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ABSTRACT A method to detect solitary internal waves passing through the sensors area in shallow water
and estimate their parameters is proposed in this paper using distributed acoustic sensors. The proposed
detection method is based on cross correlation of the (envelop of) channel impulse responses estimated
from broadband signals transmitted between the sensor nodes with the reference impulse responses in the
absence of solitary internal waves. An iterative sequential parameter estimation method is proposed based
on time domain matching of the measured channel impulse responses with modeled impulse responses.
Simultaneous parameter estimation can be obtained using a global search method such as the matched field
inversion. Simulation studies are carried out using environmental acoustic data collected in the northern
South China Sea. The results show that the proposed method can effectively detect the existence of passing
SIWs, and their parameters can be estimated with reasonable accuracy even under low signal-to-noise ratio
conditions.

INDEX TERMS Solitary internal waves, detection, parameter estimations.

I. INTRODUCTION
Nonlinear internal waves, also known as solitary internal
waves (SIWs), are widely found in the continental shelf area
around the world [1]. As SIWs move toward the coast, they
change the sound speed profile (SSP) in both depth and range,
and significantly impact sound propagation [2]. At the same
time, sudden changes in ocean density and current provoked
by SIWs may pose serious threats to the safe operation of oil
rigs and underwater vehicles [3]. Therefore, it is of practical
importance to develop effective detection and observation
methods of SIWs and study their properties.

With the advances in ocean information acquisition
techniques, observation methods of SIWs have been devel-
oped rapidly in recent years. In 1953, Shand introduced
the remote sensing technique for observing the SIWs [4];
in 1985, Alpers proposed imaging of SIWs using synthetic
aperture radar [5]. Currently, SIWs positions are mainly mon-
itored by remote sensing. Sound speed changes caused by
SIWs have been routinely measured by thermistor strings in
oceanographic and acoustic experiments, which record the
temperature data. An eigenvector analysis for these changes
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was done by Qu et al., in 2019 [6]. A world map of SIWs was
reported based on in-situ sensors, aircraft and satellites [1].

Although the satellite imaging method contributes much
to the observation and study of SIWs, the data are limited by
the satellite trajectory andweather conditions. In comparison,
thermistor (temperature) data are spot measurements, and
usually do not cover a wide area, thus providing limited infor-
mation on the spatial distribution of SIWs. It is envisioned
that in the future, many inexpensive sensors will be available
and be deployed in the ocean as distributed sensor networks.
The acoustic data collected from the network contain infor-
mation about the underwater acoustic channel, and can be
used to detect the existence of SIWs and study their properties
using inverse methods. To achieve this goal, it is essential to
study the effect of SIWs on the acoustic signal propagation.
The readers are referred to the literatures, including work
done by Duda [7], [8], Headrick [9], [10], Yoo [11], and
Yang [11], [12] et al.
In this paper, we develop inverse acoustic methods for

detection and parameter estimation of SIWs. Specifically,
we use acoustic data collected on the distributed sensors to:
1) determine when the SIWs pass by, thereby to predict their
positions at later time, and 2) estimate the parameters of SIWs
based on matched field inversion (MFI) methods. Here the
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sound speed perturbation caused by SIWs is modeled as a
function of SIW parameters, such as position, direction of
travel, characteristic width and depth of solitons, and sep-
arations between them. Owing to the pre-deployed under-
water distributed sensor network, the proposed method has
the ability for long-time continuous observations of SIWs
under nearly all kinds of weather conditions, and can achieve
large-range observations with enough nodes.

The acoustic inverse method requires a model for the SIWs
in order to calculate/estimate the forward propagation acous-
tic field. In this paper, we assume the standard SIW model
with a secant waveform [1], [12]. The SIW model can be
modified given real data.

This paper is organized as follows. Modeling of physical
properties and sound speed perturbation of SIWs is given in
Section II, which also introduces overall design idea of SIW
detection and parameter estimation. Aimed at future ocean
experiments, data processing and performance analyses of
the proposed method are conducted using simulated data
in Section III, for which example environment and SIWs
properties in the northern South China Sea (SCS) are taking
into consideration. A brief summary is given in Section IV.

II. PROBLEM STATEMENT
A. SOUND SPEED PERTUBATION CAUSED BY SIWS
Although SIWs occurring in different continental shelf
regions all around the world differ in intensity and spatial
scales, they have similar properties and can be characterized
by the standard model based on the Korteweg-de Vries (KdV)
equation [1]. The displacement of a single SIW (soliton) is
expressed as [1], [12]:

η (r, z, t) = η0 sech2
[
r − r0 (t)

1

]
W (z) , (1)

where η (r, z, t) denotes the displacement along depth
dimension at time t , depth z, and horizontal position r , η0
is the amplitude of the soliton, r0(t) and 1 denote the center
and characteristic width of the soliton, respectively.W (z) here
represents the first mode depth-function of the internal waves,
and sech(·) is the hyperbolic secant function.

The sound speed perturbation caused by one soliton
depends on its displacement as well as the reference sound
speed (denoted as c0), and can be expressed as [12], [13]:

δc (r, z, t)
c0

= G (z)N 2 (z) η (r, z, t) , (2)

where δc(r, z, t) denotes the sound speed perturbation at time
t and position (r, z), G (z) is a smooth function of depth,
and N (z) is the Brust-Väisälä buoyancy frequency. By com-
bining (1) and (2), one can find the relationship between
physical properties of one soliton and corresponding sound
speed perturbation as:

δc (r, z, t) = c0η0H (z) sech2
[
r − r0 (t)

1

]
, (3)

where H (z) ≡ G(z)N 2(z)W (z).

FIGURE 1. A sketch of the sound speed perturbation caused by SIWs in
shallow water, repeated from Finette et al. in 2003 [15].1

SIWs can appear as a single soliton, a wave packet
consisting of multiple solitons one following the other, and
wave group composed of several wave packets. SIWs nor-
mally propagate in specific direction as planewaves or curved
wave fronts and can have large displacement/amplitude (tens
to hundreds of meters), and normally small range span
(soliton width ∼ 500 m). The SIW waveforms (or parame-
ters) may change with range (due to dispersion and change in
water depth), but can be regarded as unchanged within a short
propagation distance [14]. In a wave packet, the first soliton
usually has the largest amplitude [11]–[14].

For a wave packet of SIWs, the sound speed perturbation is
the superposition of sound speed perturbation caused by each
soliton, as:

δc (r, z, t) = c0H (z)
∑
i

ηi sech2
[
r − ri (t)
1i

]
, (4)

where the subscript i refers to the i-th solition. The sound
speed model of SIWs in (4) will be incorporated in a
numerical propagation model to calculate the acoustic field
propagating through the SIWs.

B. ACOUSTIC METHOD FOR DETECTION OF SIWS
A 3-dimensional view of the SSP in the presence of a packet
of solitons is shown in Fig. 1, repeated from Finette et al.
in 2003 [15]. One observes that the change in sound speed
is: 1) extensive in depth (determined by ηi), up to tens or
even hundreds of meters in the real world, 2) anisotropic in
horizontal distribution - thus its effect on sound propagation
depends on the angle between the acoustic propagation and
soliton wave front, and 3) changing with time as the SIWs
move. Given (4), one can model the changes in the acoustic
field propagating through SIWs, and based on that one can
develop a detection method.

1Reprinted with permission from Horizontal array beamforming in an
azimuthally anisotropic internal wave field. Copyright 2020, Acoustic
Society of America.
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The detection approach is designed basing on the
dual-threshold detection method by selecting a pair of nodes
from the distributed sensor network whose acoustic data are
mostly sensitive to the passage of the SIWs. Since SIWs
appear approximately semi-diurnally, acoustic data collected
on sensors can be approximately seen as unchanged over a
long period of time in the absence of SIWs. This data is
set as the reference data, and can be updated adaptively by
continuous measurement to account for slow changes in the
background SSP. When the SIWs pass by the nodes, one
expects to see drastic changes in the acoustic data which can
be detected by correlating the received data with the reference
data, as shown below in Sec. III. Two correlation methods
are used: 1) correlation for received time series known as the
Bartlett Processor [16],

Corr1 =
|yHy0|2

||y||2||y0||2
, (5)

where y represents the measured acoustic data and y0 is
the reference acoustic data; and 2) correlation of the data
envelopes defined by

Corr2 =
|env(y)Henv(y0)|2

||env(y)||2||env(y0)||2
, (6)

where env(·) defines the data envelope and can be calculated
by applying Hilbert Transform to the data then taking ampli-
tudes. The correlation coefficients, (5) and (6), are normally
high in the absence of SIWs. They drop to a low value
when the SIWs enter the acoustic propagation plane. Thus,
the arrival of SIWs can be detected by setting a reasonable
threshold (the first threshold ThrsL), below which SIWs are
declared as present.

The second threshold ThrsT is the ‘‘number of consecutive
measurements with low correlation’’, which is used to dis-
tinguish SIWs passing through from other instantaneous per-
turbation of sound speed. Note that for a pair of nodes with
fixed time interval of measurement, such as 1 minute, ThrsT
represents processes of SIWs passing through, and the value
of which should be chosen by considering the width and
propagation speed of the SIWs, as discussed in Sec. III.

It has been learned that when the pair of nodes are
more or less aligned with the wave fronts of the SIWs
(see Fig. 1), the acoustic data will be more sensitive to SIW
passing through due to the horizontal focusing/defocusing
of the sound [17]. As the SIWs usually propagate toward
the shore with a relatively known general direction which
can be learned from previous satellites images, one can
design the node topology to facilitate the detection of SIWs.
See Sec. II.D for further discussions.

C. ACOUSTIC METHOD FOR PARAMETER
ESTIMATION OF SIWS
The SIW parameters can be estimated from the received
acoustic data using an inverse method assuming that SIWs
have been detected. To simply the problem, we assume in
this paper that the reference sound speed c0 and buoyancy

frequency or H (z) in (4) are approximately known based on
historical data, while other parameters of SIWs, like 1i, ri,
ηi, intervals between solitons Li, and the exact propagation
angle θ of a SIW are unknown and to be estimated from the
acoustic data.

Equation (4) implies that the parameters of interest
influence the sound speed perturbation δc(r, z, t)
simultaneously, and the sound speed perturbation is
‘‘range-dependent’’. As a result, one can use, for example,
the MFI [16] method to estimate the SIW parameters from
acoustic data received. The acoustic data y is theoretically
described by

y = s(f )h (x)+ n, (7)

where h (x) denotes the channel transfer function, which is a
vector function of x = [ri,1i,ηi,Li,θ ] for the i-th soliton, s(f )
denotes the source level at frequency f , and n is the noise.
One can obtain the estimation value x̂ of x by finding the
maximum value of the cost function B:

B =
|yHh (x) |2

||y||2||h (x) ||2
, (8)

where x represents possible values of x. Here the value of
B are also calculated using normalized Bartlett Processor,
as shown in (8), in which h(·) need to be calculated using
a (numerical) propagation model based on the sound speed
given by (4). The maximum value of B can be searched
by exhaustive calculations, or using optimization algorithms
such as the genetic algorithm. Given measurements of ri,
one can estimate the velocity v, taking into account of the
correction due to the propagation angle θ , as discussed in
Sec. III.D.

Besides, for actual parameter estimation processes, cer-
tain parameters of the solitons, such as ri, 1i, and ηi,
can be measured for individual solitons one by one using
acoustic data measured from node pairs in small meshes.
After that, Li can be estimated by using data from node
pairs with longer spacing (referring to Fig. 2). Here the
detection results of SIWs can be used to map solitons into
node meshes of the distributed sensor network. More details
are shown in numerical analyses for the proposed method
in Sec. III.D.

D. NODE DEPLOYMENT
Proper placements of sensor nodes (in a distributed sensor
network) could have a significant impact on the performance
of the proposed method for SIW detection and parameter
estimation. In a shallow water environment, sensor nodes are
designed to be deployed on the sea bed instead of suspending
in water column, in view of the following: 1) Changes of
sound speed due to seawater temperature, tides, et al. are
smaller in lower part of the water body. 2) Nodes, once
deployed, will not move with waves, which can reduce mea-
surement error of acoustic data. This choice is reasonable if
the sound speed perturbation caused by the SIWs affect a
significant portion of the water column, so that the acoustic
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FIGURE 2. A sketch of node placement for distributed sensor network
with passing SIWs.

fields are significantly perturbed and the various multi-path
arrivals have a chance to interact with the SIWs. The SIWs
of interest in this paper satisfy this condition, as described in
Sec. III.A.

For one by one parameter estimation of individual solitons,
the nodes (along the direction of SIWs propagation) must
not be spaced too far so that the data are affected by only
a single soliton. Large-scale monitoring for SIWs consisting
of several solitons can be achieved by measuring acoustic
data between nodes with longer spacing. An example of node
placement for distributed sensor network are shown in Fig. 2,
where the distances of node pairs deployed on diagonals of
each small square mesh, like node pairs (1, 3) and (2, 4), are
all set to 1 km.

The above concept of detection and parameter estima-
tion of the SIWs using distributed sensors assume that the
data can be transmitted into a central station for processing.
This is not a problem if nodes are connected by cables to
a power station. For remote nodes, data may need to be
preprocessed at individual nodes and the reduced data will
be transmitted to a central node assuming that underwater
acoustic communications and networks have been set up and
operational.

The specific methods of data processing are described in
Sec. III.C – E.

III. SIMULATION ANALYSES
Simulated data are created in this section to evaluate the
practicability of the proposedmethods for future ocean exper-
iments. Here we consider an environment in the northern
SCS, where the existence of SIWs has been quite popular,
and previously collected SSP data and buoyancy frequency
can be used to simulate the acoustic field in the presence of
SIWs.

FIGURE 3. The SSP data measured in the northern South China Sea; the
red line is the average.

A. OCEAN ENVIRONMENT AND SIW PROPERTIES
The simulation assumes an average water depth of 120 m.
The SSP data came from an ocean experiment in May, 2016,
where a total number of 39 sets of SSP data were measured
in 6 days by a conductivity-temperature-depth (CTD) mea-
suring instrument, as shown in Fig. 3. Those data exclude the
effect of SIWs, and the corresponding average value of sound
speed is 1530.5 m/s.

Many observations of SIWs in the northern SCS were
reported [18]–[20], from which one can study the typical
physical properties of SIWs in the area. The amplitude of
solitons in this area is about 40 m [18]; it is much smaller
than that of SIWs between Luzon Strait and Dongsha Islands
(up to 170 m). The width of the solitons varies from hun-
dreds of meters to more than 1 kilometer [19]. The width
of a SIW packet composed of multiple solitons can reach
up to several kilometers along its propagation direction, with
intervals more than 10 kilometers between SIW packets [20].
The average propagation speed of SIWs is about 1.1 m/s [19].

Buoyancy frequencyN (z) determines the depth distribution
of the SIWs or H (z), and hence the sound speed perturbation
induced by SIWs as given in (4). It can be measured using
CTD. A set of buoyancy frequency data measured in the SCS
[21] as well as corresponding values of W (z) and H (z) are
shown in Fig. 4, where we assumed G ∼ 2.4 s2/m2 [12].
Figure 4 shows that the sound speed perturbation caused by
SIWs is mostly notable at tens of meters below the surface,
and can be observed even at depths of more than 100 m.

B. SIMULATION SETTINGS OF OCEAN ENVIRONMENT
AND SIW PARAMETERS
A 3-dimensional acoustic environment is constructed for
acoustic field simulation based on the oceanographic
data of the northern SCS reported above. An average
of SSP based on the experimental data is selected to
be the reference SSP, as shown in Fig. 3. The refer-
ence sound speed is c0 = 1530.5 m/s. For the bot-
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FIGURE 4. (a) Buoyance frequency data [21] and corresponding (b) first
mode depth-function and (c) H(z) in (4) of SIWs in the SCS.

FIGURE 5. Illustration of simulation environment and SIW propagation.

tom, we assume a sound speed of cb = 1610 m/s,
density of ρ = 1.7 g/cm3, and absorption coefficient
α = 0.82 dB/λ as shown in Fig. 5. For acoustic simulations,
9 distributed sensor nodes are deployed on the seabed at a
depth of 119 m and form a square area with a radius of 2 km,
as shown in Fig. 5. Each node can act as a transducer or a
hydrophone in the simulation. Typical source level of 175 dB
can be achieved for a transducer with a center frequency
fc = 2 kHz and bandwidth Bw = 1 kHz.
The 3-dimensional oceanmodel BELLHOP3D [22] is used

in the simulation to generate accurate acoustic data, which
can take the horizontal refraction of sound rays caused by
SIWs into consideration, and thus has a better performance
than 2-dimensional ocean model like RAM or BELLHOP.
Here we just use the channel impulse responses (CIRs) as the
acoustic data measured, generated by signal transmissions of
1kHz bandwidth and 2kHz center frequency, and the impulse
response data are obtained by applying Inverse Fourier
Transform (IFT) to sound pressures calculated by
BELLHOP3D.

TABLE 1. Values of SIW parameters for the reference state.

FIGURE 6. Illustration of sound speed perturbation caused by the SIW.

A model of SIWs is constructed based on (1) and (4),
using the buoyancy frequencyN (z) andH (z) shown in Fig. 4.
The SIW packet contains two solitons moving along the
direction from node 1 to node 9 as shown in Fig. 5. The SIW
properties (parameters) are given in Table. 1. The propagation
angle θ is defined as the angle between propagation direction
of SIWs and the line through node 1 and node 9. For the SIWs
propagating with θ = 0 as shown in Fig. 5, the SSP along the
vertical slice through node 1 and node 9 is shown in Fig. 6.

C. SIW DETECTION
1) CORRELATION OF CIRs WITH THE PASSAGE OF SIWs
We choose a small mesh consisted of node 1, 2, 4, and
5 shown in Fig. 5 for simulation analyses of SIW detection.
As remarked in Sec. II.B, the pair of nodes (2, 4) play an
important role for the detection of the SIWs traveling from
node 1 to node 5, as shown in the top panel of Fig. 7 for one
of the solitons. The CIR from node 2 to node 4 is simulated
as a function of time during the passage of a soliton. Selected
CIRs are shown in the bottom panel of Fig. 7. The CIR in
the absence of any SIW is used as the reference (denoted
as ‘‘refer’’) and shown at the bottom. Other CIRs are shown
for the soliton in different locations, labeled by the distance
measured from the diagonal line (between node 2 and 4) of
the mesh on the y-axis. One observes that the pulse arrival
time and amplitudes change the most when the soliton is at
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FIGURE 7. Top: display of a soliton (wave front) with respect to four
nodes in a mesh. Bottom: CIRs between node 2 and 4 for the soliton at
different positions, labeled by the distance from the center of the mesh
on the y-axis. The CIR denoted by ‘‘refer’’ represents the data in the
absence of the soliton.

the center position between node 1 and 5, marked by ‘‘center’’
on the y-axis. (For comparison with the ‘‘refer’’, the CIRs are
enlarged shown in Fig. 7.) This is because the sound speed
change reaches to the maximum at this position. One finds
that the first pulse in the time series in Fig. 7 corresponds
to the direct refracted ray arrival between node 2 and 4, and
the second and third pulses correspond to rays reflected once
and twice by sea surface, respectively.

The above simulated CIRs can be used to illustrate the
performance of the detection algorithms using correlation
coefficients Corr1 and Corr2 with the ‘‘refer’’ as the refer-
ence. The results are shown in Fig. 8(a). From Fig. 8(a) one
finds that Corr1 and Corr2 are both sensitive to a soliton
passing through. While Corr1 (correlation of CIRs) shows
local fluctuations (due to signal phase change) with the mov-
ing soliton, we choose Corr2 (the correlation of envelops) to
quantify the detection of a soliton (passing by). Two troughs
in Fig. 8(a) represent the arrivals of the first and second
solitons in the SIW wave packet, distinguished by the peak
value of Corr2 between them.
In reality, the soliton wave front may not exactly align with

node 2 and 4 as shown in the top panel of Fig. 7, as the
propagation angle θ of the SIWs are changing with time,
although staying in the general direction. (As stated above,
θ as defined in Fig. 5 equals to 0 in Fig. 7.) The effect of the
direction change is next simulated by changing θ from 0 to
π/12. The results are in Fig. 8(b). One finds that the arrival
of a soliton can also be detected usingCorr2. The arrival time
of the trough will shift based on the geometry and can be
corrected after estimation of the arrival angle. See parameters
estimation in Sec. III.D and III.E.

FIGURE 8. Corr1 and Corr2 as a function of the soliton positions when
(a) θ = 0 and (b) θ = π/12. Thresholds ThrsL and ThrsT for SIW detection
are also shown in this figure. Two minimums in (a) correspond to the
passage of the first and second soliton in the SIW package.

Two thresholds forCorr2 are used to quantify the detection
performance. First, Corr2 has to be less than ThrsL, and
second the time duration that Corr2 < ThrsL has to be
larger than ThrsT . The value of ThrsL may be chosen with
experience, or based on constant false alarm rate (CFAR)
condition as discussed below. For ThrsT , based on Fig. 8(a),
one finds Corr2 is less than 0.6 for 0.5 km traveled by the
soliton. Assuming that the soliton travels with v = 1 m/s,
and then the time for Corr2 < 0.6 is about 500 s. ThrsT
should then be set at half of that value [∼ 4 min, ThrsT_2
in Fig. 8(a)] or less. In data processing, if the duration of the
time when Corr2 < ThrsL is longer than ThrsT , we decide
that a soliton passes through the observation area.

2) DETECTION PERFORMANCE AND THE
INFLUENCE OF THE NOISE
Monte Carlo simulations are used to verify the performance
of the SIW detection approach. Assuming that the param-
eters of the soliton are random and uniformly distributed
over the following windows: 1 ∈ [130, 230] m, θ ∈
[−π/6,π/6], and viw = [0.8, 1.2] m/s, for each realization,
we choose a random set of parameters to simulate the soliton
passing through the simulation area, and use the proposed
method to detect the existence of the soliton. Zero-mean
Gaussian noises are added on measured acoustic data. For
500 times of detection simulations based on randomly gen-
erated values of parameters and with the signal-to-noise ratio
SNR = 0 dB, the probability distribution of the detection
(minimum value) of Corr2 is shown in Fig. 9(a), when SIWs
are present versus the absence of SIWs. Here for a probability
of false alarm Pfa = 0.01 for the case without a soliton

124228 VOLUME 8, 2020



T. Wang et al.: Detection and Parameter Estimation of SIWs Using Distributed Acoustic Sensors

FIGURE 9. (a) Probability distribution of detection (minimum of Corr2)
with and without SIWs within the mesh, and (b) Probability of
Corr2 < ThrsL for different SIW positions for 500 times of detection
simulations. Here CFAR Pfa= 0.01, SNR = 0 dB, 1∈ [130,230]m,
θ∈ [−π/6,π/6], and viw= [0.8,1.2]m/s for both (a) and (b).

(based on the shadow area under blue dash line), one finds
ThrsL = 0.5429. Note that the probability distribution of
detection of Corr2 is calculated by using the measurement
values of Corr2 during the whole passage of SIWs. The
probability of Corr2 <ThrsL, given a CFAR of Pfa = 0.01
for example, is shown in Fig. 9(b) for all measurement loca-
tions along the line of node 1 to 5 relative to the center
position, with the parameters varying as given above and
SNR = 0 dB. Fig. 9(b) implies that while a soliton with
like θ = π/12 may not be detected when it is at ‘‘center’’
position, it can be detected at the position of 0.5 km after
‘‘center’’, as shown in Fig. 8(b). In other words, Fig. 9(b)
corresponds to a probability-based combination of Fig. 8(a)
and Fig. 8(b) (andCorr2 with other values of θ ), as a function
of SIWpositions. Note that both Fig. 9(a) and Fig. 9(b) are not
the final probability of detection Pd , without consideration of
ThrsT .
CFAR detection performance under different SNRs and

ThrsT are shown in Fig. 10(a) using theMonte Carlo method.
With signal transmitted every minute, for ThrsT = 1, 2,
and 3 min, one has the number of continuous CIRs using
for detection NCIR = 1, 2, and 3 respectively. The Pd for
CFARwith Pd = 1e−4, 1e−3, and 1e−2 is shown by the black
dashed line for NCIR = 1, blue dashed line for NCIR = 2,
and red solid line for NCIR = 3 in Fig.10(a). As one
can see from Fig. 10(a), for situations with relatively low
SNR (e.g., −8 dB) and a constant value of Pfa (e.g., 1e−3),
the detection performance using the dual-threshold detection
method is significantly better than using the single-threshold
one, and a reasonable larger value of ThrsT may effectively
improve Pd . This improvement of performance is mainly

FIGURE 10. (a) CFAR detection performance and (b) the value of ThrsL
with NCIR= 1,2, and 3, and with various Pfa= 1e−4,1e−3, and 1e−2.

because Pfa,NCIR=1 [i.e., the shadow area under blue dash line
in Fig. 9(a)] increases (< 1) with increasing NCIR as shown
below [23]:

Pfa,N=1 = (Pfa)1/NCIR . (9)

Thus, for CFAR with a given Pfa, the ThrsL will increase
with increasing NCIR as shown in Fig. 10(b). Note that ThrsL
with different Pfa and ThrsT may sometimes be overlapped
according to (9), like Pfa = 1e−2 and NCIR = 2 versus
Pfa = 1e−3 and NCIR = 3.
What’s more, one also finds from Fig. 10(a) that for

situations with SNR no less than about −4 dB, Pd of the
dual-threshold detection method approaches 1 even with a
relatively low value of Pfa; the proposed method is expected
to work well. For SNR less than ∼ −7 dB, as Pd decreases,
the proposedmethodmay have difficulties for effective detec-
tion. It is noted that for adjacent node pairs of distributed
sensor network shown in Fig. 2, with a node distance of 1 km,
the SNR of measured acoustic data is expected to be greater
than 5 dB given a reasonable source level, e.g., 175 dB.
In other words, the proposed method is expected to work well
in real ocean environments.

3) THE INFLUENCE OF THE SOLITON AMPLITUDE
Next, we study the detection performance for solitons of
different amplitudes. For η0 = 40 m, Fig. 8(a) shows that
the troughs of Corr2 as the solitons passing by can be used
to confirm detection of solitons in the observation area. This
applies to solitons with larger amplitudes. The question is the
detection for solitons with smaller amplitudes. To answer this
question, we plot in Fig. 11(a) that the Corr2 as a function
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FIGURE 11. (a) Corr2 as a function of the soliton positions for various
soliton amplitudes of η0 in meters. (b) Probability of detection Pd for
Pfa= 0.01 and NCIR= 3.

of the soliton positions for values of η0 varying from 40 m
to 5 m. One finds the values of Corr2 for η0 ≥ 20 m still
meet the detection criteria of the two thresholds mentioned
above, whereas for smaller values of η0, e.g., 10 m or 5 m,
the values of Corr2 do not. The corresponding Pd is shown
in Fig. 11(b) with Pfa = 0.01 and NCIR = 3. Note that for
cases with small values of η0, one can possibly use a larger
ThrsL and a small value of ThrsT (NCIR) to improve the Pd
at the expense of a larger Pfa. The choice of values is case
dependent and will not be pursued here. Results imply that
the proposed detection method may not work well with a very
low η0, especially under low-SNR situations.

D. SINGLE-PARAMETER ESTIMATION
With a proper design of node topology, one can ensure each
mesh/grid of the node network contains no more than one
soliton, then the properties of individual solitons (within the
SIW package) can be studied one by one after the first soliton
has been detected. For example, referring to Fig. 5 with θ= 0,
when the first soliton is detected by a node pair (2, 4), it is
in the mesh surrounded by node 1, 2, 4, and 5, as shown in
Fig. 12(a). When the first soliton is detected by node pair
(6, 8), the first soliton is in the mesh surrounded by node 5,
6, 8, and 9, and the second soliton is in the mesh defined by
node 1, 2, 4, and 5, as shown in Fig. 12(b). Consequently,
the parameters of both solitons can be estimated one by one
as illustrated below.

In this section, we use the MFI method, given in (8), to
estimate the soliton parameters sequentially and iteratively.
The five parameters to be estimated are: position r0, charac-
teristic width 11, amplitude η1, propagation angle θ of the

FIGURE 12. SIW positions when (a) node pair (2,4) and (b) node pair (6,8)
firstly detects the presence of the SIW.

first soliton, and the interval L between solitons in the order
specified. The data field of MFI method are CIRs measured
from acoustic transmissions from node 1 to node 2, 4 and
5 and from node 2 to 4 for a soliton at r0= 0.337 km, with
11 = 186.97 m, η1 = 38.78 m, and θ = −π/16.36. In the
analyses below we use initial values for11, η1, θ and L given
in Table 1, based on the historical data.

1) ESTIMATION OF THE SOLITON POSITION
For estimating the position r0, we assume that other
parameters like 11, η1 and θ are fixed and given initially by
the historical values in Table 1 in the first iteration, and later
determined by previous estimation in the following iteration.
Using the example discussed above, when the soliton moves
along the direction from node 1 to node 9 in Fig. 5, the
algorithm is designed to estimate r0 as a function of time in
post processing using data collected on node 1, 2, 4, and 5.
For convenience, we draw a line from node 1 to 5, from
0.5 km before node 1 to 0.5 km after node 5. The location
of the soliton is designated by the position referenced to the
beginning of this line; 100 locations are selected uniformly
separated by 20 m. For each soliton location, we calculate
the CIRs from node 1 to node 2, 4 and 5 as well as from node
2 to 4 using BELLHOP3D (with the other soliton parameters
fixed as mentioned above) and stored them as the replica
field. The replica field is then correlated with the data field
using (8). The position where the cost function B is maximum
is the estimated position of the soliton.

In Fig. 13, we show, for example, the CIRs from node
1 to 2. The soliton position is denoted by the position dis-
played on the y-axis, where ‘‘refer’’ is the CIR in the absence
of SIW. One observes in Fig. 13 the clear change in the CIRs
as the soliton moves. This is the reason why node pair (1, 2)
is included in the position estimation.

The result of position search is shown in Fig. 14(a), which
plots the value of the cost function B as a function of search
range for three cases of SNRs: SNR = 10, 5, and 0 dB. The
data is from a soliton at position of r0,real = 0.337 km,
denoted as the true position. From the peak of the cost
function, one estimates the position to be r0,out = 0.34 km.
The result shows that the cost function B is relatively sen-
sitive to the change of SIW positions, and the estimated
position matches well with the true value. In other words,
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FIGURE 13. Change of CIRs with SIW position index of node pair (1,2).

FIGURE 14. Cost function as a function of (a) soliton position, (b) soliton
characteristic width, (c) soliton amplitude, (d) SIW propagation angle, and
(e) interval between solitons. Ranges 0 and 1 correspond to positions of
node 1 and 5.

the proposed method can effectively estimate the position
of SIWs.

2) ESTIMATION OF THE CHARACTERISTIC
WIDTH OF THE SOLITON
The same data, CIRs for a soliton at r0 = 0.337 km,
can be used to estimate the characteristic width of the soli-
ton 11. The soliton position r0 has been estimated to be
r0,out = 0.34 km from III.C.1. For each value of11 changing
from 130 m to 230 m, we calculate the CIRs in the same way
as SIW position estimation (with η1 and θ fixed as mentioned
above) and stored them as the replica field. The replica field is
next correlatedwith the data field using (8). The characteristic

width where the cost function B is maximum is the estimated
characteristic width of the soliton.

The result of characteristic width estimation is shown
in Fig. 14(b) for SNR = 10, 5, and 0 dB. The data is generated
for a soliton with characteristic width 11,real = 186.97 m.
As shown in Fig. 14(b), the estimated characteristic width is
11,out = 187 m, which is matched with the real value of11.
One can use the same method to estimate 12 of the second
soliton, based on the acoustic data collected when the second
soliton enters the same mesh.

3) ESTIMATION OF THE SOLITON AMPLITUDE
The same data is next used to estimate the amplitude η1 of the
soliton. The soliton position r0 and characteristic width 11
have been previously estimated. For each value of η1 varying
from 30 m to 50 m, the replica field is calculated in the same
way as SIW position estimation, and correlated with the data
field using (8). The amplitude where the cost function B is
maximum is the estimated amplitude of the soliton. The result
is shown in Fig. 14(c). The true value is η1,real = 38.78 m,
and the estimation result is ηout = 38.8 m for all SNR = 10,
5, and 0 dB.

4) ESTIMATION OF THE SOLITON PROPAGATION ANGLE
After the value of r0, 11, and η1 have been estimated,
the same data and method are then applied to estimate the
propagation angle θ , with searching value varying from−π/6
to π/6. The estimation result is shown in Fig. 14(d), where
the true value is θreal ≈ −π/16.36, and the estimated value
is θout= −11π/180 for all SNR = 10, 5, and 0 dB.
It can be seen from Fig. 14(b), (c), and (d) that the cost

function B also has enough sensitivity for the parameters of
11, η1 and θ , thus one can obtain accurate estimation results
by the proposed method. What’s more, the above process can
be repeated iteratively to improve the estimation. Iteration
becomes important when the true values of SIW parameters
are different from the historic values as assumed above. As
long as the true values are not significantly different from
the historical values, the iteration process is expected to
converge.

5) ESTIMATION OF THE INTERVAL BETWEEN SOLITONS
Next, we estimate the interval L between two solitons.
Because the historical value of the average propagation
speed v of the SIW does not change much, the simplest
method is that based on soliton detection as shown by Corr2
in Fig. 8(a), where the two troughs correspond to the arrival of
the first and second soliton detected by nodes 2 and 4. Denot-
ing time separation between the two troughs as τ , one finds
L = τv cos θ . This allows an approximate estimation of L.
Another method of estimating L (which may be more

precise) uses the MFI method given in (8). To achieve this
goal, we need to use acoustic data measured over a larger area
containing two solitons. For simulation analyses, we assume
the geometry is as shown in Fig. 12(b). After the other param-
eters r0,1i, ηi, and θ have been determined, we can estimate
the value of L from 645 to 1075 m by using the CIRs from
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FIGURE 15. MFI results for multi-parameter integrated estimation of SIWs
with SNR= 5dB. The red solid lines represent the estimation results, and
the green dashed lines are the true values. (d) Values of 1− B as a
function of the number of iterations.

node 1 to node 3, 7, and 9. Matching the replica field with
the data for Lreal = 729.06 m, the cost function is shown
in Fig. 14(e), yielding an estimated value of Lout = 731 m.
The result shows that the proposed method also works well
for this situation. After that, the average value of v can then
be calculated more precisely as v = L/(τ × cos θ).
Finally, one observes in Fig. 14 while the peak values of

the cost function B decrease with decreasing SNR, the various
parameters are still correctly estimated for SNR as low as
0 dB. This assumes that the iteration method converges so
there is no significantmismatch (due to incorrect initial value)
for any of the parameters. The lowest SNR required has to be
determined from real data.

E. MULTI-PARAMETER ESTIMATION
Another approach to parameter estimation is to estimate
the parameters of the SIW simultaneously using the inverse
method, such as MFI. In this case, x = [r0,1i, θ ] is a vector
of parameters in (8), while ηi of each soliton is assumed
to be known in advance for simplicity. The search for the
maximumof the cost functionB is amulti-dimensional search
problem and requires a global optimization algorithm. Here,
we use the Differential Evolution (DE) algorithm [24], which
is one implementation of the genetic algorithm. To use the
DE algorithm, one first needs to define the range of values
for each parameter to be searched, as the result may vary
depending on the window of search. The range of search
used here is as follows: r0 = [0.15, 0.85] km from node 1,
11 ∈ [130, 230] m, and θ ∈ [−π/6,π/6].

To run the DE algorithm, we use a population size
NDE = 40, mutation rate CR = 0.7, scaling factor of
mutation F = 0.8, iteration times = 80, and SNR = 5 dB,
then apply the algorithm to the same data as mentioned
above with r0,real = 0.338 km, 11,real = 186.97 m,
and , θreal ≈ −π/16.36.We show the scatter plots of the three
parameters (marginal distributions) for one search during the
DE iterations in Fig. 15. The mean values of the individuals

in the last iteration are adopted as the final estimation results
[red solid lines in Fig. 15(a)-(c)], where r0,out = 0.344 km,
11,out = 187.08 m, and , θout ≈ −π/16.72; and the esti-
mated parameters agree with the true values (greed dashed
lines). Fig. 15 also displays the sensitivities of these parame-
ters during the iterations, and shows that the DE algorithm is
effective for multi-parameter estimation of the SIWs.

The interval between solitons L can be estimated after
estimating the parameters of each soliton, as described in
Sec. III.D. Similar with the single-parameter estimation
method discussed in Sec. III.D, the multi-parameter estima-
tion method also work well with a reasonable noise level,
like SNR = 5 dB, which is easy to achieve given a reason-
able source level like 175dB. A further idea is to estimate
the parameters of multiple solitons r0, ηi, 1i, θ , L, and v
simultaneously using the acoustic tomographic method. This
is workable in theory, but is computationally complex.

IV. SUMMARY AND DISCUSSION
In shallow water, the sound speed perturbation caused by
SIWs can be modeled given SIW parameters assuming the
conventional model for SIWs. Conversely, one can estimate
the SIW parameters from the acoustic data using inverse
methods. While direct observation of SIWs is possible using
satellite and thermistor strings, they each have their own
shortcomings as mentioned in the introduction. In this paper,
we propose acoustic remote sensing methods using a dis-
tributed sensor network, which has a potential to providewide
area and full-timemonitoring of the SIWs passing through the
area. We developed a correlation-based method for detection
of SIWs, as well as a time domain matching method for
iterative sequential single parameter estimation and matched
field inversion method for simultaneous multiple parameter
inversion.

We conduct simulation analyses to validate the proposed
methods. We use real oceanographic data collected in the
northern South China Sea to study the feasibility of
the proposed scheme, for future experimental planning.
The simulation results show the methods can effectively
detect the existence of SIWs and estimate SIW parameters,
even under low signal-to-noise conditions or with relatively
small amplitude of the soliton.

In real shallow water environments, other oceanographic
related processes may also be present which may affect the
detection and estimation of the SIWs as proposed, such as
eddies, diffused internal waves, rough surfaces waves, fish
school, etc. Except for the case of typhoons, these processes
are expected to produce either a small perturbation on the
CIRs or a change of CIRs on a time scale much slower
than that induced by SIWs and will likely not significantly
affect the proposed methods. See the Appendix for detailed
discussions.

For practical applications, the iterative sequential sin-
gle parameter search algorithm seems to be more suitable
for in-buoy processing. It is only possible with distributed
sensors.
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FIGURE 16. (a) The SSP data measured in the northern SCS using a CTD
array from 18:00 to 24:00 in May 30, 2016. (b) Corr2 with and without the
SIW when SSP changed and y0 updated with time, the red dashed line is
the typical value of ThrsL, and the arrows shows the time when y0 is
updated.

APPENDIX
EFFECTS OF OTHER OCEANOGRPAHIC RELATED
PROCESSES ON THE PROPOSED METHODS
A. THE INFLUENCE OF THE CHANGES IN THE
BACKGROUND SSP ON THE CIRs
Similar to SIWs, diffused internal waves may also be present
in the shallow water, but the change in SSP induced by them
are orders of magnitudes smaller compared with the SIWs.
SSP in shallow water also changes with time on the scale of
hours and longer time periods. An example of measured SSP
data collected in the northern SCS on May 30, 2016 (before
the SIWs arrived) from 18:00 to 24:00 is shown in Fig. 16(a)
[25]. The data covered depth from 13m to 80m; that above
13 m and below 80m are extrapolated based on historical
data. One observes the small and slow change of the SSP as
discussed above. Many experiments [9], [10], [14] conducted
in shallow water have shown that SIWs can be detected
without being affected by these processes. We will use this
data to show that the change of the correlation coefficient due
to the SSP changes are small and will not pass the threshold
for the detection of SIWs.

Assuming that the SSP between node 2 and 4 in
Fig. 5 changes with time as shown in Fig. 16(a), we calculate
the Corr2 as a function of time t based on (6), with y the
measured CIR at t and y0 the reference CIR, which is the aver-
aged CIR from measurements in the past 30 minutes (before
the SIWs arrive). The result of Corr2 from 19:00 to 22:00 is
shown by the blue solid line in Fig. 16(b), assuming that y0
is updated on the hour and on the half hour of each hour.
In comparison, we next assume that a SIW consisted of two
solitons passing through following the geometry shown in
the top panel of Fig. 7, with physical properties (parameters)
given in Table 1. By adding the SSP change due to the SIW
on the SSP data in Fig. 16(a) based on (4), we calculate the

Corr2 as a function of time, as shown by pink dashed line in
Fig. 16(b). (One finds that theCorr2 is almost the same as that
shown in Fig. 8 since SSP change due to the SIW is dominant.
Note that y0 is not updated at 20:30 for the case with the
SIW passing through.) As discussed in Sec. III.C (Fig. 8),
a typical value of the first threshold ThrsL is 0.6, and SIWs
are declared as present when Corr2 < ThrsL. The above
results show that the small and slow changes in the SSP does
not trigger the detection of the SIWs, i.e., Corr2 > ThrsL
because the amount of change in Corr2 is ∼ 0.2 or less.
In contrast, the amount of change in Corr2 is on the order
of 0.8 when the SIWs pass through, which is unmistakably
large and will trigger the detection. Similar conclusions were
drawn in a recent paper by Ren et al. in 2010 [26], in which
the correlation is calculated using measured sound pressure
data at 10 km from the source with and without SIWs present.

The above results can be understood because the fractional
change in SSP is about 0.074% in the absence of SIWs
compared with 0.446% in the presence of SIWs; the latter is
about 6 times larger than the former. In addition, the changes
in SSP due to SIWs extend much deeper into the water
column and thus affect more the sound propagation.

B. THE INFLUENCE OF ROUGH SURFACE
WAVES ON THE CIRs
Rough surfaces caused by tides, wind, etc. are random in
time and space. They affect the sound propagation by reflect-
ing/scattering the sound, causing attenuation and adding
small perturbations to forwarding propagating sound [27].
The effect on the correlation of the CIRs, Corr2, can be
illustrated using the BELLHOP3D model with a rough ocean
surface option. Let the ocean surface be modeled as the
superposition of several cosine waves [27], [28]:

ξ (r) =
Ncos∑
n=1

an cos(2πr/Ln + εn), (10)

where ξ (r) is the displacement of the ocean surface at range
r , Ncos is the total number of cosine waves used, an,Ln, εn
are the amplitude, wave length, and phase of the n-th cosine
waves for n = 1, 2, · · · ,Ncos, respectively. In the simulations
to follow, we assume Ncos = 3, 4 or 5 with εn ∼ U (0, 2π)
[27] and Ln ∼ U (50, 150)m for each n in (10), where U(·)
represents the uniform distribution. The wave amplitude an
is positive for each n, and obeys the Rayleigh distribution
[28] with a scale parameter σa. We assume σa = 0.46 so
that the averaged wave height (vertical distance between the
peak and the trough) Hw of ξ (r) is approximately equal to
the annual averaged wave height in the northern SCS, as
Hw ≈ 1.48 m [29], [30]. A realization of the surface fluctua-
tion ξ (r) calculated from (10) between node 2 and 4 is shown
in Fig. 17(a).

To estimate the change in Corr2 with and without surface
waves, let y in (6) be the CIRs with surface waves, and y0
be that without surface waves. We assume the SSP between
node 2 and 4 is constant and equal to the average value shown
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FIGURE 17. (a) A realization of the surface fluctuation between node
2 and 4. (b) Corr2 for 50 sets of randomly generated surface fluctuations.

in Fig. 3, then y0 without the passage of SIWs is the same
with the ‘‘refer’’ state shown in Fig. 7, and the corresponding
value ofCorr2 is 0.925 for the surface fluctuation ξ (r) shown
in Fig. 13(a). We further generate 50 realizations of ξ (r)
with random values of Ncos, an, Ln, and εn sampled from the
distributions mentioned above. The calculated Corr2 in the
presence of surface waves is shown in Fig. 17(b). One finds
that Corr2 remains above 0.8 and is definitely larger than
ThrsL for each set of ξ (r), implying that rough surface waves
will likely not impact the performance of proposed methods
for SIWs detection.

C. THE INFLUENCE OF FISH SCHOOLS ON CIRs
The passage of fish schools will cause the scattering of sound
but their effects onCorr2 is small due to their small scattering
strengths as reported in the literature. The sound pressure
field Pout in the presence of a fish school can be expressed
as [31]:

Pout (f ) = Pori(f )+ Pfish(f ) (11)

where Pori = sGs,r is the sound pressure without the fish
school, Pfish = sGs,fishGfish,rTS is the sound pressure scat-
tered from the fish school, s is the source level, TS is the
target strength of the fish school, Gs,r , Gs,fish, and Gfish,r are
the Green Function from the source to the receiver, from the
source to the fish school, and from the fish school to the
receiver, respectively, and f is the frequency. Feuillade et al.
proposes a low-frequency acoustic scattering model for small
fish schools in 1996 [32]. One finds from their work that the
target strength TS is about −20 dB for a small group of 13
swimbladder-bearing fish at∼ 2kHz. Coupled with two ways
transmission loss from the source to the fish and then to the
receiver, one finds that Pfish in (11) is ∼ 60 dB lower than
Pori for frequencies near 2 kHz. The corresponding change
in CIRs due to the fish schools is minimal (< 5%) and not

expected to affect the detection of SIWs using the proposed
method.

In summary, the above simulations ‘‘confirm’’ that the
impacts of the passage of SIWs on the correlation of mea-
sured acoustic data,Corr2, is much larger than that caused by
the random changes of SSP, (ordinary) rough surface waves,
and the passage of fish schools, to allow detection of SIWs as
previous experimental results have suggested.
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