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ABSTRACT The cloud ecosystem provides transformative advantages that allow elastically offering
on-demand services. However, it is not always possible to provide adequate services to all customers and
thus to fulfill service level agreements (SLA). To enable compliance with these agreements, service providers
leave the customer responsible for determining the service settings and expect that the client knows what to
do. Some studies address SLA compliance, but the existing works do not adequately address the problem of
resource allocation according to clients’ needs since they consider a limited set of objectives to be analyzed
and fulfilled. In previous work, we have already addressed the problem considering a single-objective
approach. In that work, we identified that the problem has a multi-objective characteristic since several
attributes simultaneously influence the SLA agreement, which can lead to conflicts. This paper proposes
a multi-objective combinatorial optimization approach for computational resources provisioning, seeking
to optimize the efficient use of the infrastructure and provide the client with greater flexibility in contract
closure.

INDEX TERMS Cloud computing ecosystem, metaheuristics, multi-objective optimized, SLA, QoS.

I. INTRODUCTION
The paradigm of cloud computing has brought a major
change in the context of how computing resources are cur-
rently offered. Resources are offered on demand, allowing
to achieve greater flexibility and scalability to meet the
user’s needs. Companies, universities and governments have
chosen to use cloud resources in order to reduce costs usu-
ally incurred with in-house infrastructures. Specific popular
features for business owners are the combination of low
investment in infrastructure and low cost of operation paid
for high scalability and ease of access [37].

The use of the cloud ecosystem has emerged as a Google
proposal for all types of Internet users (individuals and
companies) [8]. A cloud ecosystem can be defined as a
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complex system that is composed of independent components
that enable cloud services. This ecosystem is composed of
living and nonliving objects, e.g., hardware, software, cloud
customers, cloud engineers, integrators, and partners, and all
of theses components are connected and work together [23].

Examples of available services in the cloud ecosys-
tem are Google Docs,1 Amazon Elastic Compute Cloud
and Simple Storage Services,2 Microsoft Windows Azure
Platform,3 IBM Smart Business,4 SalesForce.com,5 among
others. These address both application specific as well as
more fundamental compute resource provision. The lack
of overarching standards for the cloud computing model is

1http://docs.google.com
2http://aws.amazon.com/ec2
3http://www.windowsazure.com
4http://www.ibm.com/cloud
5http://www.salesforce.com
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the subject of ongoing discussion. Currently, each service
provider builds their cloud computing services according to
their own policy. So despite the many advantages, the cloud
ecosystem still has some problems mainly related to data
confidentiality, scalability, security, and SLA management
[29], [35].

The providers usually offer services which can be grouped
into three main categories: Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service
(SaaS). Through these basic services, each provider defines
its business model by organising a computing environment,
where virtual components are offered to its clients. These
components appear within an interface that implements the
computing platform. Although we focus on the IaaS model,
the developed methodology could also be apply to the others
models.

For a better use and distribution of computing resources,
techniques such as virtualization are applied. This technique
consists of allowing multiple operating systems to exist on
the same physical host, keeping a strong logical isolation
between virtualized components [20], and provides better
management and fault tolerance [20] as additional advan-
tages. The management needs to consider optimization of
computing resources for providers and also looks at the needs
of the clients that ‘‘consume’’ such resources.

However, it is necessary to verify the impact generated in
the system during the commitment and provision of compu-
tational resources to clients. The system should achieve the
performance contracted by a client, but might also increase
the cost to be paid. Both the impact of the changes made
and the response to the customer must be provided quickly.
The big challenge is to quantify resources to meet customer
needs as accurately and tightly at possible in order to meet the
Quality of Service (QoS) in the SLA while minimizing the
use of the cloud resources. The former is required to satisfy
the customer, the latter to maximise profit for the provider.

In this paper, we propose a novel multi-objective optimiza-
tion method for the provisioning of resources in clouds. The
method considers the trade-off between cost and make-span
by applying different services types for different SLAs.
NSGA-II is the chosen multi-objective method to generate
SLAswithin a Pareto frontier. Moreover, the users can choose
among acceptable SLAs based on their preferences. The pro-
posed approach is evaluated over Amazon EC2 configura-
tions with the Cloud Sim simulator. The main contribution
of our study is to deal with such multi-objective problem
by applying a multi-objective method that looks at different
kinds of services, focused on the establishment of SLA, aim-
ing for a better trade-off between cost andmakespan. The spe-
cific novel contributions of the paper are: 1) a Non-dominated
Sorting Genetic Algorithm II (NSGAII) applied to find the
multiple optimal SLAs throughmeta heuristics; and 2) amore
robust multi-criteria analysis significantly improving on what
is achievable with a single objective.

The paper is structured as follow. A literature review is con-
ducted in Section II, which addresses optimization within a

cloud ecosystem. In Section III, the problem that will be tack-
led and solved in this study is defined precisely. Section IV
describes the methods employed for the solution of the prob-
lem. In Section VI, the design of the experiments and an
analysis of the results achieved by the proposed algorithms
are reported. Finally, the conclusions and some guidelines for
future work are presented in Section VII

II. LITERATURE REVIEW
There are several papers in the literature that analyse and
propose mechanisms for the management of resources in a
cloud environment. The proposal by Amazon for automatic
reconfiguration of the infrastructure of its customers is based
on monitoring through alerts (CloudWatch Alarms) and poli-
cies (Scaling Policies). The works found in the literature that
address the provisioning of resources can be classified as
follows: dynamic policies, based on heuristics, multi-criteria
and optimization [14].

There are several techniques that aim to optimize resource
utilization through task scheduling and workload evaluation
[24], [30], [34]. However, these techniques only apply spe-
cific heuristics to the problem. They do not take into account
any attributes of the SLA, and whether an SLA is being
fulfilled or not.

Heuristic-based approaches for SLA assume that a set of
heuristics are pre-defined to be applied in some scenarios.
These strategies are relatively simple, with several heuristics
being developed and added at runtime. For example, in [5] a
set set of rules is created and applied in amultilevel heuristics,
the rules can apply or not depending on the SLA violation and
its level. In another example [7] a multilevel heuristics is also
applied, with the objective to monitor virtualized resource
usage and to trigger migration actions appropriately to avoid
resource starvation. However, this is limited to predicting
specific scenarios at a given time. SLA violations may occur
in scenarios that are not included in this prediction.

Several works apply heuristics to the resource provisioning
problem. Some apply heuristics to the automatic start-up of
VMs. Reference [12] applied two heuristics, the ‘‘Scheduling
Heuristic’’ and the ‘‘Load Balancing Strategy’’, where the
first one provides more VMs in case the VM list in the load
balancing strategy is not enough.

Another work, [21], uses a metaheuristic approach to
reduce resource utilization to achieve energy savings. For
this, a multi-objective version of the EMLS-ONC (Energy-
aware Multi-start Local Search algorithm) was proposed to
find a Pareto tradeoff between reducing the energy con-
sumption and preserving the VMs performance. However,
this work does not make optimum decisions and considers
a very limited number of SLAs and clients and only one QoS
attribute.

The techniques based on optimization use approaches sim-
ilar to the heuristic methods. On the other hand, optimization
approaches can be used in predictions and reaction to SLA
violation, thus these approaches have a higher complexity
than heuristic methods, applied to the detection and treatment
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of SLA violation [14]. In this context, the detection may
occur through analysis of the system performance model
or occurrence of failures, in order to adjust the capacity of
contracted VMs.

The optimization approaches generally use machine
learning methods, time series analysis or fault tolerance tech-
niques, amongst others. Reference [13] applied a dynamic bin
packing approach to allocate a set of VMs on a set of physical
machines (PMs), with the objective to achieve a high utiliza-
tion on the PMs and at the same time, avoid SLA violation
in terms of VM migrations. Reference [19] proposes a cloud
resource auto-scaling scheme at the IaaS level to web appli-
cations, the achieved objective was to reduce the VM cost,
however, the SLA violations was not avoided. Reference [32],
investigate adaptive approaches for resource allocation and
energy management, using measurable data collected in
queuing backlogs, request sizes, VM utilization, and request
throughput, to associate them with the resource adjustment
and power management decisions. However, these methods
do not prioritize SLAs and suffer from high complexity and
thus take a lot of time to solve specific problems.

Multi-criteria solutions to the resource provisioning prob-
lem tend to be decentralized, i.e., evaluating each criteria or
situation independently. Reference [36], focuses on the prob-
lem of resource management, where the task selection was
modeled as a multi-criteria decision making problem. They
utilised the IMPROMPTU model for distributed Multiple
Criteria Decision Analysis (MCDA), this model distributes
the responsibility of resources among 3 autonomous node,
(1) one to monitor, (2) one to register undesirable situations,
and (3) another one to ensure that the desirable condition
on a physical machine is restored. By applying this model
it is possible to reduce the resource’s fault but was not pos-
sible to avoid the SLA violations. A literature review [16]
of the multi-criteria decision making approaches for sup-
plier evaluation and selection highlights several further works
in this context, however none deals with SLA violations –
yet these are crucial as they highlight unsatisfied customer
demands.

There are several complex problems within the context
of cloud computing that are addressed by solutions that use
optimization. Reference [4] surveys VM allocation problems,
however, just a few works address the SLA problem and they
only consider a very limited number of SLAs (3 to 15), and for
the most part only one client run per experiment. [3] is most
closely related to our approach. The work has the objective to
minimize cost and still guarantee satisfactory performance in
order to satisfy SLA and efficient use of resources. However,
this work does not have an optimally decision, and does not
consider conflicting objectives.

There are other related works that propose mechanisms
for resource management in a cloud environment. For exam-
ple, the problem of allocating virtual machines in a real
machine [28], energy saving [4], scaling and load balancing
of applications in virtual machines [27], the use of resources
aimed at reducing costs, while still guaranteeing a satisfactory
performance [6], and ensuring the QoS is in compliance with
the SLA.

In order to highlight our contribution Table 1 presents the
main features of the relatedworks, wit the following columns:
• Related work: reference to the related work addressed;
• Environment: the experimental environment, either
Real world (e.g. a prototype) or Simulator (i.e. a sim-
ulated experiments in a fictitious environment);

• SLA:whether the approach focuses on the SLA to make
a decision;

• Optimization technique: whether the approach used
any optimization technique;

• QoS:whether the approach considers the QoS attributes
in the resource provisioning;

• Solutions: the resource provisioning problem could
have many solutions to satisfy the problem in different
ways – does the approach lead to more than one?;

• Multi-objective: whether the approach treats the prob-
lem as a multi-objective problem and/or considers any
conflicting objectives.

Problems such as task scheduling and resource provision-
ing are considered NP-hard [25]. Many problems in this

TABLE 1. Main features of the related works.
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complexity class are solved by integer programming and
branch-and-bound approaches [33]. However, these are not
suitable to solve decision problems that have continuous
adaptation [26].

In this context, we have chosen to investigate optimiza-
tion algorithms based on metaheuristics once these meth-
ods present good performance solving real-world problems
within a reasonable computation time [9]. To solve this
problem in the single-objective way, we have chosen several
metaheuristics environment. However, the best performance
was achieved with the Multi-Population Genetic Algorithm
(MPGA). On the other hand, all of those methods look to only
one solution, and no-one considered other possibilities. In the
real world, multiple criteria rarely have the same weight. For
this reason, a multi-objective method is necessary.

III. PROBLEM STATEMENT
Many optimization problems deal with conflicting goals, usu-
ally improving the outcome with regard to one goal incurs
a worsening for other goals. For example, we could have a
bigger house, but it will either cost more or be in a less desir-
able area. Such problems are classified as Multi-objective
Optimization Problem (MOP) and the aim is to find the best
trade-off across all criteria.

For cloud executed workloads, it is possible to identify
two main conflicting objectives: Makespan and Cost. For
instance, if we prioritise to reduce investment when acquiring
computer infrastructure, it can lead to lower computational
power and, consequently, an increased makespan for sched-
uled tasks. The graph of Figure 1 illustrates this conflict of
objectives.

FIGURE 1. The conflicting objectives Makespan of Cost.

Makespan and cost are factors that depend on the num-
ber of virtual machines contracted by the client. In this
paper, three types of Virtual Machines (VMs) are considered:
Small, Medium, and Large. These requests were based on the
configuration of the m3.medium, m3.large, and m3.xlarge
applications of Amazon EC26 (Other providers operate on

6https://aws.amazon.com/pt/ec2/instance-types/

similar schemes). A data center infrastructure can have a
large number of VMs with a wide range of different con-
figurations; the total cost could be considered by the sum of
costs for all VMs used, and makespan means the application
response time with a specific set of VMs.
• Cost per hour (Cost/h): the monetary value defined
in the SLA refers to how much the client is going to
pay per hour for the service, while making use of the
VM. The financial cost per hour can be obtained through
Equation 1 [22]:

Cost/h =
i=n∑
i=1

Cost(VMi) (1)

where,
Cost(VMi) is the cost of a specific VM;
n is the number of VM instances considered for
deployment.

• Makespan: refers to the response time of the appli-
cation expected by the client. This is defined through
the execution of the application within the contracted
infrastructure. The response time can be obtained by
Equation 2 [22]:

Makespan =

∑i=n
i=1Makespan(VMi)

n
(2)

where,
Makespan(VMi) is the response time of the application
part in a specific VM;
n is the number of VM instances considered for
deployment.

These two QoS attributes allow estimating the minimum
and the maximum values for each one. Therefore, the values
are set up in the SLA for the client after application of the
optimization method.

The management of an SLA is a task composed of
several phases, namely negotiation, implementation, moni-
toring, violationmanagement, reporting, and finalization [14]
forming an SLA lifecycle:
• Negotiation: define the terms of services and include
monetary aspects;

• Establishment: requests from clients are assigned to the
provider resources;

• Monitoring: periodic monitoring of the resources and
the status of the execution;

• Violation management: monitoring might flag issues
with resources or the execution and these need to be
addressed and resolved;

• Reporting and Termination: provide SLA reports con-
taining detailed information of activities that occurred
during service usage;

• Termination: a method for parties to the agreement to
terminate the SLA.

Figure 2 illustrates the sequence in which these steps are
performed [14]. In this paper, we approach the first two
phases, i.e. the negotiation and establishment phases. We pro-
vide many SLA possibilities where the client can choose

122472 VOLUME 8, 2020



L. J. D. M. de Azevedo et al.: Multi-Objective Optimized SLA Approach Applied on a Cloud Computing Ecosystem

FIGURE 2. SLA management life cylcle [14].

which one is best for their requirements and configure the
resulting set up of the contracted resources (established in
the SLA).

IV. METHODOLOGY
When a mechanism is well designed for resource provision-
ing in a cloud environment, it is possible to achieve cost sav-
ings, better use of available infrastructure, and better perfor-
mance in the context of variations in demand for services [3].
On the other hand, the provisioning process is not trivial [18].
According to [15], it requires defining better software and
hardware configurations to ensure compliancewith SLAs and
to meet the need to maximize system efficiency and usage.

As identified in the problem statement, the aim is to find
the optimal machine configuration to satisfy the SLA. In this
context, we propose amulti-objective optimization to the pro-
visioning of resources in cloud environments that considers
the Pareto trade-off between cost and makespan by applying
different service types for different SLA. The overall aim is to
achieve the best balance between makespan and cost for the
customer, and the best resource utilization for the provider.

A. ENCODING
The required method must optimize the number and type
of virtual machines contracted by the client, identifying the
necessary resources for each context precisely. Machines are
typically obtained in predefined sizes, such as small or extra
large, from common providers. Thus, the representation of
a solution (encoding) is defined by (s,m, l) corresponding,
respectively, to VM types small, medium and large. This is
the set of possible VMs to be contracted, arranged in a vector,
where each position of the vector corresponds to the number
of machines of a given type as shown in Figure 3.

FIGURE 3. Representation of the triple coding (s,m, l ).

The clients can set the desired capacity (Cc) as well as
the expected makespan and cost per hour (C/hc). However,

it is difficult to meet all requirements without conflict. For
example, the capacity request may not meet the desired cost,
or it may not give the desired response time. For this reason,
the methods described in this Section will be applied in order
to find the best set of VMs (s∗,m∗, l∗) that deliver as close
as possible to the clients requested cost and makespan.

B. THE OPTIMIZATION METHODS
In this paper, we compares two optimization approaches:
a mono-objective and a multi-objective approach. The
mono-objective method is MPGA as introduced in our pre-
vious work [9] and briefly described in section IV-B1. The
novel multi-objective method proposed in this paper is an
adaptation of NSGA-II, detailed in section IV-B2, which
provides the Pareto trade-off between cost and makespan to
optimize different service types for different SLAs.

1) MPGA
Algorithm 1 describes MPGA which is based on the hybrid
genetic algorithm proposed in [31].

Algorithm 1 MPGA Algorithm
1: procedure MPGA(Cc,T c,Ac,C/hc)
2: for i← 1 to nPopulation do
3: InitializePopulation(P)
4: Evalutate(P[i])
5: end for
6: repeat
7: for i← 1 to nPopulation do
8: repeat
9: for i← 1 to P[i].Size*crossRate do
10: Selection(P[i])
11: Crossover(P[i])
12: Mutation(P[i])
13: Evaluate(P[i])
14: Structure(P[i])
15: end for
16: until P[i] has converged
17: executeMigration(P[i])
18: restartPop(P[(i mod nPopulation)+1])
19: end for
20: until time limit has been reached s
21: end procedure

Each individual represents a possible VM configuration
(s,m, l) for the client. InitializePopulation(P) generates ran-
dom individuals (s,m, l) withmin ≤ (s+m+l) ≤ max where
the possible range is defined by [min,max]. A total of 5 indi-
viduals is generated for each population and evaluated next
(lines 2-4). This amount of individuals seems small, but aims
to reduce the effort for fitness evaluationEvalutate(P[i]). This
is crucial as it will execute simulations using CloudSim for
each configuration. Next, the evolutionary process starts until
convergence has been reached (lines 6-20), generating a total
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ofP[i].Size∗crossRate new individuals at each evolution steps
(lines 10-14).

Figure 4 illustrates the population structure. The position
of the individuals (nodes) in the clusters indicates their value
within the hierarchy. In each cluster, the followers have worse
fitness than their leader. Thus, the best individual will be
the root in such a hierarchical tree structure, while the worst
individuals are at the leaves. Selection(P[i]) randomly selects
a follower as one parent and its leader as the other par-
ent. The new individual is evaluated next and the procedure
Structure(P[i]) may include it in the hierarchical structure
(line 14) when its fitness is better than that of the worst parent.
In this case, Structure(P[i]) will also update the positions
throughout the tree hierarchy. For instance, if the new individ-
ual is also better than the best individual found so far, it will
become the root node in the tree.

FIGURE 4. Population structure and migration.

The evolutionary steps carried out on population P[i] con-
verge when no new individual is inserted after P[i].Size ∗
crossRate attempts. At this point, a copy of the best indi-
vidual of P[i] is sent by executeMigration(P[i]) to the
next population to be evolved. Finally, restartPopulation(P[
(imodnPopulation) + 1]) produces a new population, but
maintains the two best individuals identified. MPGA stops
when the time limit is reached.

In our previous work, we merged the QoS attributes in
order to obtain an objective function. In the current work,
each Equation (1 and 2) described in Section III becomes
a weighted objective. Thus, the mono-objective function
(fitness) that guides the MPGA is as given by Equation 3.

MonoFit =

∣∣∣∣T c − T ∗T ∗

∣∣∣∣+ ∣∣∣∣C/hc − C/h∗C/h∗

∣∣∣∣ (3)

2) NSGA-II
In our previous work, the objective function employed a
normalization of the different objectives. While this obtains a
solution capable of establishing the contract from the client’s
demands, the conflict between the existing objectivesmay not
have been properly addressed when assuming equal weights.
Therefore, to evaluate and offer solutions that are even more

adherent to the context of the problem, we propose the appli-
cation of a multi-objective meta-heuristic called NSGA-II.

NSGA-II was proposed by [10] as an improved version of
NSGA. The method randomly creates a population (P), with
mutation and crossover operators being applied next. Those
operators will define a population of offspring (F). After the
offspring generation, both the children and their parents are
grouped into a set (Q). In this set, the non-dominance compar-
ison is applied. This results in a first group f1 of non-dominant
solutions. The non-dominance comparison is applied again to
the remain individuals, generating other groups (f2, f3,. . . fn).
In the last step, the individuals within each group are sorted
by decreasing values of their distances. Such distance can
be defined, e.g., based on individuals’ fitness value. The
next population will have the individuals of the best groups
with the largest distance measure between them. The distance
criterion will ensure diversity of the population. This process
is repeated until a stop criterion has been satisfied. In our
case, we set an execution time limit as stop criterion. Figure 5
illustrates this procedure.

FIGURE 5. NSGA-II illustration (adapted from [10]).

NSAG-II applies a method to order the solutions by
non-dominance named fast-non-dominated-sort, which cal-
culates the dominance in two steps. First, for all solutions,
a degree of dominance (np) is calculated based on the number
of solutions dominating a solution p = (s,m, l). If the value
of np is 0, it means that a solution p is not dominated and it
will be part of the first set. The second step is to separate the
solutions into groups Sp in order of dominance. Therefore,
each individual that is added to a set Sp is removed from the
population, and the individuals dominated by it have their
value of np decremented. Step two is repeated until there are
no more individuals in the population. In the algorithm 2,
these two steps are detailed, where q is another population
solution to be compared with p.
After indexing the solutions within the sets by non-

dominance, the solutions are sorted by the distance of their
fitness values. This distance is obtained by calculating the
average distance between a center point i. Figure 6 presents
the arrangement of points in relation to this distance.

Once the solutions are indexed in the order of non-
dominance and following the distance between functions,
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Algorithm 2 Fast-Non-Dominated-Sort
1: for Each p ∈ P do
2: SP = ∅
3: np = 0
4: for q ∈ P do
5: if p ≺ q then
6: Sp = Sp ∪ {q}
7: else
8: if q ≺ p then
9: np = np + 1
10: end if
11: end if
12: end for
13: if np = 0 then
14: f1 = f1 ∪ {p}
15: end if
16: end for
17: i = 1
18: while fi 6= ∅ do
19: Q = ∅
20: for Each p ∈ fi do
21: for Each q ∈ Sp do
22: np = np − 1
23: if np = 0 then
24: Q = Q ∪ {q}
25: end if
26: end for
27: end for
28: i = i + 1
29: fi = Q
30: end while

FIGURE 6. Distance between fitness functions (adapted from [10]).

the whole evolutionary process is repeated until the stop
criterion has been met. Line 20 in Algorithm 3 takes care of
the ordering by the distance of the fitness values in the last
set of f , and line 21 selects the best individual of the last set
to remain in the next population.

C. OPERATORS
The operators used for mutation and crossover, are the
same as proposed in [9] for MPGA. The crossover operator

Algorithm 3 NSGA-II Algorithm
1: procedure NSGA-IISLA: Cc,T c,Ac,C/hc

2: t = 1
3: InitializePopulation(Pt )
4: Evaluate(Pt )
5: repeat
6: Ft = copy(Pt )
7: Selection(Ft )
8: Crossover(Ft )
9: Mutation(Ft )
10: Evaluate(Ft )
11: Structure(Ft )
12: Q = P ∪ F
13: f [] = fast-non-dominated-sort(Q)
14: Pt+1 = ∅
15: i = 1
16: repeat
17: sort-by-distance(fi)
18: Pt+1 = Pt+1 ∪ fi
19: i = i+ 1
20: until |Pt+i| + |fi| ≤ Pt .tamanho
21: Odernar(fi,≺np )
22: Pt+1 = Pt+1 ∪ fi[1 : (N − Pt + 1)]
23: t = t + 1
24: until determined time
25: return Pt−1

generates a new individual from two parents by applying
blx-α (blend alpha crossover) and uniform crossover [11].
The uniform crossover exchanges genes between parents,
i.e, individuals A and B are selected and each gene in the
offspring has 50% of probability to come from parent A or
parent B [11].

In Figure 7, the offspring (s′,m′, l ′) inherits s′ = s1,
m′ = m′ from parent A and l ′ = m2 from parent B. The blx-
α crossover defines each gene i by sampling its new value
in the range α ∈ [0, 1] with offspring (s′,m′, l ′) given by
s′ = α · s1 + (1 − α · s2), m′ = α · m1

+ (1 − α · m2),
l ′ = α · l1 + (1 − α · l2) as shown in Figure 8. One of these

FIGURE 7. Uniform crossover [9].
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FIGURE 8. Blx-α crossover [9].

two crossover operators is randomly selected each time the
crossover must be applied. The new individual may present
(s+ m+ l) ≤ min or max ≤ (s+ m+ l), and an adjustment
is made over its last value l.
The mutation operator can be applied if the mutation rate is

satisfied, which means to randomly generate λ ∈ {0, 1} with
λ ≤ mutRate. In this case, one of the six mutation operators
proposed next is randomly selected to be applied:

• Reset Position: resets a position of the arrangement
(s,m, l);

• Reset Individual: similar to reset position, however,
in this case resets all arrangements (s,m, l);

• Swap: exchanges values of two positions of the arrange-
ment (s,m, l);

• Proximity: subtracts the value of a position of the
arrangement (s,m, l) and increases in another;

• Incremental Position: adds or subtracts the value of
a position of the arrangement (s,m, l), respecting the
maximum and minimum limit;

• Incremental Individual: similar to the incremental
position, however, increments or subtracts the value of
the all positions of the arrangement (s,m, l).

V. USE CASE
In this section, we present a concrete use case with QoS
indicators and related target. The use case will exemplify and
later be used to validate our method. Thus, here we show
the resources provisioned and detail how the application/
system/service is deployed in the modelled cloud.

Providers such as Amazon EC2 and Microsoft Azure
employ a methodology for provisioning resources in which
the clients are responsible for giving a precise estimate of the
necessary resources and selecting the request to be contracted
themselves [17]. However, it should be remembered that
the clients do not always have the technical knowledge to
handle the provisioning of resources, and such task could be
burdensome for them. For this reason, solutions as the one
presented in this paper are necessary. Our solution intents
to ensure the maximum use of computational resources, but
leading the clients to get the right amount of and pay a fair
price for the services to achieve the required QoS.

To address how the application/system/service is deployed
in the cloud modelled, our use case assumes that the customer
indicates the application (service) that they would like to
deploy in the cloud modelled. The customer will also set
the maximum cost that they would like to pay and the QoS
required. From such input, our methodwill return the range of
computational resource that best satisfy the customer require-
ments to reach a satisfactory SLA.

In our use case, we suppose two clients with two bench-
mark applications: Apache [1] and the Smallpt [2] bench-
marks. Apache is an I/O bound application based on a repos-
itory of files. Smallpt is a CPU bound application based on
image rendering. Each one of these applications can have
a different behaviour based on a Cloudlet7 length variation.
For instance, a minimum workload is generated to establish
tasks demanding less computational power, then a maximum
of computational power is spend solving bound tasks. It is
a dynamic system since the workload is generated following
the type of service that the client wants to deploy in the cloud.

We are using the most common QoS parameters for SLA,
according to [14], in our use case: makespan and cost.
They were properly introduced in section III. A further two
parameters are also considered: computational capacity of
the Virtual Machines (VMs) and the workload. The SLA
generator applied here is the same as described in [9], where a
Gaussian distribution defines values for the QoS parameters.
Table 2 gives some examples of SLAs defined by their QoS
indicators.

TABLE 2. SLAs samples.

The infrastructure of the cloud computing ecosystem fol-
lows the model adopted by Amazon M3 instances. The
M3 instances feature high-frequency Intel Xeon E5-2670
(Sandy Bridge or Ivy Bridge) processors and SSD-based
instance storage. Table 3 shows the M3 instances configu-
rations employed by this use case.

TABLE 3. Specification of instances.

In this scenario, the client must indicate the application
service to be execute, the desired makespan and the max-
imum cost that she/he would like to pay for. On the other
hand, the optimization algorithms will return the infrastruc-
ture range that meets the user requirements or the closest
approximation.

VI. COMPUTATIONAL RESULTS
The aim of the experiments shown in this section is to
analyze a multi-objective optimization for the provisioning

7The tasks or jobs in CloudSim simulator are called Cloudlets.
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of resources in clouds that considers the Pareto trade-off
between cost and makespan by applying different service
types for different SLAs. The experiments were carried out
in the CloudSim Simulator 3.0.3 3 version,8 with the aid of a
computer with an AMD Phenom(tm) II X6 1090T Proces-
sor, 16 GB of RAM memory, 1.5 TB of disc storage and
the Ubuntu 14.04.3 LTS operational system with a kernel
version 3.13.0.

As previously mentioned, we used the SLA generator
from [9]. Table 4 presents the SLAs applied to the validation
with the QoS target, one SLA for each service type.

TABLE 4. SLAs generated.

NGSA-II and MPGA were executed 30 times for each
SLA, which means that the same experiment was replicated
for both algorithms. Table 5 shows the parameter settings for
each algorithm. These values were empirically defined, based
on previous settings reported in the literature ( [9], [31]). The
only parameter that differs between NSGA-II and MPGA is
the number of individuals, since it is not possible to define a
good frontier to NSGA-II with only 5 individuals.

TABLE 5. Algorithms settings.

Figure 9 shows the results for the NSGA-II and MPGA
experiment using the Apache Benchmark. We have analysed
the number of frontiers returned during the optimization pro-
cess within 30 seconds of NSGA-II execution, and we keep
the mapping of frontiers for the next 60, 90 and 120 seconds.
After this time, the frontiers overlapped the frontier obtained
in 120 seconds. Therefore, there is no improvement at the
Pareto frontier over 120 seconds.

Figure 10 shows the frontiers found within 30, 60, 90 and
120 seconds. A total of 12 frontiers was found within
30 seconds for all 30 executions and 27 frontier within 60 sec-
onds. There is a variation in the number of frontier after
90 seconds of execution.

Figures 11 and 12 show the analogue results for Smalpt
benchmark. It’s important to note that while the single
objective method returned only one solution, a multi-criteria
algorithm provides many other possibilities. Therefore, it’s
possible to see that multi-criteria analysis is a more robust

8http://www.cloudbus.org/cloudsim/

FIGURE 9. Pareto frontier solutions considering cost and makespan as an
objective function for the Smallpt benchmark.

FIGURE 10. Number of Pareto frontiers found for different optimization
times for the Smallpt benchmark.

FIGURE 11. Pareto frontier solutions considering cost and makespan as
an objective function for the Apache benchmark.

method than a single objective one. Furthermore, in sectionV,
we have mentioned that the clients do not always have the
technical knowledge to handle the provisioning of resources,

VOLUME 8, 2020 122477



L. J. D. M. de Azevedo et al.: Multi-Objective Optimized SLA Approach Applied on a Cloud Computing Ecosystem

FIGURE 12. Number of Pareto frontiers found for different optimization
times for the Apache benchmark.

for this reason, a multi-objective approach is essential to
evidence that there are a lot of other possible choices.

Finally, Tables 6 and 7 compare the SLAs from the MPGA
and NSGA-II solutions. The NSGA-II solutions are those ac
hived in the frontier defined within 120 seconds of execu-
tion time, one where makespan is priority, one where cost
is priority, and another one where the aim is the trade-off.
It only presents one SLA for MPGA solution, as it is a single
objective method.

TABLE 6. Solutions found for MPGA and NSGA-II by switching the priority
of each parameter to the Apache benchmark.

TABLE 7. Solutions found for MPGA and NSGA-II by switching the priority
of each parameter to the Smallpt benchmark.

VII. CONCLUSIONS
It is not a trivial task to provide cloud computing clients
with an efficient infrastructure, that respects their SLA and
its QoS attributes, while at the same time seeking to reduce
costs. Within the domain of cloud ecosystem, the most
wide-ranging problems can be mapped out in solutions that
generally involve optimization based on their complexity and
the large number of resources that can be scalable.

This article addresses one of these challenges, namely
how to provide the client with an infrastructure that pro-
vides an SLA agreed between the client and provider in a

multi-objective way. Our proposal mapped some of the QoS
attributes that determine the criteria for the SLA and we also
designed and analyzed algorithms that allow an optimized
(re)configuration of the infrastructure based on these criteria.
The results provide evidence that the NSGA-II algorithm
is efficient and applicable to the solution of the problem,
providing flexibility on the SLA.

In future work, we intend to carry out new tests with a
prototype trather than simulator. We are also going to design
other QoS attributes to be added to the SLA and apply the
approach to other kinds of services. Furthermore, we intend
to evaluate other multi-criteria methods to see whether further
improvements can be made.
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