from 09:00 to
24:00. This temporal distribution is mainly determined by the
structure and trip time of trip chains, as shown in Table 1 and
Table 2. It can be concluded that the peak periods of the three
areas on weekday and weekend are all 1 to 3 hours later
than the beginning time of actual trips. Moreover, the time
difference is mainly caused by transportation between differ-
ent destinations. Additionally, the peak of charging load on
weekday is almost 1.5 times bigger than that on weekend.
This can be attributed to the fact that 30% of the total EVs
on weekend are not used for transportation, which causes no
charging demand for the system.

FIGURE 6. Charging load on weekday and weekend. (a) Weekday.
(b) Weekend.

FIGURE 7. Charging load on high temperature day and congestion day.
(a) High temperature day. (b) Congestion day.

B. SPATIAL-TEMPORAL DISTRIBUTION OF CHARGING
LOAD ON HIGH TEMPERATURE DAY AND
CONGESTION DAY
To investigate the impact of temperature and traffic condition
on charging demand, the charging load on high temperature
day and congestion day is performed and the results are
depicted in Figure 7. It is worthwhile pointing out that the
parameters used for high temperature day and congestion
day are almost the same as those of weekday except tem-
perature and EVs’ driving speed. It can be seen that the
spatial-temporal distribution of charging load on high temper-
ature day is similar to that of weekday. However, the overall
amplitude of the former increases dramatically, whose peak
exceeds 80.59% of the peak of the latter. This is mainly
due to the reason that the electricity is not only used for
transportation, but also for air-conditioning working on high
temperature day. Moreover, compared with the charging load
on weekday, the peak of charging load on congestion day has
increased by 52.32%, and time latency of charging load in
RA and CA has happened. This is because congestion will
result in cluster EVs’ spending more time on transportation
and charging.

C. CHARGING LOAD OF WEEKDAY BY
THE SHORTEST PATH
Next, to clearly show the difference from the charging load by
random path on weekday, the shortest path planning method
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FIGURE 8. Charging load of weekday by the shortest path. (a) With
subjective charging willingness. (b) Without subjective charging
willingness.

(i.e. Dijkstra algorithm) is employed in the experiments and
the results are illustrated in Figure 8(a). It can be obtained
that the spatial-temporal distribution is completely different
from that by MDP. The charging load in CA andWA remains
lower than 100 kW, which is much fewer than that by MDP
illustrated in Figure 6(a). Furthermore, the charging load
mainly centers at RA after 20:00. The overall amplitude has
decreased sharply and the peak of charging load by Dijk-
stra has decreased by 28.4% compared with that by MDP.
The reason lies in the fact that EVs’ electricity consumption
caused by Dijkstra is fewer than that by MDP, which can be
generally satisfied by socinit . Consequently, the frequency of
charging within a day will be cut down. Moreover, only a few
EVs choose to charge in RA when getting back home after
the day’s trip. In addition, to demonstrate the necessity of
subjective charging willingness, Figure 8(b) gives the case for
the charging load without considering this factor. The spatial-
temporal distribution is roughly the same as that considering
subjective charging willingness, charging load in which also
concentrates in RA during the period of 20:00-24:00. How-
ever, it can be seen that a significant drop occurs to the overall
charging load of the former, and the peak load only accounts
for 13.51% of that in the latter. This indicates the fact that
subjective charging willingness plays an important role in
guaranteeing the prediction accuracy of charging load.

D. FAST CHARGING TIMES OF CA IN
DIFFERENT SCENARIOS
Generally, the probability of fast charging in CA is much
bigger than that in RA and WA. This is because Tchar in CA
is too short to satisfy EVs’ power expectation. Moreover, it is
helpful for the operation of charging station to figure out the
fast charging times of CA in different scenarios, as illustrated
in Figure 9. On weekdays, the fast charging times are mainly
from 18:00 to 21:00, due to the entertainment activities after
work. On the contrary, on weekend, fast charging is more
scattered in the period of 14:00 to 19:00.Moreover, the period
distribution of fast charging on high temperature day and
congestion day is similar to that on weekdays. However,
the peak number of the two kinds of days increases dramati-
cally because of increasing charging demand.

FIGURE 9. Fast charging times of CA in different scenarios.

E. STATISTICS OF CHARGING PILES IN
EACH PERIOD OF TNN
To provide further theoretical support for the planning of
charging stations in this area, the number of charging piles
required at all TNNs during the whole weekday is taken
into consideration and shown in Figure 10. It is noteworthy
that the statistics are on the basis of consumption that each
charging pile can only serve one EV during the charging
period of EVs. In other words, the statistics also reflect the
number of charging EVs during the same period. Specifically,
the result shows that the charging piles needed are not evenly
distributed in space. The charging pile number of WA is
almost 3 times more than that of RA and CA, especially
during the period of 08:00 to 16:00. Additionally, this also
explains the reason why the charging load of WA is much
higher than that of RA and CA on weekday, as exhibited
in Figure 6(a). Moreover, the demand for charging piles in
RA and CA performs similarly, both of which center at the
period of 16:00 to 24:00. Nevertheless, it should be noted
that the charging pile demand for RA is heavier than that
of CA.
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FIGURE 10. Statistics of charging piles in each period of TNNs.

F. RELATIONSHIP BETWEEN P j+1,st
j,m AND DCP

To demonstrate the impact of Pj+1,stj,m on the spatial-temporal
distribution of charging load, index DCP is proposed and the
simulated results are shown in Figure 11. With the increment
of Pj+1,stj,m , the overall reduction occurs to the DCPs of RA
andCA, but an opposite trend happens to theDCP ofWA. The
change means that the charging load of RA and CA gradually
transfers to that of WA. However, the variation interval of the
three DCPs keeps within [0, 0.1]. It should be noted that the
sum of the three DCPs equals to 1. Consequently, the length
of the variation interval indicates that the impact of Pj+1,stj,m on
the spatial-temporal distribution of charging load is limited,
which reflects the stability and accuracy of the prediction
method.

FIGURE 11. Relationship between the probability of driving time path
option and the dispersion coefficient of charging load.

G. DISTRIBUTION NETWORK RELIABILITY
INDEX AND LOAD LOSS
In Figure 7, It can be drawn that high temperature and conges-
tion will lead to a higher charging load peak. To further study
the impact of the two factors as well as EV penetration rate on
distribution network reliability, the simulations about differ-
ent EV penetration rates on weekday, high temperature day

and congestion day are conducted. Table 6 gives out related
reliability indices. As demonstrated in Table 6, the increment
of EV penetration rates can bring bigger values of all listed
indices. In addition, each reliability index on both high tem-
perature day and congestion day is much bigger than that of
weekday. This indicates that the increment of charging load
can result in more fragile distribution reliability. To be techni-
cally precise, Figure 12 shows the load loss of each DNN. The
results exhibit that the expanded range of DNNs with load
loss and rapid growth of load loss amplitude emerge along
with the rising EV penetration rates and the occurrences of
high temperature and congestion. Moreover, the DNNs with
load loss drop in the range of DNNs 15 to 17 and DNNs 28 to
30. It should be noted that if these DNNs are equipped with
corresponding emergency power supply, the reliability of the
system will be enhanced, which can provide data support for
the planning of distribution network.

TABLE 6. Reliability indices of distribution network in different charging
scenarios.

FIGURE 12. Load loss of DNNs in different charging scenarios.

H. PUV AND FVSI
To further evaluate the effect of charging load on the voltage
stability of distribution network, indices including PUV and
FVSI have been applied and Figure 13 displays their specific
values at each DNN in different charging scenarios. Due
to page limitation, Figure 13 is omitted here and interested
readers are referred to supplementary material for details.
It needs to be pointed out that FVSI close to 1.0 indicates
that the corresponding DNN is imminent to its instability
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point. In other words, the smaller value of FVSI leads to
the better voltage stability of DNN. It can be obtained from
Figure 13 (a)-(e) that the five charging scenarios share one
commonness that a serious voltage drop happens during the
period of 7:30 to 12:30 and 17:00 to 23:00. In addition,
the DNNs with such serious voltage drop in these periods
mainly concentrate on DNN 6-17 and 26-33. To be more
technically precise, quantitative data containing the average
value and minimum value of PUV is given in Table 7. It can
be known from Table 7 that the increase of EV penetration
rates and the emergence of high temperature and congestion
will lead to the continuous decline of PUV. Similarly, from
Figures 13 (f)-(j) and the average of FVSI in Table 7, it can be
seen that the overall uptrend also occurs to the values of FVSI.
Here, FVSI is accompanied by the rising EV penetration
rates and the appearance of high temperature and congestion.
In general, the decline of PUV and the growth of FVSI in the
five charging scenarios indicate that the voltage stability of
distribution network is debilitated to some extent.

TABLE 7. Data statistics of PUV and FVSI in different charging scenarios.

V. CONCLUSIONS AND RECOMMENDATIONS
In this paper, the spatial-temporal distribution prediction
model of EV charging demand and reliability evaluation
method for distribution network penetrated with EVs have
been presented and analyzed. The prediction model seeks to
simulate the EVs’ spatial-temporal transfer randomness and
path selection probability. It can precisely compute the real-
istic EV charging load. In addition, the reliability evaluation
method enables to measure the impact of charging load in
different charging scenarios with various reliability indices
of distribution network. Designs and case studies have been
conducted and the results can be summarized as follows:

1) Compared with Dijkstra’s shortest path algorithm,
the proposed prediction model fully reflects EVs’ transfer
randomness. Moreover, the charging load prediction results
match reality much more. This is due to the reason that
temperature, traffic condition and EVowner’s subjectivewill-
ingness have been comprehensively considered.

2) The variance of trip chain composition can result in
significant distribution characteristics difference of charging
load between weekdays and weekends. Moreover, both high
temperature and traffic congestion will induce an amplitude
increment of charging load. Additionally, the time latency of
charging load also occurs on congestion day.

3) High temperature, traffic congestion and the rising EV
penetration rates can undermine distribution network reliabil-
ity. This can result in corresponding growth of load loss so as
to guarantee the operation safety of the system.

This paper mainly focuses on the charging load predic-
tion and corresponding reliability evaluation of distribution
network. Under the premise that the number of charging
piles has been determined, there may exist queuing time for
charging. This is obvious in peak hours of charging demand.
Its impact on the distribution of charging demand will be
further simulated and discussed in detail in future work.
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