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ABSTRACT Classification of environmental sounds plays a key role in security, investigation, robotics
since the study of the sounds present in a specific environment can allow to get significant insights. Lack
of standardized methods for an automatic and effective environmental sound classification (ESC) creates a
need to be urgently satisfied. As a response to this limitation, in this paper, a hybrid model for automatic
and accurate classification of environmental sounds is proposed. Optimum allocation sampling (OAS) is
used to elicit the informative samples from each class. The representative samples obtained by OAS are
turned into the spectrogram containing their time-frequency-amplitude representation by using a short-time
Fourier transform (STFT). The spectrogram is then given as an input to pre-trained AlexNet and Visual
Geometry Group (VGG)-16 networks. Multiple deep features are extracted using the pre-trained networks
and classified by using multiple classification techniques namely decision tree (fine, medium, coarse kernel),
k-nearest neighbor (fine, medium, cosine, cubic, coarse and weighted kernel), support vector machine, linear
discriminant analysis, bagged tree and softmax classifiers. The ESC-10, a ten-class environmental sound
dataset, is used for the evaluation of the methodology. An accuracy of 90.1%, 95.8%, 94.7%, 87.9%, 95.6%,
and 92.4% is obtained with a decision tree, k-neared neighbor, support vector machine, linear discriminant
analysis, bagged tree and softmax classifier respectively. The proposedmethod proved to be robust, effective,
and promising in comparison with other existing state-of-the-art techniques, using the same dataset.

INDEX TERMS Environmental sound classification, optimal allocation sampling, spectrogram, convolu-
tional neural network, classification techniques.

I. INTRODUCTION
Environment sound is due to numerous sources present in
the environment, such as living beings, non-living objects
and artificial entities created by humans. These sources con-
tribute in the environment sound, which may be audible as
well as non-audible to human ears. The sounds are cap-
tured mostly by acoustic sensors, radar systems [1], [2]
and subjected to further processing in various sound anal-
ysis and applications. The environment sounds, generated
by various living beings and non-living objects, needs to
be classified in certain categories in order to be used for
different purposes, such as security, crime investigation, auto-
mated operation of robotic-like vehicles, weather forecasting,
environment monitoring [3], etc. Current literature reports
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numerous studies sand research contributions in the area of
environment sound classification (ESC). One such important
work on ESC helps detecting natural sounds of environ-
ment successfully [3], by using optimum allocation sampling
and employing various support vector machine (SVM) and
extreme machine learning based classifiers, which operate on
OAS-EMD features. Through the sampling method adopted
in [3], [4], important performance parameters were studied
and determined, which are very useful in the classification
of the sounds. In [5], three short audio clips of environ-
ment sounds were classified using convolution neural net-
work (CNN) having two convolution layers and max-pooling
scheme. This work needed a long training time despite
the limited number of datasets used to train the network.
A four convolution layer based deep learning network has
been used in [6], that utilized Dempster-Shafer evidence
theory to produce classification. In this latter case, several
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CNN based classification methods were outperformed and
the variation in classification accuracy for varying sound
types, such as car horn, and dog barking, was reported.
As we know the sound may be due to various sources [2],
[7], [8], and Fisher discriminant model and Gaussian mix-
ture model can help in classifying sounds when a mixture
of them is present in the environment [7], by producing a
generalized classification. Performance measures, such as
spectrogram coefficients and scalar features, have been used
for sound classification in [9], where ordinary neural network
were employed and a large variety of environment sounds
were classified. In another work based on CNN, microcon-
troller and some other hardware were used [10], with main
emphasis on noise characterization of environment sounds in
addition to the classification, and quantization issues were
major concerns in this work. A computational model to
detect the environmental auditory tones temporal deviancy
and the frequency saliency has been proposed in [11].
Classification of environmental sound has been accomplished
with a filter bank and a Hidden Markov model in [12].
A filter bank and a dimensional reduction are used for signal
conditioning while the Hidden Markov model is used to
classify the environmental sound. Identification of environ-
mental sound has been accomplished by the means of spec-
trograms,Mel-Frequency Cepstral Coefficients (MFCC), and
Cross Recurrence Plot (CRP) in [13]. Framing and smoothing
techniques based on non-overlapping and Hanning window
are proposed in [14], where smoothed environmental signals
have been used to extract several statistical measures which
have been classified by using different classification tech-
niques. Classification of environmental sound has been done
by filtering their Fourier transform with a Hanning window
for the extraction of the features. These features have been
classified by using different deep classififcation methods
in [15]. Other literature on ESC refers to [16]–[20], where
different types of methods without any robust approach and
specific objective are presented. CNN has been also used in
[21] for classification of environment sound with augmented
training set, towards finding the impact of the classification
with and without the augmentation sets. Max-pooling and
CNN as used in [5], has been enhanced for sound classifi-
cation that provided dilation rate for more number of sounds,
in addition to evaluation of classification accuracy. However,
dilated CNN affects the accuracy of classification to signifi-
cant extent that appears reduced in this work.

The methods proposed in this literature are limited by the
usage of feature extraction methods. Moreover, the majority
of the methods have been limited by their performance. Lack
of standardized methods and limited performance create an
immediate need for new proposals among the scope of envi-
ronmental sound identification. Also, feature extraction and
classification of environmental sound require huge statisti-
cal analysis. This motivates us to present a simple, robust,
and effective method for the classification of environmental
sound. The proposed methodology uses optimal allocation
sampling (OAS) to reduce the dimensionality and obtain

representative signals from the different classes. The data
obtained from OAS are given as input to a short-time Fourier
transform (STFT), and the spectrograms obtained from the
STFT as input to convolutional neural networks (CNNs). The
deep features obtained from the CNNs are classified by using
different classification techniques. The contribution of the
proposed methodology is summarized as follows:

• Exploring the detailed analysis of the environmental
sound classification dataset.

• Reduction of the dimensionality of data by using opti-
mum allocation sampling.

• Transforming the time-domain signals into time-
frequency-amplitude representation using a short-time
Fourier transform.

• Automatic extraction of various deep features from
spectrograms using different CNNs.

• Analysis of different classification techniques to classify
different classes of environmental sound.

• Testing effectiveness of the proposed methodology by
comparing it with existing state-of-the-art.

The remainder of the paper is organized as follows:
Section II describes the methodology, results are presented in
Section III, discussion of the proposed method with regards
to the existing state-of-the-art is presented in Section IV and
finally, in Section V conclusions are given.

II. METHODOLOGY
The proposed methodology presents an effective and robust
method for the accurate classification of environmental sig-
nals. The methodology is composed of an environmen-
tal sound dataset, optimum allocation sampling, short-time
Fourier transform, convolutional neural networks, and clas-
sification techniques. The stepwise implementation of the
proposed work is shown in FIGURE 1.

A. DATA-SET
The methodology uses a free sound database ESC-10 of field
recordings. The details of the dataset are available in [22]. The
dataset contains 10 classes of different environmental sound
annotated as classes (C). The 10 classes have been classified
into three general groups of sounds represented by

• transient/percussive sounds, sometimes with very mean-
ingful temporal patterns (sneezing (C-1), clock ticking
(C-2), dog barking (C-3)),

• more or less structured noise/soundscapes (sea waves
(C-4), fire crackling (C-5), rain (C-6), chainsaw (C-7),
helicopter (C-8)),

• sound events with strong harmonic content ( crowing
rooster (C-10), crying baby (C-9)).

Each signal contains a 5-second-long recordings of audio
events (shorter events were padded with silence as needed).
The extracted samples were reconverted to a unified for-
mat (44.1 kHz, single-channel, Ogg Vorbis compression
at 192 kbit/s). Each class consists of forty signals with a total
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FIGURE 1. Stepwise flow of the proposed method.

length of 160704 samples in each signal. The sound signals
of each class are shown in FIGURE 2.

B. OPTIMUM ALLOCATION SAMPLING
The number of samples in each signal has higher dimen-
sionality. Getting insight information from such high dimen-
sional data is very difficult. To overcome this, optimum
allocation sampling is used (OAS). OAS reduces the
dimensionality of the signal by retaining properties in a
signal.

1) DATA PARTITION
Most of the signals existing in real-time exhibit non-
stationarity and non-linearity. A long-duration signal
exhibiting a non-linearity and non-stationarity may show
stationarity and linearity if partitioned into smaller sections.
Analysis and processing of stationary signals provide sig-
nificant insight information. Motivated by this, a number
of signals in each class of environmental sound are par-
titioned into smaller sections. Partition is performed with
respect to a specific period. The partitioned section of
each signal is called groups denoted by K1,K2, ..,Ki, and
each partition consists of number of observations denoted
by G1,G2, . . . ,Gi. Every signal in each class must be
non-overlapping.

2) OPTIMUM ALLOCATED SAMPLE SIZE
This section aims to get the most representative signals
from the group of signals. The most informative samples are
selected by considering the groups with minimum variance
[23], [24]. The sample size of a group is large if the variability
within a group is large. If the variability within a group is
small then the sample size is also small. Moreover, OAS is
used to find a total sample size of the entire dataset (denoted
by p) that needs to be allocated among m groups with the
smallest variability. The best sample size is known as the opti-
mum allocated sample for the ith group and it is represented
by

pi =
Gi

√∑L
l=1(Vil)2∑m

i=1Gi
√∑L

l=1(Vil)2
× p (1)

where the size of the ith group is denoted by Gi; the total
number of samples in the stratification process is p and Vil
is the standard deviation of l th signal in the ith group. The
total samples of the stratification process are represented by

p =
p0

1+ p0−1
PS

p0 =
z2 × x × y

d2
(2)

where p0 is the initial sample size; and PS is the population
size; z (Z-value) is the standard normal variate; d is the
desired level of precision; x is a particular characteristics in
the dataset and y= 1-x. The total sample size (p) is evaluated
by a sample size calculator using a survey software [25]. The
representative signals with reduced dimensions obtained by
using OAS for different classes are shown in FIGURE 3. The
number of samples in each signal is obtained as 16020 respec-
tively.

C. SHORT-TIME FOURIER TRANSFORM
A signal in one domain may not provide insight informa-
tion directly. To capture the detailed insight of the signal,
it may be necessary to transform this latter into another
domain. To study the signal in a representative form, it is
required to study it in the time-frequency domain simulta-
neously. The spectral variations in time-frequency-amplitude
are simultaneously captured by time-frequency representa-
tion. Short-time Fourier transform (STFT) is one suchmethod
which is an advanced version of the Fourier transform that
provides temporal details of signals in both the domains.
Through the STFT, a signal is partitioned in a fixed-sized
time-domain signal using a window. A partitioned part is
taken off and Fourier transform is applied to study various
properties of the signal. In other words, STFT is evenly
spaced by using identical and symmetric bandpass filters in
the frequency domain. The mathematical formulation of any
signal s(t) is represented by [26]

S(f , t) =
∫ T

−T
s(τ )w(τ − t)e−j2π f τdτ (3)
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FIGURE 2. Original environmental signals.

FIGURE 3. Reduced environmental signals using OAS.

where w(t) is the windowing function. The signal s(t) is
assumed to be stationary inside the window duration. The
type and length of the window must be the same and

equal for all the partitioned segments of the signal. The
magnitude squared value of the time-frequency represen-
tation obtained by STFT is the spectrogram represented
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by

Spectrogram = |S(f , t)|2 (4)

D. DEEP FEATURE EXTRACTION
Conventional methods require a lot of qualitative and quan-
titative analysis for the extraction of features. Moreover,
parameter tuning is another issue with the conventional
feature extraction method. To overcome this, deep feature
extraction is employed with the aid of a convolutional neural
network (CNN). CNN is a sub-domain of machine learning
that comprises of input, hidden, and output layer. The input
layer takes images as input for the automatic extraction of
numerous features. The hidden layer consists of a convo-
lutional layer, max-pooling layer, and batch normalization
operation. The classification task is carried out by the output
layer [27], [28]. In this paper, the extraction of deep features
are accomplished by CNN, and classification is done by
different external classifiers. A hidden block is the driving
power of CNNwhich is responsible for the extraction of deep
features. The hidden layer embodies the convolutional layer,
dropout, pooling layer, and batch normalization. The function
of each block in a hidden layer is explained below:
• Convolution Layer: It is a set of filters with learnable
parameters. The learnable parameters of filters are tuned
automatically with the advancement in training. The
size (height and width) of filters is smaller than that
of an input image. An input volume is convolved with
each filter to evaluate activation maps. The convolution
between input and filters is computed at every position
by sliding the filters across the height and width of the
image. The output of a convolution are 2-dimensional
featuremaps. The featuremaps produced by convolution
are followed by Rectified Linear Unit (ReLu) to increase
the non-linearity.

• Batch Normalization: Batch normalization normalizes
the inputs by calculating the mean and variance over
each input channel.

• Pooling Layer: It is another block of the hidden layer.
It is used to reduce the number of parameters and com-
putation by reducing the spatial size. The amount of
parameters and computation is reduced with the help
of down-sampling by merging the features with various
operators. The down-sampling operations allow going
deeper into the network.

• Dropout Layer: Dropout is the last block of the hidden
layer which is applied either on the part or all the fea-
tures. Dropout helps the network to prevent overfitting.

The above layers are used to construct any CNN. The
CNN architecture for deep feature extraction is shown in
FIGURE 4. There are several networks available that are used
to extract deep features. These networks consist of a fixed
number of hidden layers. In this work, two well-known pre-
trained CNNs namely AlexNet and VGG (Visual Geometry
Group)-16 are employed for automatic feature extraction.
The details of the networks are available in [29], [30].

FIGURE 4. Architecture of CNN for deep feature extraction.

The detailed discussion about the feature extraction from
images using CNNs is explained in [31].

E. CLASSIFICATION TECHNIQUES
The deep features extracted from the CNNs are classified by
using different types of classification techniques. Classifica-
tion algorithms are used to segregate two or more classes
by certain mathematical principles. In this paper, multiple
classification techniques are employed for the classification
of environmental sound signals. Six types of classification
algorithms are used namely decision tree, k-nearest neighbor
(k-NN), support vector machines (SVM), linear discriminant
analysis (LDA), bagged tree (BT), and softmax. Three kernels
are employed with decision tree variants (fine, medium, and
coarse), six kernels of kNN variant (fine, medium, coarse,
cosine, cubic, and weighted). The reason for using multiple
classification techniques is due to the ‘No Free Lunch Theo-
rem’. The performance of one classification technique can be
overthrown by another [32]. The details of the classification
methods and their kernels are available in [33]–[37].

III. RESULTS
The proposed method uses hybrid structure combing OAS,
STFT, CNN and classification techniques to classify different
class of environmental sounds. ESC-10 dataset is employed
for the evaluation of the proposed methodology. To main-
tain the effectiveness, common experimental platform is
maintained throughout the methodology. The experiments
have been carried out on MATLAB (2018R). A computer
with 8 GB RAM, intel i7 third generation processor of
3.4 GHz, 64 bit memory has been used. In order to reduce
the dimensionality of the dataset, OAS is applied. Each signal
from every class is partitioned into ten equal segments (i =
10) such that G = G1 + G2 + . . . . + Gi and Gi = 16070.
The Z value is obtained as 1.28 when computed from [25].
The confidence level is taken as 99%, estimator x is 50%,
and d = 0.001 is considered. A total of gi is 16020 obtained
such that g = g1 + g2 + . . .+ gi.
TABLE 1 represents the optimum sampling allocated val-

ues of each signal for all the ten classes. The signals of
the optimum sample size are used for further computation.
Before applying the STFT, the data of every signal are split
into an equal sample size of 4000. As stated earlier, each
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TABLE 1. Accuracy of different CNN features with various classifiers.

FIGURE 5. Scatter plot of features obtained by DCNN.

class consists of a total of 40 signals. The split signal of
each class becomes 160. A non-overlapping Hanning win-
dow of size 120 is used. The spectrograms obtained from
STFT are given as an input to AlexNet and VGG-16. The
pre-trained AlexNet and VGG-16 take images of size 224 ×
224 and 227× 227. AlexNet and VGG-16 consist of 5 and 13
convolutional layers respectively. The feature maps obtained
after convolution operations are 2-dimensional. To convert
the feature-maps into a single dimension, a fully connected
layer is used. In this paper, fully connected layers (FC-6
and FC-7) are used. The scatter plots features obtained by
AlexNet and VGG-16 with FC-6 and FC-7 are shown in
FIGURE 5. As evident from the figure, all the feature-maps
are different and distinguishable. Each class of environmental
sound contains a total of 4096 features. Thus, a total fea-
ture matrix is obtained by AlexNet and VGG-16 with FC-
6 and FC-7 of dimensions 4096 × 160 for each class. This
matrix is given as input to different classifiers. The proposed

methodology uses 10-cross validation. In this, the input fea-
ture matrix is partitioned into 10 disjoint subsets randomly
with 9 subsets used for training and the remaining subset for
testing. Training and testing are iterated 10 times such that
each data point in the feature-matrix is utilized effectively.
Six types of classifiers are employed for the classification:
decision tree (fine, medium, and coarse kernels), k-NN (fine,
medium, coarse, cosine, cubic, and weighted kernels), LDA,
SVM, BT, and softmax (SM).

The parameter tuning is maintained uniform for each vari-
ant of a classifier, for all the kernels. The number of splits
is kept at 20 for the decision tree, decision metric, decision
weight, and a number of neighbors is set to Euclidian, squared
inverse, and 2 for k-NN. Full covariance structure is used in
the case of LDA, box constraint level is set to 1, automatic
kernel scale mode and one v/s all multiclass method are used
for SVM. For BT, decision tree learner is used, a number
of learners and the learning rate is set to 20 and 0.001,
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TABLE 2. Accuracy of different CNN features with various classifiers.

and a maximum number of splits is 1599. The classification
accuracy obtained for AlexNet and VGG-16 with FC-6 and
FC-7 is shown in TABLE 2.

The maximum accuracy obtained for AlexNet (FC-6) for
fine kernel using a decision tree is 89.9%. An accuracy of

89.8% is highest for AlexNet (FC-6) using a medium (M)
kernel of a decision tree. The highest classification accu-
racy for VGG-16 (FC-6) and VGG-16 (FC-7) is obtained
for a fine kernel of a medium tree having value 88.1%
and 90.1% respectively. With k-NN, the highest accuracy
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FIGURE 6. Confusion matrix.

FIGURE 7. False negative rate.

FIGURE 8. False discovery rate of AlexNet with FC-6 and FC-7.

obtained for AlexNet (FC-6), AlexNet (FC-7), VGG-16
(FC-6), and VGG-16 (FC-7) is with fine (F) kernel having
an accuracy of 94.5%, 94.6%, 95.8%, and 95.4%, respec-
tively. Accuracy obtained with LDA for AlexNet (FC-6),
AlexNet (FC-7), VGG-16 (FC-6), and VGG-16 (FC-7) is
91.1%, 92.3%, 94.1%, and 94.7%, respectively. SVM pro-
vides an accuracy of 75.3%, 81.4%, 85.6%, and 87.6%
for AlexNet (FC-6), AlexNet (FC-7), VGG-16 (FC-6), and
VGG-16 (FC-7). Classification accuracy of 93.8%, 95.3%,
95.6%, and 95.4% is obtained with BT for AlexNet (FC-6),
AlexNet (FC-7), VGG-16 (FC-6), and VGG-16 (FC-7) while
with softmax classifier an accuracy of 90.8%, 91.3%, 91.6%,
and 92.4% is obtained for AlexNet (FC-6), AlexNet (FC-7),
VGG-16 (FC-6), and VGG-16 (FC-7). As seen from the
TABLE 2, a fine kernel is the best performer and coarse kernel
shows the worst performance for decision tree and k-NN.

The best separation of all the classes is provided by k-NN
for AlexNet (FC-6) and VGG-16 (FC-6), while for AlexNet
(FC-7) bagged is superior and there is a tie between k-NN and
bagged tree for VGG-16 (FC-7) features.

The confusion matrix of best performing classifiers is
shown in FIGURE 6, where (a), (b), (c), and (d) shows
confusion matrix for AlexNet (FC-6), AlexNet (FC-7), VGG-
16 (FC-6), and VGG-16 (FC-7) with k-NN and BT clas-
sifiers. For AlexNet (FC-6) and VGG-16 (FC-6), C-2, C-
5, and C-6 provide perfect classification. For AlexNet (FC-
7) and VGG-16 (FC-7), C-1, C-2, C-5, and C-6 provides
the best results. The false-negative rate for each class of
environmental sound is shown in FIGURE 7, where (a),
(b), (c), and (d) show the false-negative rate of each class
for AlexNet (FC-6), AlexNet (FC-7), VGG-16 (FC-6), and
VGG-16 (FC-7). The values in green show the true posi-
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FIGURE 9. False discovery rate of VGG-16 with FC-6 and FC-7.

TABLE 3. Comparison of accuracy with existing method using same
dataset.

tive rate, while the values in red give a false-negative rate.
The false discovery rate of AlexNet (FC-6) and AlexNet
(FC-7) is shown in FIGURE 8 (a) and (b). The false discov-
ery rate of VGG-16 (FC-6), and VGG-16 (FC-7) is shown
in FIGURE 9 (a) and (b). The values in green give details of
positive prediction value and values in red denote the false
discovery rate.

IV. DISCUSSION
The effectiveness of the proposed methodology is tested
by comparing the classification accuracy with the existing

state-of-the-art using the same dataset. TABLE 3 presents the
accuracy comparison with different methodologies. Piczak
in [5] used a baseline machine method to extract different
information from the sound signals. The features obtained
by using the baseline machine is classified by using k-NN,
SVM, and random forest ensemble (RFE) classifiers. The
model in [5] provided an accuracy of 66.7%, 67.5%, and
72.7% with k-NN, SVM, and RFE. The method proposed
by Pillos et. al. in [14] evaluated different feature extraction
techniques. The features extracted by using zero-crossing rate
(ZCR), Mel-frequency cepstral coefficient (MFCC), spectral
flatness (SF), and spectral centroid (SC) have been classified
by using amultilayer perceptron (MLP) andRFEmodels. The
method in [14] managed to achieve an accuracy of 73.75%
and 74.5% with RFE and MLP. Boddapati et. al. in [13] used
spectrogram method to classify the signals using AlexNet
and Google net. The method proposed in [13] achieved an
accuracy of 86%. In [3], Ahmad et. al. used empirical mode
decomposition (EMD) for the extraction of several features.
These features have been classified by using extreme learning
machine (ELM) and least square support vector machine
(LS-SVM). The method proposed by Ahmad et. al. achieved
an accuracy of 77.7% and 87.25% with ELM and LS-SVM,
respectively. The method in [15] by Hertel et. al. used a deep
neural convolution network (DNCN) for feature extraction
and classification. This model managed an accuracy of 77.1%
and 83.7%, respectively. Feature extracted by OAS has been
classified using multiclass LSSVM (MC-LSSVM) in [4] by
Pareta et. al. and this model achieved an accuracy of 85.43%.

The methods proposed until now by the researchers have
been limited in terms of performance. Hence an effective
and robust method is required to classify environmental sig-
nals accurately. In the present work, authors aim to propose
a method in which the dimension of data is reduced by
OAS. The reduced data are then used to be transformed
into images by STFT. Several features have been extracted
from the spectrograms by using two pre-trained CNNs. These
features are classified by using different classification tech-
niques. An accuracy of 90.1% and 89.8% is achieved with
fine (FT) and medium tree (MT). Accuracy obtained with
fine (F), medium (M), coarse (C), cosine (Co), cubic (Cu),
and weighted (W) kernels of k-NN is 95.8%, 94.2%, 83.1%,
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84.4%, 92.4%, and 94.9%, respectively. The accuracy of
94.7%, 87.9%, 95.6%, and 92.4% is achieved with LDA,
SVM, BT, and SM classifiers, respectively. The results of the
proposed method seem to be promising and well ahead from
the performance of existing methodologies.

V. CONCLUSION
The environmental sound provides lot of information that
can be used in various fields. Accurate identification of
environmental sound is required for modeling any system.
Environmental signals are non-stationary. For this, an adap-
tive, robust, and effective methodology is needed for cor-
rect classification of environmental signals. To this concern,
a hybrid model combing OAS, STFT, CNN, and classifica-
tion technique is proposed. The dimensionality reduction is
performed by OAS that reduces the burden of computation,
as well. Time-frequency information is captured simultane-
ously using STFT. CNNs are used to extract deep features
and are classified by using different classifiers. The proposed
method provides an accuracy of 95.8% with a fine kernel of
k-nearest neighbor. The comparison shows that the proposed
method provides significant improvement in the separation
of environmental signals by about 9%. Thus, the proposed
method proved to be promising and can be used to model a
real-time environmental sound detection of natural sounds.
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