
Received May 20, 2020, accepted June 26, 2020, date of publication June 30, 2020, date of current version July 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3006069

Effective Density Peaks Clustering Algorithm
Based on the Layered K-Nearest Neighbors
and Subcluster Merging
CHUNHUA REN 1,2, LINFU SUN1, YANG YU1, AND QISHI WU1,3, (Member, IEEE)
1School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
2School of Computer and Information Engineering, Yibin University, Yibin 644000, China
3Big Data Center, New Jersey Institute of Technology, Newark, NJ 07101, USA

Corresponding author: Chunhua Ren (418327014@qq.com)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB1400303.

ABSTRACT Density peaks clustering (DPC) algorithm is a novel density-based clustering algorithm,
which is simple and efficient, is not necessary to specify the number of clusters in advance, and can find
any nonspherical class clusters. However, DPC relies heavily on the calculation methods of the cutoff
distance threshold and local density and cannot analyze complex manifold data, especially datasets with
uneven density distribution and multiple peaks in the same cluster. To solve these problems, we propose
an improved density peaks clustering algorithm based on the layered k-nearest neighbors and subcluster
merging (LKSM_DPC). First, we redefine the local density calculation method using the layered k-nearest
neighbors. To adapt to datasets with different densities, the k-nearest neighbors are divided into multiple
layers. Second, for the multiple peaks in the same cluster problem, we design a new mechanism to calculate
the similarity of subclusters based on the idea of shared neighbors and Newton’s law of gravitation, and
a subcluster merging strategy is proposed. To prove the effectiveness of our algorithm, we compare the
LKSM_DPC with K-means, DBSCAN, DPC, and DPC derivatives for 24 datasets. A large number of
experiments demonstrate that our algorithm can often outperform other algorithms.

INDEX TERMS Density peaks clustering, uneven density distribution, multiple peaks, k-nearest neighbors,
shared neighbors, the law of gravitation, subcluster merging.

I. INTRODUCTION
Clustering is one of the most important techniques in data
mining. This technique gathers data with similar characteris-
tics into a cluster, and there are significant differences among
different clusters [1], [2]. It is widely used in machine learn-
ing, information security, data mining, and other research
fields [3], [4]. Clustering algorithms are usually structured
in several categories: partition-based clustering, grid-based
clustering, hierarchical clustering, model-based clustering,
and density-based clustering algorithms [5].

Themost famous partition-based algorithm is K-means [6],
which is required to specify the number of clusters and
form clusters through iterative objective functions. Density
clustering is a generic clustering algorithm, which can find
datasets of arbitrary shapes, does not need to specify the
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number of clusters in advance, and is not sensitive to noise
data. DBSCAN is a case in the density-based clustering algo-
rithm [7], which clusters datasets of arbitrary shapes and can
detect outliers, but it is highly limited by the setting of two
parameters. In 2014, Rodriguez and Laio proposed a novel
fast search and density peaks clustering algorithm (DPC) in
science [8], which only uses one parameter. First, DPC is
based on two assumptions: (1) the density of the cluster center
is higher than that of the neighboring points, and (2) the
distance between the cluster center and the higher density
point is relatively large. Second, the local density ρ and
distance δ are calculated using the cutoff distance. Then, a
2-D decision graph of the clustering center is constructed.
Finally, the remaining points are allocated according to the
clustering center.

Although DPC is simple and fast, it has several main dis-
advantages: (1) the clustering performance of DPC is mainly
affected by the local density ρ and distance δ; and (2) DPC
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have difficulties processing data with complex structures,
such as datasets with uneven density distribution and complex
manifold datasets.

To overcome the above defects, numerous DPC derivatives
have been proposed by many scholars.

Numerous researchers have studied the influence of the
local density ρ and distance δ measurements on clustering.
Du et al. [9] proposed a density peaks clustering algorithm
based on the k-nearest neighbors (DPC-KNN). The local
density of the DPC-KNN is in the form of a Gaussian
kernel, which is available from the average distance of the
k-nearest neighbors. Xie et al. [10] proposed a DPC based
on the fuzzy weighted k-nearest neighbors (FKNN-DPC).
She redesigned the local density calculation method, which
was calculated using the sum of the distances among the
k-nearest neighbors, and adopted a new allocation strategy for
the remaining points. Liu et al. [11] put forward the shared
nearest neighbors-based density peaks clustering algorithm
(SNN-DPC), which redefined the local density using the
concepts of shared neighbor similarity and the distance from
the nearest larger density point. Li and Tang [12] presented
a comparative density peaks clustering algorithm (CDP).
He redefined the local density calculation method for the
mutual k-nearest neighbors and defined a novel distancemea-
sure using the geodesic distance. Cheng et al. [13] proposed
a natural neighbor based density peaks clustering algorithm
(NaNDP), which reassessed the local density of each sample
point by using the maximum number of natural neighbors
as the k-nearest neighbors. Yaohui et al. [14] designed a
new adaptive density peak clustering method based on the
K-nearest neighbors (ADPC-KNN) and redefined the local
density calculation method. The ADPC-KNN used the distri-
bution information of the k-nearest neighbors and the param-
eter dc to calculate local density ρ. Du et al. [15] proposed
a novel density peaks clustering method. First, he provided a
new option based on using the sensitivity of the local density
for the local density and then redefined δ based on a new
density-adaptive metric. Wu et al. [16] proposed a density
peaks clustering method with a symmetric neighborhood
relationship (DPC-SNR), where the local densities of each
point are calculated using the reverse k-nearest neighbors and
similar clusters are aggregated using the symmetric neighbor-
hood graph. Sun et al. [17] considers that the computational
methods of the local density and the distance measure are
simple. He described an adaptive density peaks clustering
method with Fisher’s linear discriminant (ADPC-FLD) and
designed the local density using Pearson’s correlation coef-
ficient. Jiang et al. [18] proposed a density peaks clustering
based on the k-nearest neighbors (DPC-KNN), which inte-
grated the idea of the k-nearest neighbors into the formula for
equation δ. Mehmood et al. [19] proposed a clustering using
fast search and finding the density peaks via the heat diffusion
(CFSFDP-HD) algorithm. This algorithm conducted kernel
density estimation based on the heat diffusion in an infinite
domain. Parmar et al. [20] proposed a residual error-based

FIGURE 1. Local density diagrams of the layered k-nearest neighbors.
(a) The k-nearest neighbors of a low-density dataset. (b) The k-nearest
neighbors of a general density dataset. (c) The k-nearest neighbors of a
medium-density dataset. (d) The k-nearest neighbors of a high-density
dataset.

density peak clustering (REDPC) algorithm, where the local
densities are calculated using the residual error.

Many researchers have addressed the problem that theDPC
has difficulties dealing with complex structured datasets.
Zhuo et al. [21] confronted the uneven distribution within
local clusters and proposed a density peaks clustering algo-
rithm employing a hierarchical strategy (HCFS). The HCFS
used a new mechanism to measure the similarity and con-
nectivity of subclusters, which combined highly similar and
interconnected subclusters into a cluster. Wang and Zhu [22]
proposed a density peaks clustering method based on the
local minimal spanning tree (DPC-LMST), which utilized
the subcluster merging factor (SCMF) to aggregate similar
subclusters. Xu et al. [23] addressed the problem that there
are multiple density peaks in one cluster and proposed a
density peaks clustering algorithm with a merging strategy.
First, he utilized the support vectors to calculate the feedback
values and then recursively merged clusters according to the
feedback values. Parmar et al. [24] proposed a feasible resid-
ual error-based density peak clustering algorithm (FREDPC).
He not only redefined the local density through the resid-
ual error computation but also designed a fragment merg-
ing strategy based on residual fragments. Cheng et al. [25]
addressed the problem that DPC cannot process manifold
datasets. He proposed an improved density peaks clustering
algorithm based on shared-neighbors between local cores
(LORE-DP) and redefined natural neighbor-based density
and the newly defined graph-based distance. Qiao et al. [26]
studied the problem that DPC is not highly effective for the
division of unevenly distributed data. He proposed boundary
detection-based density peaks clustering (BDDPC) and intro-
duced a new indicator named the asymmetry measure that
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FIGURE 2. A detailed flowchart of the LKSM_DPC algorithm.

enhanced the ability to find boundary points. For complex
datasets with irregular shapes, Jiang et al. [27] proposed a
density fragment clustering without peaks algorithm (DFC),
implemented density fragment generation, and density frag-
ment aggregation.

Although the literature has made contributions to the
improvement of DPC, there are still several problems:
(1) most scholars used the idea of the k-nearest neighbors
to calculate the local density, but few people considered the
distribution of these k points, especially when the data density
distribution is uneven; and (2) in a 2-D decision graph, it is
difficult to determine the real cluster center, especially when
there are multiple peaks in a cluster.

To solve the above problems, in this paper, we proposed a
novel density peaks clustering algorithm based on the layered
k-nearest neighbors and subcluster merging (LKSM_DPC).
First, to adapt to different density datasets, we divided the k-
nearest neighbors into several layers. Second, to address the
complex multiple peaks in one cluster problem, we designed
a new subcluster similarity measurement mechanism, and a
new subcluster merging strategy is proposed.

The rest of this paper is organized as follows. Section II
briefly describes the literature related to DPC and three other
DPC derivatives. Section III introduces our proposed algo-
rithm in detail. The comparison and analysis of the exper-
iments are provided in Section IV. Finally, a summary and
conclusion are given in Section V.

II. RELATED WORKS
To better describe our algorithm, several related DPC algo-
rithms (DPC, DPC-KNN, FKNN-DPC, and DPCSA) are
briefly described as follows, and the sources of 4 algorithms
are shown in Table 1.

TABLE 1. Sources of the four algorithms.
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FIGURE 3. A detailed example of the LKSM_DPC algorithm on the
Pathbased dataset. (a) The Euclidean distance matrix. (b) The matrix of
local density and distance. (c) The decision graph. (d) Initial cluster
diagram of 13 candidate cluster centers. (e) The table of subcluster
similarity ranking.

FIGURE 3. (Continued.) A detailed example of the LKSM_DPC algorithm
on the Pathbased dataset. (f) Subcluster merging roadmap. (g) The
subcluster merge results after performing merge step 2. (h) The
subcluster merge results after performing merge step 7. (i) The subcluster
merge results after performing merge step 11.
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A. DENSITY PEAKS CLUSTERING ALGORITHM
Research on clustering using fast search and finding the
density peaks (DPC) has been published, even though it
is a new density-based clustering algorithm. DPC has two
key variables: the local density ρ and the distance δ. It has
been proposed based on the following assumption: the local
density of a cluster center is higher than that of other points
in the same group and has a relatively large distance from any
points with a higher local density.

For each data point i, the local density ρi can be calculated
using the following equation:

ρi =
∑
j
χ
(
dij − dc

)
χ (x) =

{
0, x ≥ 0
1, x < 0

(1)

where dij denotes the Euclidean distance between data point i
and j; and dc is the parameter of the cutoff distance and is the
unique input parameter, which usually takes 1 to 2 percent of
all the data points.

Rodriguez also provided another method for small
datasets. The Gaussian kernel of the local density is given by
the following equation:

ρi =
∑
j

exp

(
−

(
dij
dc

)2
)

(2)

For each data point i, the distance δi can be defined using
the following equation:

δi = min
j:ρj>ρi

(
dij
)

(3)

If data point i has the largest local density, then δi =
max

(
dij
)
.

Rodriguez considered when ρi and δi are both large, the
data point can be a candidate clustering center. In the decision
graph, the potential cluster centers γi are defined as follows:

γi = ρi × δi (4)

When the cluster center is selected, the remaining points
are then allocated to the corresponding cluster. The allocation
strategy of the DPC is to allocate the remaining points to the
nearest cluster center. Therefore, the original DPC algorithm
is as follows.

Through an extensive literature review, it was found that
the improvement of DPC mainly focuses on calculating the
local density ρ, the distance ρ, and the allocation strategy.
That is step2, step3, and step6 in the original algorithm.
Thus, step2 was improved by Du et al. [9]. Xie et al. [10]
improved step2 and optimized step6, and Yu et al. [28] also
redesigned step2 and optimized step6.

Of course, other steps of DPC have also been optimized
and improved [29]–[31].

As can be seen from the above algorithm, DPC only needs
one input parameter. However, the DPC does not consider the
uneven local distribution of the density and does not notice

Algorithm 1 DPC
Input:A dataset xεRN×M (RN×M is the data matrix, where
N denotes the total number of datasets, and M represents
the dimensions of the datasets), the cutoff distance param-
eter dC
Output: A label vector of the cluster index: yεRN×1
1. Calculate the Euclidean distance matrix using RN×M ;
2. Calculate ρi for each data point using equation (1)

or (2);
3. Calculate δi for each data point using equation (3);
4. Construct the decision graph using equation (4);
5. Select the appropriate cluster centers from the decision

graph;
6. Allocate the remaining data point (except for the cluster

center) to the nearest point with the higher density;
7. Return y and end.

when multiple density peaks occur in a cluster. Furthermore,
it is difficult to determine a suitable cutoff distance dc, and
DPC needs to be tested to find a good parameter. Fortunately,
some improved algorithms have been proposed to solve the
problems, and we will describe these. Then, we will describe
in detail the innovations of the following algorithms.

B. DENSITY PEAKS CLUSTERING BASED ON THE
K-NEAREST NEIGHBORS
Because it is difficult to find a proper cutoff distance in DPC,
Du et al. [9] proposed density peaks clustering based on
the k-nearest neighbors (DPC-KNN). His main contribution
was to improve the calculation of the local density. To better
compute the local density, the idea of the k-nearest neighbors
is adopted by his algorithm [32].

The idea of the k-nearest neighbors (KNN) is defined as
follows:

KNN (xi) =
{
j ∈ X |d(xi, xj) ≤ d(xi,NN k (xi))

}
(5)

where X denotes the datasets, d(xi, xj) represents the
Euclidean distance between data points xi and xj.NN k (xi) is
the kth nearest data point to xi according to the distance.

Then, the new local density is calculated as follows:

ρi = exp

−
1
k

∑
xj∈KNN (xi)

d
(
xi, xj

)2 (6)

where k is p × N , and p is a percentage of the total data
points N .
From the algorithm description, the DPC-KNN only

improved the local density calculation method of the original
DPC, which is step 2. The other steps of the DPC-KNN
are the same as DPC. The experimental results demonstrate
that the DPC-KNN has improved the clustering performance
on some datasets compared to DPC, Spectral Clustering
(SC), and K-means. However, the DPC-KNN only used
the k-nearest neighbors’ method and does not take into
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FIGURE 4. Experimental results for the D31 dataset. (a) K-means. (b) DBSCAN. (c) DPC. (d) DPC-KNN. (e) FKNN-DPC. (f) DPCSA. (g) LKSM_DPC.

consideration the internal structure and distribution of the
data. Therefore, the DPC-KNN performs poorly on manifold
datasets.

C. FUZZY WEIGHTED K-NEAREST NEIGHBORS DENSITY
PEAKS CLUSTERING
The local density for DPC is affected by the cutoff distance
and the ‘‘Domino Effect’’ that is easily caused by the alloca-
tion strategy. To address this effect, Xie et al. [10] proposed
a fuzzy weighted k-nearest neighbors density peak clustering
(FKNN-DPC). This algorithm also used k-nearest neighbors
to calculate the local density and redesigned the allocation
strategy of the remaining points.

The new local density calculated by the following:

ρi =
∑

j∈KNN i

exp
(
−dij

)
(7)

where dij represents the Euclidean distance from data point i
to j.

To calculate the probability pci , the similarity wij is defined
first.

wij =
1

1+ dij
(8)

The value of pci is determined by the following equation:

pci =
∑

j∈KNN i,yj=c

γij ∗ wij (9)

where γij = wij
/∑

l∈KNN j
wlj and yj = c represents the

cluster label c of data point j.
As seen from the above description, the FKNN-DPC not

only improved the calculation method of the local density but
also implemented a new redesigned remaining point alloca-
tion strategy. From the experimental results, the FKNN-DPC
can not only find the cluster centers and identify the clusters
in a large number of datasets, but it is also significantly better
than the original DPC. However, the allocation strategy of this
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FIGURE 5. Experimental results for the R15 dataset. (a) K-means. (b) DBSCAN. (c) DPC. (d) DPC-KNN. (e) FKNN-DPC. (f) DPCSA. (g) LKSM_DPC.

algorithm is very time-consuming and the input parameter K
needs to be set manually.

D. DENSITY PEAKS CLUSTERING ALGORITHM
To solve the problem of finding appropriate input parameters,
Yu et al. [28] proposed an improved DPC using the weighted
local density sequence and the remaining point assignment
strategies (DPCSA). The major improvements of the method
are that it does not need to input parameters, and it uses the
fixed k-nearest neighbors (K = 5) to calculate the local den-
sity. Moreover, the DPCSA implemented a new redesigned
nearest neighbor assignment strategy.

The input parameter (dc or k) requires manual input and
prior knowledge. To solve this problem, and an improved
local density clustering method using the weighted sequence
and fixed KNN was proposed.

ρi =

K∑
j=1

exp
(
−d ′ij

)
+

n−1∑
j=K+1

exp
(
−d ′ij

)
(j− K )2

(10)

where K = 5 and d
′

ij(j = 1, . . . , n−1) is the increasing order
of Euclidean distance dij.
Besides, the DPCSA proposed two-stage assignment

strategies, which defined a boundary condition. The data
points are used in the first assignment strategy when meet-
ing the conditions are δi = 1/

n
∑n

l=1 δl , and the first
assignment method is the same as the DPC. The remain-
ing points are subjected to the second strategy, and the
strategy constructed the nearest neighbor dynamic table
to allocate the remaining points. Due to limited space,
we note that the second assignment strategy is detailed in the
literature [28].

Although the DPCSA does not require input parameters
and improved the assignment strategies, the experimental
results demonstrate that the performance of the DPCSA is
only slightly better than those of other algorithms for par-
tial datasets. Moreover, the DPCSA takes more time than
other algorithms to calculate the local density and assign the
remaining points.
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FIGURE 6. Experimental results for the Jain dataset. (a) K-means. (b) DBSCAN. (c) DPC. (d) DPC-KNN. (e) FKNN-DPC. (f) DPCSA. (g) LKSM_DPC.

III. OUR ALGORITHM: LKSM_DPC
In this section, we will discuss the proposed method, namely,
a density peaks clustering algorithm based on the layered
k-nearest neighbors and subcluster merging (LKSM_DPC).
Two important improvements will be presented: (1) the
local density of the layered k-nearest neighbors, and (2) the
multiple-peak values subcluster merging strategy.

A. LOCAL DENSITY OF THE LAYERED K-NEAREST
NEIGHBORS
For the DPC algorithm, the estimation of the density of each
point not only prevents the selection of the cluster center but
also directly influences the quality of the cluster. We know
that by definition of the distance δ, the value of δ is also
closely related to the density ρ. Therefore, ρ is highly impor-
tant for the datasets with uneven density distribution. DPC
determines the local density using the cutoff distance dc,

but the method has difficulties selecting an appropriate dc,
whichwill affect the local density and initial clustering center.
Furthermore, it is usually easier to determine the value of
K than the cutoff distance dc, and the FKNN-DPC uses the
K value to determine local density.

This paper seeks to determine the local density using the
k-nearest neighbors. The k-nearest neighbors are divided
into multiple layers according to the density of the dataset
itself. That is the degree of unevenness in the density dis-
tribution. After numerous experiments, the following lay-
ering strategy was adopted. The k-nearest neighbors of a
high-density dataset are evenly divided into four layers. The
k-nearest neighbors in the first layer are the closest to the
cluster center, the k-nearest neighbors in the second layer
are closer to the cluster center, the k-nearest neighbors in the
third layer are far from the cluster center, and the k-nearest
neighbors in the fourth layer are the farthest from the cluster
center. The k-nearest neighbors of each layer have different
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FIGURE 7. Experimental results for the Spiral dataset. (a) K-means. (b) DBSCAN. (c) DPC. (d) DPC-KNN. (e) FKNN-DPC. (f) DPCSA. (g) LKSM_DPC.

local density contributions, and so each layer should be set
with different weight. Similarly, the k-nearest neighbors of a
medium-density dataset are divided into three layers, those of
a general density dataset are divided into two layers, and those
of a low-density dataset are divided into one layer. Schematic
diagrams of the k-nearest neighbors layering for different
local density datasets are shown in Figure 1.

The new layered k-nearest neighbor local density calcula-
tion formula is as follows:ρi =

L∑
l=1

∑
j∈lknn

1
c+dij
· w, 1 ≤ L ≤ 4

w = α (1− l)+ 1, 1 ≤ l ≤ 4
(11)

where L is the number of layers; l represents the layer of
the current k-nearest neighbors; j ∈ lknn indicates that point
j in the k-nearest neighbors belong to layer l; c is the sum
of the distance all data points; dij represents the distance;
w represents the local density weight contribution of the

k-nearest neighbors of each layer; and α is a parameter, which
is usually 0.2.

B. SIMILARITY AND SUBCLUSTER MERGING
In this section, to address the problem of multiple peaks in a
cluster in complex manifold data, a new subcluster similarity
calculation method and a merging strategy are proposed.
First, we calculate the similarity of a subcluster using the
idea of shared neighbors and Newton’s gravitation. Second,
subclusters are merged according to their orders of similarity.

To describe a new method for calculating the similarity of
subclusters, we first briefly describe the idea of shared neigh-
bors and Newton’s gravitation. The idea of shared neighbors
is as follows [11]: for arbitrary data points i and j, we can
have the k-nearest neighbors set D (i) of i and the k-nearest
neighbors set D (j) of j, and the shared neighbors of point i
and j are their common neighbor set SNN (i, j).

SNN (i, j) = D (i) ∩ D (j) (12)

VOLUME 8, 2020 123457



C. Ren et al.: Effective DPC Algorithm Based on the Layered KNNs and Subcluster Merging

FIGURE 8. Experimental results for the Aggregation dataset. (a) K-means. (b) DBSCAN. (c) DPC. (d) DPC-KNN. (e) FKNN-DPC. (f) DPCSA.
(g) LKSM_DPC.

The gravity calculation formula provided by Newton is as
follows [31]:

F = G
M1M2

R2
(13)

where F is universal gravitation, andM1 andM2 respectively
represent the masses of two objects, and R is the distance
between two objects.

Next, we consider the problem of the similarity of subclus-
ters. First, if two subclusters are similar, they should have
shared neighbors. That is the number of shared neighbors
is not zero. Second, if two subclusters are similar, there
is a potential attraction between them, which is similar to
the gravitation. Therefore, the closer the two subcluster are,
the more neighbors they share, the greater the attraction,
and the higher the similarity.

In summary, a new similarity calculation method is
proposed:

SIM (C1,C2) = SNN (c1, c2) ·
ρc1ρc2

d2c1c2
(14)

whereC1 andC2 are two subclusters; c1 and c2 represent the
clustering centers of two subcluster; SNN (c1, c2) denotes
the shared neighbors of the two subclusters; ρc1 is the local
density of c1; and dc1c2 is the Euclidean distance of the two
clustering centers.

Formultiple density peaks in a cluster, we can perform sub-
cluster merging by similarity. For multiple candidate cluster
centers, we establish a subcluster similarity matrix and sort
the similarity matrix in descending order. Subcluster merging
is performed in turn until the number of subclusters is equal
to the true number of clusters.

C. ALGORITHM FLOW
We address the shortcomings of the DPC and DPC variants
in processing manifold datasets that are due to the following:
(1) datasets with uneven density distribution, and (2) multi-
ple cluster peaks in a cluster. In this paper, we proposed a
DPC algorithm based on the layered k-nearest neighbors and
subcluster merging (LKSM_DPC). The main contribution
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FIGURE 9. Experimental results for the Ring dataset. (a) K-means. (b) DBSCAN. (c) DPC. (d) DPC-KNN. (e) FKNN-DPC. (f) DPCSA. (g) LKSM_DPC.

of our algorithm is to divide the k-nearest neighbors into
multiple layers to adapt to datasets with different densities
and solve the problem of multiple peaks in a cluster through
the subcluster merging strategy.

To demonstrate each step of our algorithm, we had a
detailed flowchart in Figure 2.

The specific steps of the LKSM_DPC are described by
algorithm 2 and algorithm 3.

D. EXAMPLE OF THE LKSM_DPC ALGORITHM
To show the LKSM_DPC proposed in this paper in detail,
we will take the complex manifold dataset Pathbased as an
example. The actual number of cluster centers in this dataset
is 3. First, the Euclidean distance matrix of the dataset is
shown in (a). Second, we calculate the local density ρ and
the distance δ respectively, the calculation result is shown
in (b). Third, we select 13 candidate cluster centers from
the decision graph (c) for subcluster merging. The initial

clustering result is shown in (d), and the candidate cluster
centers are represented by pentagrams. (e) is the subclus-
ter similarity table, and the steps are arranged in descend-
ing order of their similarity. (f) is the subcluster merging
roadmap, detailing the merge steps. (g) is the clustering graph
of the subcluster merge results after performing merge step 2.
(h) is the clustering graph of the subcluster merge results after
performing merge step 7. (i) is the clustering graph of the
subcluster merge result after executing merge step 11. At this
time, the number of subclusters is equal to the number of true
clusters, indicating the end of the entire merge process.

E. TIME COMPLEXITY ANALYSIS
The time complexity of the LKSM_DPC is mainly composed
of the following steps: (1) calculate the Euclidean distance
between two points (O

(
n2
)
); (2) calculate the local density ρ

of the layered KNN (O
(
n2
)
); (3) evaluate the distance δ

of each point (O
(
n2
)
); (4) allocate the remaining points to
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FIGURE 10. Experimental results for the Zigzag dataset. (a) K-means. (b) DBSCAN. (c) DPC. (d) DPC-KNN. (e) FKNN-DPC. (f) DPCSA. (g) LKSM_DPC.

cluster (O
(
n2
)
); and (5) perform subcluster merging, includ-

ing (a) search the shared neighbors (O
(
n2
)
), (b) calculate the

similarity of subcluster (O
(
n2
)
), and (c) process the subclus-

ter merging (O (n)). To sum up, the time complexity of our
algorithm is O

(
n2
)
.

IV. EXPERIMENTS
In this section, we compare the performance of the
LKSM_DPC with the K-means, DBSCAN, DPC,
DPC-KNN, FKNN-DPC, and DPCSA algorithms. The codes
of the DPC, FKNN-DPC, and DPCSA were provided by
the authors; we program the code of the DBSCAN and
KNN-DPC according to the authors’ articles; the code of
the K-means was provided by the Matlab built-in functions.
Our experimental environment is a PC with an Intel (R) Core
(TM) i7-9700 CPU @ 3.00 GHz and 16G RAM. All experi-
ments are implemented with MATLAB R2015b.

Our experimental datasets include 10 synthetic datasets
and 14 UCI datasets, which are shown in Tables 2 and 3.
The parameter settings of the contrast algorithms are taken
from the original articles. Cluster evaluation indexes include
the ACC [33], ARI [28] and AMI [34], and the respective

TABLE 2. Synthetic datasets.
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FIGURE 11. Experimental results for the Flame dataset. (a) K-means. (b) DBSCAN. (c) DPC. (d) DPC-KNN. (e) FKNN-DPC. (f) DPCSA. (g) LKSM_DPC.

TABLE 3. UCI datasets.

calculation formulas are shown below:

ACC =
1
n

n∑
i=1

δ (ui, vi) (15)

ARI =
RI − E [RI ]

max (RI )− E [RI ]
(16)

AMI =
I (U ,V )− E {I (U ,V )}

√
H (U)H (V )− E {I (U ,V )}

(17)

Before the experiment, to avoid fluctuations caused by
inconsistent attribute values, all datasets were standardized
using formula (18).

x ′ij =
xij − min

(
xj
)

max
(
xj
)
− min

(
xj
) (18)

where x ′ij is the result of normalization, xij is the data point
of row i and column j in a dataset, max

(
xj
)
is the maximum

value of column j in the dataset, and min
(
xj
)
is the minimum

value of column j in the dataset.

A. EXPERIMENTS USING SYNTHETIC DATASETS
First, our proposed LKSM_DPC algorithm is compared with
the K-means, DBSCAN, DPC, KNN-DPC, FKNN-DPC, and
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FIGURE 12. Experimental results for the Pathbased dataset. (a) K-means. (b) DBSCAN. (c) DPC. (d) DPC-KNN. (e) FKNN-DPC. (f) DPCSA.
(g) LKSM_DPC.

DPCSA on 10 synthetic datasets. The detailed descriptions of
the datasets are given in Table 2. The experimental results are
shown in Figures 4-13.

Figure 4 shows the clustering results obtained by
7 algorithms on dataset D31. All algorithms can correctly find
clusters and reasonably allocate the remaining points. The
clustering effect of K-means is similar to that of DBSCAN,
but DBSCAN marks many noise points. For the other
5 algorithms, only approximately 3% of the points were
misallocated. Among them, the DPC-KNN achieved better
clustering performance than the other algorithms, and the
clustering effect of our LKSM_DPC algorithm is preferable
to that of the DPCSA, K-means, and DBSCAN.

The clustering results for the R15 dataset obtained by
7 algorithms are given in Figure 5. The R15 dataset con-
tains 15 clusters. Outermost 7 clusters are far apart, and
it was found that all algorithms can correctly cluster these

7 clusters. Innermost clusters in the dataset can easily cause
allocation errors because clusters are adjacent. Nevertheless,
LKSM_DPC gets the best clustering performance. The ACC
of our algorithm is 0.9967, which is the same as those of the
DPC-KNN and FKNN-DPC.

The clustering results for the Jain dataset are shown in
Figure 6. Jain is a case in the dataset with uneven density
distribution, including two clusters. Especially, the cluster
with a compact density distribution is prone to multiple peaks
in one cluster. As we can see from Figure 6, the DPC,
DPC-KNN, FKNN-DPC, and DPCSA cannot find the correct
cluster centers, and the cluster centers all appear in the same
cluster. The DBSCAN cannot correctly distinguish the two
clusters. However, the LKSM_DPC can correctly identify the
two clusters through subcluster merging.

Figure 7 shows the clustering results obtained by
7 algorithms for the Spiral dataset. The spiral is a typical
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FIGURE 13. Experimental results for the S2 dataset. (a) K-means. (b) DBSCAN. (c) DPC. (d) DPC-KNN. (e) FKNN-DPC. (f) DPCSA. (g) LKSM_DPC.

manifold dataset consisting of 3 spiral clusters. K-means
cannot efficiently handle the three clusters. Except for the
K-means, all algorithms can identify clustering correctly,
and they can allocate the remaining points completely and
correctly.

We can see the clustering results for the Aggregation
dataset in Figure 8. Aggregation is a complex manifold
dataset with 7 irregularly shaped clusters. In terms of the
K-means algorithm, it cannot find the clustering center cor-
rectly. For the DBSCAN, although it can recognize cluster-
ing, there are always a few noise points. For the other five
algorithms can find the cluster center of each cluster, but the
DPCSA has an obvious allocation error in the two clusters on
the far right, in which clustering performance is weak. The
LKSM_DPC andDPC have the best clustering performances,
and their ARI can reach 0.9956.

Figure 9 shows the clustering results obtained by
7 algorithms for the Ring. The Ring is also a dataset with an

uneven density distribution, mainly composed of 2 circular
clusters. In Figure 9, the K-means, DPC-KNN, and DPC can-
not find the cluster centers correctly. Although the DPC-KNN
can find the cluster centers, there is an allocation error. The
LKSM_DPC has the same clustering performance as the
DBSCAN, FKNN-DPC, and DPCSA through the subcluster
merging strategy.

The clustering results for the Zigzag dataset obtained by
7 algorithms are shown in Figure 10. Zigzag is also amanifold
dataset consisting of 3 clusters. For the K-means, it cannot
address three clusters efficiently. In terms of the DBSCAN,
it was able to identify three clusters, but there were two
noise points. Although the DPC and the DPC-KNN can find
the cluster centers correctly, there are obvious remaining
point allocation errors. The FKNN-DPC and DPCSA can
completely identify these 3 clusters by improving the allo-
cation of the remaining points. Although the DPC allocation
strategy is adopted by the LKSM_DPC, the Zigzag dataset
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TABLE 4. ACC, ARI, and AMI of 7 algorithms on the synthetic datasets.

can also be completely correctly identified through subcluster
merging.

Figure 11 shows the clustering results obtained by
7 algorithms for the Flame dataset. The Flame is a case in the
manifold dataset. The K-means making an obvious allocation
error in clustering. For the DBSCAN, many boundary points
are identified as noise points. The DPC, DPC-KNN, and
DPCSA can completely find the cluster centers and correctly
assign the remaining points. Although the FKNN-DPC can
correctly find the cluster centers, there are 2 points where
there is an allocation error. Our algorithm correctly iden-
tifies 2 clusters through a subcluster merging strategy, and
its clustering performance is the same as those of the DPC,
DPC-KNN, and DPCSA.

Figure 12 shows the clustering results obtained by 7 algo-
rithms for the Pathbased dataset. Pathbased is a complicated
manifold dataset consisting of 3 clusters. Due to the con-
tact between clusters, remaining point allocation errors can
easily occur. For the K-means and DBSCAN, they can not
cluster the three clusters correctly and there was an obvious
misallocation. Although the DPC and DPC-KNN can find

the cluster centers, a large number of data points have been
misallocated. The FKNN-DPC and DPCSA are preferable to
DPC and the DPC-KNN, but there are still a few points with
allocation errors. The subcluster merging strategy is adopted
by the LKSM_DPC. The result of LKSM_DPC is perfect, for
the specific merging process, see III.D.

Figure 13 shows the clustering results obtained by 7 algo-
rithms for the S2 dataset. S2 is a dataset with many data
points, consisting of 15 irregular clusters. Due to the contact
between the clusters, it is difficult to assign all the remaining
points exactly. For the K-means, it cannot correctly find the
cluster center of the three clusters in the top and the top right
corner. The DBSCAN cannot correctly distinguish the three
clusters in the lower right corner. The ACC of the other five
algorithms can reach approximately 96%, and the DPC has
better clustering performance than the other algorithms. Our
LKSM_DPC performs better than the K-means, DBSCAN,
FKNN-DPC, and DPCSA.

Table 4 summarizes the ACC, ARI, and AMI of 7 algo-
rithms on the synthetic datasets, containing the parameter
settings. As can be observed in the table, for the 10 synthetic
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TABLE 5. ACC, ARI, and AMI of 7 algorithms on the UCI datasets.

datasets, our algorithm has better clustering performance for
8 datasets than the other algorithms, and it only slightly
lags behind other algorithms on the remaining 2 datasets.
Therefore, it shows that the algorithm proposed in this paper
is effective on synthetic datasets.

B. EXPERIMENTS USING UCI DATASETS
To further verify the effectiveness of our proposed algorithm.
We compared it with the other 6 algorithms on 14 UCI

datasets. The clustering results of 7 algorithms on the UCI
datasets are presented in Table 5. Each clustering index of
the LKSM_DPC algorithm is significantly better than those
of the other algorithms on the Wine, Ionosphere, Wdbc,
Glass, Parkinsons, SCADI, and Letter datasets. Among
these datasets, the subcluster merging strategy used in our
algorithm has an obvious effect on the clustering quality.
The FKNN-DPC performs best on the Iris dataset. The
LKSM_DPC is only slightly behind the FKNN-DPC in
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Algorithm 2 LKSM_DPC
Input:A dataset xεRN×M (RN×M is the data matrix, where
N denotes the total number of datasets, and M represents
the dimensions of the datasets), the parameter K
Output: A label vector of the cluster index: yεRN×1
1. Calculate the Euclidean distance matrix using RN×M ;
2. for each xi ∈ RN×M do
3. Calculate ρi and δi respectively using

equation (11)and (3);
4. end for
5. Construct the decision graph using equation (4), and

sort γi in descending order;
6. Select the appropriate subcluster centers C (C ≥ the

correct number of the clusters) in the decision graph;
7. Allocate the remaining data points (except for the clus-

ter center) to the nearest point of higher density;
8. Get the initial cluster yεRN×1;
9. if C == the correct number of the clusters then
10. return y;
11. else
12. y← Subcluster_merging(x, y,C);
13. end if
14. return y;

ACC, which is the same as the DPCSA’s clustering perfor-
mance. The FKNN-DPC also achieved the best clustering
performance on the Seeds dataset, our LKSM_DPC’s cluster-
ing performance outperforms those of K-means, DBSCAN,
DPC, and the DPCSA. On the Ionosphere dataset, the result
of DBSCAN is better than other algorithms, but our algorithm
is second. The LKSM_DPC and DPC obtain the same clus-
tering performance on the Segmentation dataset, and they are
also considerably better than other algorithms. On the Libras
dataset, the ACC index of the LKSM_DPC is the same as that
of the DPCSA, but its ARI and AMI are slightly behind those
of the DPCSA. On the Dermatology dataset, the LKSM_DPC
is dramatically better than six other algorithms in terms of
its ACC and ARI and only lags behind the FKNN-DPC in
AMI. On theWaveform dataset, our algorithm only surpasses
other algorithms on the ACC indicator, and it’s ARI and
AMI lag behind those of the FKNN-DPC. On the Pima

Algorithm 3 Subcluster_merging
Input: data set x, y, and C
Output: y
1. for each ci ∈ C do
2. for each cj ∈ C , i 6= j do
3. SNN

(
ci, cj

)
← ci ∩ cj (using equation (12));

4. if SNN
(
ci, cj

)
6= 0 then

5. Calculate the subcluster similarity SIM using
equation (14);

6. end if
7. end for
8. end for
9. Sort the SIM in descending order;

10. while C 6= the correct number of the clusters do
11. Merge the most similar subclusters according

to SIM ;
12. C ← C − 1;
13. end while
14. Get the clustering result yεRN×1;
15. return y;

dataset, the result of k-means is best. Nevertheless, the ACC
of LKSM_DPC is the same as that of the K-means and DPC.

In summary, the LKSM_DPC is markedly better than the
other 6 algorithms on most UCI datasets, and it is slightly
behind the FKNN-DPC on the Seeds and Iris datasets. On the
Ionosphere dataset, our algorithm lags behind the DBSCAN.
On the other datasets, the LKSM_DPC can obtain the highest
ACC, and only its ARI and AMI indicators are behind those
of other algorithms. Therefore, the proposed algorithm is
effective on most UCI datasets.

C. TIME COMPLEXITY ANALYSIS
Tables 6 and 7 show the run time of the K-means, DBSCAN,
DPC, DPC-KNN, FKNN-DPC, DPCSA, and LKSM_DPC
algorithms on the synthetic datasets and UCI datasets,
respectively.

As can be seen from Table 6, on the synthetic datasets,
the run time of the FKNN-DPC is significantly longer than
those of other algorithms, mainly because the remaining point
allocation of this algorithm is highly time-consuming, espe-
cially on large datasets, such as S2. Although the algorithm in

TABLE 6. Run time of 7 algorithms on the synthetic datasets.
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TABLE 7. Run time of 7 algorithms on the UCI datasets.

this paper calculated the subcluster similarity and proposed a
subcluster merging strategy, it does not significantly increase
the experimental time. The run time of LKSM_DPC is at the
same level as those of DPC and the DPC-KNN.

As shown by the run time on UCI datasets in Table 7,
the most time-consuming algorithm is still the FKNN-DPC,
followed by the DPCSA. The foremost reason is that the
FKNN-DPC and DPCSA proposed a new remaining point
allocation strategy. The run time of our LKSM_DPC algo-
rithm remains at the same level as DPC and the DPC-KNN.

V. CONCLUSIONS
This paper focuses on the problems of uneven density dis-
tribution and multiple peaks in the same cluster, and we
proposed an improved LKSM_DPC algorithm to address
these problems. The algorithm first designed a new local
density calculation method based on the idea of the k-nearest
neighbors and divided the k-nearest neighbors into multiple
layers to accommodate datasets with uneven density distri-
bution. Second, based on the ideas of shared neighbors and
gravitation, a new method for calculating the similarity of
subclusters is proposed, and a strategy for subcluster merg-
ing is also proposed. The LKSM_DPC is tested on a large
number of datasets. The experimental results show that our
algorithm’s clustering performance is often better than those
of the other 6 algorithms.

Although this algorithm can effectively deal with uneven
density distribution and multiple peak datasets, there are still
several shortcomings. First, the layering k-nearest neighbors
strategy requires many experiments to determine the spe-
cific layers. Second, how many candidate cluster centers are
selected for subcluster merging also needs many experiments
to determine. Therefore, the following research will focus on
solving the above problems, such as proposing a strategy for
automatically selecting candidate cluster centers.
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