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ABSTRACT In the field of evolutionary multi-objective optimization (EMO), most EMO algorithms try
to find a set of non-dominated solutions to approximate the Pareto front of a multi-objective optimization
problem. In these algorithms, a population is evolved from one generation to another, and the population of
the last generation is presented as the final result. However, recent studies reveal that some good solutions
can be discarded during the evolutionary process, whereas these solutions are non-dominated. One way to
solve this issue is to store all non-dominated solutions in an unbounded external archive (UEA) during the
evolutionary process and select a set of solutions from the UEA as the final result. A recently proposed
ND-Tree approach is very efficient for updating the UEA whenever a new solution is generated. However,
this may not be the most efficient strategy. In this paper, we propose a simple yet efficient update strategy
for the ND-Tree approach. The main idea is to reverse the order of solutions with respect to their generated
time when updating the UEA. The experimental results suggest that the ND-Tree approach assisted by the
proposed reverse strategy is much faster than the original ND-Tree approach in obtaining the final UEA. The
optimal update frequency for the proposed strategy is also investigated.

INDEX TERMS ND-Tree, evolutionary multi-objective optimization, unbounded external archive (UEA).

I. INTRODUCTION
Evolutionary multi-objective optimization (EMO) has been a
topic of interest for the last three decades. A multi-objective
optimization problem (MOP) usually has multiple objectives
that conflict with each other. Due to this conflicting nature,
there is no single optimal solution performing the best
on all objectives. Instead, a set of optimal solutions is
usually obtained to show the trade-off among the conflicting
objectives.

Many multi-objective evolutionary algorithms (MOEAs)
have been proposed aiming to find a set of optimal
solutions in a single run. In general, these algorithms can be
classified into three categories: dominance-based algorithms
(e.g., NSGA-II [1], B-NSGA-III [2] and U-NSGA-III [3]),
decomposition-based algorithms (e.g., MOEA/D [4] and
MOEA/D-AWA [5]), and indicator-based algorithms (e.g.,
IBEA [6] and HypE [7]). Recently, some researchers view
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multi-population-based algorithms and coevolution-based
algorithms as the fourth category, and many other MOEAs
for specific MOPs were proposed. For instance, Chen et al.
proposed a dynamic constrained MOEA (dCMOEA) to solve
dynamic constrained MOPs [8], Fu et al. developed a hybrid
MOEA (HMOEA) to solve hybrid flow shop scheduling
problems [9], and Fu et al. proposed a multi-objective brain
storm optimization (MOBSO) algorithm to solve stochastic
multi-objective distributed permutation flow shop scheduling
problems [10].

Most of these algorithms maintain a population (i.e., an
internal archive) with a bounded size. However, as inves-
tigated in [11], most of the algorithms fail to preserve the
best set of solutions in the bounded final population. Good
solutions can be discarded during the evolutionary process.
To address this issue, many researchers proposed to use
an external archive to assist the evolutionary process. For
example, Deb et al. proposed to select one of the parents
from an external archive [12], whereas both parents in
most of the existing algorithms are selected from the main
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population. In [13], an external archive serves as a guider
to guide the search in the internal population by allocating
the computational resource for each subproblem. The sub-
problems that can generate good solutions (i.e., solutions
that can enter the external archive) are more likely to be
selected at the next generation. The benefit of the bounded
external archive used in [12], [13] highly relies on the
quality of the solutions in the external archive. However,
as reported in [14]–[16], the performance of an external
archive deteriorates when it is bounded. Some algorithms
proposed to use unbounded external archives (UEAs) to
promote the evolutionary process [14], [17]. However,
maintaining the UEA is a very time-consuming process
since the size of the UEA can be very large, especially in
high-dimensional objective spaces.

To maintain the UEA during the evolutionary process effi-
ciently, several update approaches were proposed [14], [18].
The non-dominated tree (ND-Tree) approach is a recently
proposed update approach [18]. It partitions the objective
space into several hyper-rectangles according to the solutions
in the UEA. These hyper-rectangles are used to construct
an ND-Tree that can significantly reduce a vast number of
unnecessary solution comparisons during the UEA updating
process.

However, in some cases, we need the UEA after the
execution of an EMO algorithm (not during its execution)
as the final output of the algorithm [19]. As mentioned
before, many researchers focus on updating the UEA during
the evolutionary process, and all these approaches update
the UEA right after a new solution is generated. Intuitively,
this is not as effective since the data structures to store the
non-dominated solutions are reconstructed frequently. In this
paper, we propose a reverse strategy, which can be applied
to the ND-Tree approach to make it more efficient when
selecting the non-dominated solutions from all the examined
solutions at the end of the evolutionary process.

In this paper, we make the following two contributions:
• We propose a reverse strategy for the ND-Tree approach,
which can significantly reduce its time cost when it
is used to select all non-dominated solutions at the
end of the evolutionary process. The ND-Tree approach
with the reverse strategy is called the ND-Tree-Reverse
approach.

• To obtain the non-dominated solutions from all the
examined solutions, a straightforward method is to
obtain the UEA with the ND-Tree-Reverse approach at
the end of the evolutionary process. Another method is
to update the UEA by the ND-Tree-Reverse approach
every g generations (e.g., every 10 generations).
We investigate the optimal frequency of updating
the UEA during the evolutionary process using the
ND-Tree-Reverse approach.

The remainder of this paper is organized as follows.
In Section II, basic knowledge of the ND-Tree approach is
introduced. The reverse strategy is proposed in Section III.
In Section IV, experimental results are shown to validate the

effectiveness of our strategy. The optimal update frequency is
investigated in Section V. Finally, we conclude the paper in
Section VI.

II. ND-TREE APPROACH
The ND-Tree approach was initially proposed in [18].
In this section, we briefly explain this approach since it
is the foundation of our proposed reverse strategy. The
ND-Tree approach uses a tree structure (ND-Tree) to store all
non-dominated solutions generated during the evolutionary
process. When a new solution is generated, the new solution
is first compared with all solutions in the ND-Tree. If the
new solution is dominated, it is simply rejected. Otherwise,
the new solution is inserted into the tree, and the solutions
that are dominated by the new solution are removed from the
ND-Tree.

The ND-Tree is constructed based on nodes. Each node
indicates a hyper-rectangle in the objective space. The
hyper-rectangle is specified by the ideal and nadir points of
the solutions in this node. The solutions in the hyper-rectangle
form the solution set (L) of this node. Each node has no more
than B (a predefined size) child nodes (branches). A node is
called a leaf node if it has no child node; otherwise, it is called
a branch node. If a node has no parent node, it is a root node.

FIGURE 1. Illustration of the nodes of an ND-Tree. Node A (bounded by
the ideal and nadir points) is the parent node of child node a1 and child
node a2. The solution set of each child node has four solutions. The
solution set of the parent node A is the union of the solution sets of the
child nodes a1 and a2.

In Figure 1, the four stars constitute the solution set L of
node a1 (a1.L), and the four points constitute the solution
set L of node a2 (a2.L). The child nodes (i.e., nodes a1
and a2) of node A are the hyper-rectangles included in the
hyper-rectangle of node A. The union of a1.L and a2.L is the
solution set L of node A (i.e., A.L).

A. BASIC CONCEPTS IN ND-TREE
Throughout this paper, the minimization of all objectives is
assumed. That is, the ideal and nadir points of the solution
set L are defined as follows:

ideali = min
f ∈L

fi, i ∈ {1, . . . ,M}, (1)

nadiri = max
f ∈L

fi, i ∈ {1, . . . ,M}, (2)
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Algorithm 1 ND-Tree
input : S (a set of N examined solutions)
output: root (root of ND-Tree)
begin

1 initialize root with s1
2 for i ∈ {2, . . . ,N } do
3 is_dominated ←− update(root, si)
4 if root is deleted then
5 initialize root with si

6 else if not is_dominated then
7 insert(root, si)

where ideali and nadiri are the i-th elements of the ideal and
nadir points, respectively, andM is the number of objectives.
In Figure 1, the ideal and nadir points of node A are the
lower-left square and the upper-right square, respectively.

Themain idea of the ND-Tree approach is to utilize the tree
structure and the following three properties to avoid amassive
number of unnecessary solution comparisons [18]:

• Property 1: If a new solution is dominated by the nadir
point of a node, it is dominated by all solutions in L of
the node. This property is straightforward because the
nadir point of the node is dominated by all solutions in
L of the node.

• Property 2: If a new solution dominates the ideal point
of a node, it dominates all solutions in L of the node.

• Property 3: If a new solution is incomparable to the
ideal and nadir points of a node, the new solution is
incomparable to all solutions in L of the node. For the
detailed proof, refer to [18].

B. DETAILS OF ND-TREE
The main process of the ND-Tree approach is shown in
Algorithm 1. The input is a solution set (S) storing N
examined solutions (i.e., s1, . . . , sN ). First, a new node root
is initialized with the first generated solution s1. That is, for
node root , its solution set (root.L), ideal point (root.ideal),
and nadir point (root.nadir) are initialized with s1. Then,
node root is updated with the other solutions (i.e., s2, . . . , sN )
one by one. For the i-th solution si, if it is not dominated by
any solutions in the ND-Tree, si is inserted into the ND-Tree.
It is worth noting that if root is deleted by si, a new node root
is initialized with si.
The purposes of update (line 3 of Algorithm 1) are

(1) to indicate if a new solution (p) is dominated by any
solutions in a node (n) and (2) to delete the solutions that
are dominated by the solution p from n.L. In Algorithm 2,
is_dominated indicates whether the solution p is dominated
by any solutions in n.L. First, if the solution p is dominated
by n.nadir , is_dominated = True is returned (Property 1).
If the solution p dominates n.ideal, node n and its all
descendant nodes are deleted, and is_dominated = False is

Algorithm 2 Update(n, p)
input : n (a node), p (a solution)
output: is_dominated (p is dominated or not)
begin

1 if n.nadir ≺ p then
2 is_dominated ←− True

3 else if p ≺ n.ideal then
4 delete n and its all descendant nodes
5 is_dominated ←− False

6 else if n.ideal ≺ p or p ≺ n.nadir then
7 is_dominated ←− False

8 else
9 if n is a branch node then

10 for b ∈ n.branch do
11 is_dominated ←− update(b, p)
12 if is_dominated then
13 break

14 else if n is a leaf node then
15 for q ∈ n.L do
16 if q ≺ p then
17 is_dominated ←− True
18 break

19 else if p ≺ q then
20 is_dominated ←− False
21 n.L←− n.L \ {q}

returned (Property 2). If the solution p is not dominated by
n.ideal and p does not dominate n.nadir , is_dominated =
False is returned (Property 3).

If the above conditions are not met and node n is a
branch node, update is recursively performed for all child
nodes of node n (lines 10-13 of Algorithm 2). If the
solution p is dominated by at least one child node of node n,
is_dominated = True is returned. If node n has only a
child node left after updating all child nodes of n with the
solution p, node n is replaced by this child node.
If node n is a leaf node, all solutions in n.L are compared

with the solution p one by one (lines 15-21 of Algorithm 2).
If p is dominated by any solutions in n.L, is_dominated =
True is returned. If the solution p is not dominated by any
solutions in n.L, the solutions in n.L dominated by p are
deleted. It is worth noting that if all solutions in n.L are
deleted, node n is also deleted.

If the new solution p is not dominated by any solutions
stored in the ND-Tree (i.e., is_dominated = False), p is
inserted into the ND-Tree. In Algorithm 3, the inputs of insert
are a solution p and a node n. If node n is a branch node,
solution p is inserted into its nearest child node n′ of node
n (lines 2-9). In line 3, dist calculates the average distance
between the solution p and all solutions in n.branch[i].L.
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Algorithm 3 Insert(n, p)
input : n (a node of ND-Tree), p (a candidate solution)
begin

1 if n is a branch node then
2 min_index ←− 1
3 min_dist ←− dist(p, n.branch[1].L)
4 for i ∈ {2, . . . , |n.branch|} do
5 cur_dist ←− dist(p, n.branch[i].L)
6 if cur_dist < min_dist then
7 min_dist ←− cur_dist
8 min_index ←− i

9 insert(n.branch[min_index], p)
10 else if n is a leaf node then
11 n.L←− n.L

⋃
{p}

12 update_ideal_nadir(n, p)
13 if |n.L| > C then
14 split(n)

If node n is a leaf node, solution p is added to n.L and the ideal
and nadir points of node n are updated with the solution p.
If the size of n.L is larger than a predefined size (C), node n
is split by split.
In Algorithm 4, to split a node n, the solution set of n is

first copied to a temporary solution set (TS). Then, the most
distant solution from the other solutions is removed from TS.
This removal is repeatedly performed B times, where B is a
predefined number indicating the maximum number of the
child nodes of a node. These B solutions removed from TS
are used to initialize B new child nodes (lines 2-12). After
that, each remaining solution in TS is added to the closest
child node (i.e., one of the newly generated nodes). Finally,
the ideal and nadir points of each child node are updated by
update_ideal_nadir (lines 13-23).

Algorithm 5 shows how the ideal and nadir points are
updated. Note that the two points of the ancestors of node n
will also be updated if any of the two points of node n
change.

The above processes show all the details of the ND-Tree
approach. The main idea of this approach is to utilize the tree
structure and the three properties mentioned in this section to
avoid a number of unnecessary comparisons when updating
the ND-Tree.

III. REVERSE STRATEGY FOR ND-TREE
The ND-Tree approach updates the UEA right after a new
solution is generated. However, in some cases, we can first
store all the solutions generated during the evolutionary
process and then update the UEA using all the stored
solutions at the end of the evolutionary process. In this
section, we propose a reverse strategy for the ND-Tree
approach and elaborate how our proposed strategy speeds up
the ND-Tree approach.

Algorithm 4 Split(n)
input : n (a node of ND-Tree)
begin

1 TS ←− n.L
2 for i ∈ {1, . . . ,B} do
3 max_index ←− 1
4 max_dist ←− dist(n.L[1], n.L)
5 for j ∈ {2, . . . , |TS|} do
6 cur_dist ←− dist(n.L[j], n.L)
7 if cur_dist > max_dist then
8 max_dist ←− cur_dist
9 max_index ←− j

10 initialize a node n′ with TS[max_index]
11 n.branch←− n.branch

⋃
n′

12 TS ←− TS \ {TS[max_index]}

13 for i ∈ {1, . . . , |TS|} do
14 min_index ←− 1
15 min_dist ←− dist(TS[i], n.branch[1].L)
16 for j ∈ {2, . . . , |n.branch|} do
17 cur_dist ←− dist(TS[i], n.branch[j].L)
18 if cur_dist < min_dist then
19 min_dist ←− cur_dist
20 min_index ←− j

21 n′←− n.branch[min_index]
22 n′.L←− n′.L

⋃
{TS[i]}

23 update_ideal_nadir(n′,TS[i])

FIGURE 2. An artificial dataset that contains all solutions generated in
the first 200 generations. Solutions generated at each generation form a
subset in this artificial solution set (e.g., the red subset is generated at
the first generation). The red solid line denotes the Pareto front of this
dataset.

A. REVERSE STRATEGY
Solutions generated at early generations are usually far
from the Pareto front [20], [21]. In Figure 2, red solutions
(solutions generated at the first generation) are far away
from the Pareto front. With the evolutionary process,
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Algorithm 5 Update_ideal_nadir(n,p)
input : n (a node of ND-Tree), p (new candidate

solution)
begin

1 is_updated ←−False
2 for i ∈ {1, . . . ,M} do
3 if p[i] < n.ideal[i] then
4 is_updated ←−True
5 n.ideal[i]←− p[i]

6 else if p[i] > n.nadir[i] then
7 is_updated ←−True
8 n.nadir[i]←− p[i]

9 if is_updated and n.parent exists then
10 update_ideal_nadir(n.parent, p)

the solution set becomes increasingly closer to the Pareto
front. The original ND-Tree approach updates the UEA with
solutions from the first generation to the last generation (e.g.,
in Figure 2, the red solutions are used to update the UEA
first and the black solutions are used to update the UEA last).
Thus, the non-dominated solutions stored in the ND-Tree first
distribute at the upper-right corner (i.e., the non-dominated
solutions of the red solution set in Figure 2). During the
evolutionary process, the non-dominated solution set is
gradually updated and moves toward the lower-left corner
(i.e., the non-dominated solutions of the green, blue, and
then black solution set in Figure 2). We can clearly observe
that, during this process, the solutions stored in the ND-Tree
are updated too frequently. This is a significant drawback of
the ND-tree approach because reconstructing the ND-Tree
frequently is a very time-consuming process.

In the case of updating the UEA right after a new
solution is generated, we have to follow the generation order
of the solutions to update the ND-Tree. However, when
we update the ND-Tree after obtaining all the examined
solutions, we do not have to follow the generation order
of the solutions for updating the ND-Tree. Instead, we can
reverse the generation order of the solutions and update
the ND-Tree using the reversed sequence of the solutions.
In Algorithm 6, the last generated solution (sN ) is first used to
initialize the ND-Tree; then, the next solution (sN−1) is used
to update the ND-Tree, and so on. The potential benefit of
reversing the solution order for updating the ND-Tree is the
reduction of the frequency of reconstructing the ND-Tree.
Since the solutions in later generations are more likely to
dominate those in earlier generations, when we store the
solutions of the final population in the ND-Tree first, these
solutions are hard to be removed from the ND-Tree. Thus,
we do not have to reconstruct the ND-Tree frequently. For
the ND-Tree-Reverse approach, since the non-dominated
solutions of all the examined solutions (e.g., black solutions
on the Pareto front in Figure 2) are stored in the ND-Tree

Algorithm 6 ND-Tree-Reverse
input : S (a set of N examined solutions)
output: root (root of ND-Tree)
begin

1 initialize root with sN
2 for i ∈ {N − 1, . . . , 2} do
3 is_dominated ←− update(root, si)
4 if root is deleted then
5 initialize root with si

6 else if not is_dominated then
7 insert(root, si)

at the early stage of the updating, a number of solutions at
early generations (e.g., green solutions in Figure 2) can be
dominated by the nadir point of node root of the ND-Tree.
Therefore, those solutions can be simply rejected during
the ND-Tree updating, which significantly decreases the
computation time.

B. COMPUTATIONAL COMPLEXITY
1) ND-TREE APPROACH
Let the number of the child nodes (B) be 2, and the
probability that both children need to be further processed
(i.e., neither child meets the three properties mentioned in
Section II) be c1. The computational complexity of update
is2(N c1

1 ), where N1 is the number of solutions in the current
ND-Tree [18]. In practice, the probability c1 is smaller than 1,
so the computational complexity of update is sublinear in
time with respect to N1.

When the number of the child nodes (B) is 2,
the average-case computational complexity of insert
is 2(logN1). The computational complexity of
update_ideal_nadir is the same as that of insert since it
goes up the tree starting from a leaf node, which is equivalent
to going down the tree. split has a constant time complexity
since it depends on the maximum size of a leaf node (C) and
the number of child nodes (B). Thus, the total computational
complexity of updating an ND-Tree is2(max {N c1

1 , logN1}).

2) ND-TREE-REVERSE APPROACH
The computational complexity of the ND-Tree-Reverse
approach is the same as that of the ND-Tree approach. This
is because the code of the ND-Tree-Reverse approach is
the same as that of the ND-Tree approach since we only
change the order of the solutions to update the ND-Tree.
However, our reverse strategy can increase the probability
that a newly added solution is dominated by the nadir
point of node root . Thus, in the following toy example and
Section IV, the ND-Tree-Reverse approach is much faster
than the ND-Tree approach. It is worth noting that the
obtained solution sets by the ND-Tree approach and the
ND-Tree-Reverse approach are always the same. This is
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because both approaches find all non-dominated solutions of
the given dataset. In this paper, we use the runtime to compare
the performance of the two approaches. The performance
indicators, such as HV [22] and IGD [23], are not used since
the output solution sets by the two approaches are the same.

C. A TOY EXAMPLE
The proposed strategy is very simple yet effective. In the
remainder of this section, we use a toy example to
preliminarily verify the superiority of the ND-Tree-Reverse
approach. The ND-Tree approach and the ND-Tree-Reverse
approach are compared on 21 artificial bi-objective datasets.

1) ARTIFICIAL BI-OBJECTIVE DATASETS
An artificial bi-objective dataset S = {Sg|g = 1, . . . , 200}
where Sg is a subset containing 200 solutions (i.e., Sg =
{s1g, s

2
g, . . . , s

200
g }) at the g-th generation is generated as

follows. We first generate a solution (p = (p1, p2)), where
its first element (p1) is sampled from a normal distribution
with mean µ = 0 and standard deviation σ = 0.1,
and its second element (p2) is sampled from a uniform
distribution over (−1/

√
2, 1/
√
2). That is, p1 ∼ N (0, 0.01)

and p2 ∼ U (−1/
√
2), 1/

√
2). Then, we apply the following

transformation to rotate p anticlockwise to obtain p∗:

p∗ = p ·
[
cos θ − cos θ
sin θ cos θ

]
, (3)

where θ is a rotation degree, and it is set to π/4 here.
We iterate the above procedure to generate 200 rotated
solutions. The 200 rotated solutions form the initial subset So.
The subset Sg is obtained by applying the following
transformation:

Sg = So + (200− g+ 0.5), g = 1, 2, . . . , 200. (4)

So far, a subset Sg has been obtained. All subsets
(i.e., S1, S2, . . . , S200) can be easily obtained by repeating
the above procedure with different values of g. The artificial
bi-objective dataset S is composed of the 200 subsets.
Figure 2 shows part of the solution sets in S. For example,

red points are solutions generated at the first generation
(i.e., S1). It is worth noting that when we generate S200
(i.e., the black solutions in Figure 2), So in (3) are generated
only from the positive part of the normal distribution
(i.e., half-normal distribution). This is to guarantee that the
Pareto front of this dataset S is a line with two ends (1,0) and
(0, 1) (i.e., the red line in Figure 2).

2) EXPERIMENTS
We generate 21 artificial bi-objective datasets by 21 inde-
pendent runs of the abovementioned dataset generation
procedure. The ND-Tree approach and the ND-Tree-Reverse
approach are compared on each artificial dataset. The two
parameters C and B in the ND-Tree approach are set as
20 and 6, respectively, as suggested in [18]. Figure 3 shows
the comparison of runtime (in milliseconds) of the ND-Tree

FIGURE 3. Comparison of runtime (in milliseconds) of the ND-Tree
approach and the ND-Tree-Reverse approach on the 21 artificial
bi-objective datasets.

approach and the ND-Tree-Reverse approach on the 21 arti-
ficial datasets. We can observe that the ND-Tree-Reverse
approach is approximately seven times faster than the original
ND-Tree approach.

When all the examined solutions are stored, the
ND-Tree-Reverse approach is much faster than the original
ND-Tree approach. This is because the ND-Tree-Reverse
approach can avoid many unnecessary reconstruction
operations. In most cases, solutions generated in earlier
generations are likely to be dominated by the nadir point
of node root . The ND-Tree-Reverse approach simply rejects
those solutions without changing the ND-Tree structure. This
toy example shows that the time cost of the ND-Tree-Reverse
approach is much less than that of the original ND-Tree
approach. In the next section, we will use more realistic and
complex datasets to examine the effectiveness of the proposed
reverse strategy.

IV. EXPERIMENTS
A. SETTINGS FOR GENERATING DATASETS
To obtain the datasets for computational experiments in
this paper, we run NSGA-II on four MOPs: multi-objective
knapsack problem (MOKP) [22], multi-point distance min-
imization problem (MPDMP) [24], PS1 and PS2 [25]. For
each problem, we obtain 21 datasets by 21 independent
runs. In each run, the generated solutions at each gen-
eration are stored as a subset (e.g., S1). All the subsets
generated during the whole evolutionary process form a
single dataset. Different numbers of objectives are considered
(i.e., M ∈ {2, 3, 5, 10}).

It is worth noting that the same datasets are used
by different approaches (i.e., the ND-Tree approach and
the ND-Tree-Reverse approach). Thus, the outputs of the
approaches are the same since the non-dominated solution
sets of the same datasets are identical. In this section, we only
use the runtime to evaluate their performance.

1) MULTI-OBJECTIVE KNAPSACK PROBLEM (MOKP)
The multi-objective knapsack problem (MOKP [22]) has
been used in many studies for evaluating EMO algorithms.
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MOKP has two parameters: the number of items and the
number of knapsacks. The former is the dimension of the
decision space, and the latter is the number of objectives.
In this paper, the number of items is set to 250. The number
of knapsacks is 2, 3, 5, and 10.

2) MULTI-POINT DISTANCE MINIMIZATION
PROBLEM (MPDMP)
The multi-point distance minimization problem
(MPDMP [24]) has been used for visually examining the
behavior of EMOalgorithms. InMPDMP [24], the dimension
of the decision space is set as two. There is a regularM -sided
polygon in the center of the decision space. In the decision
space, the distances between a solution and the vertexes of the
polygon are the objectives to be minimized. In the original
MPDMP, the randomly generated initial solutions are often
very close to or on the Pareto front since they distribute
uniformly in the two-dimensional decision space. This
characteristic is very rare in real-world problems [20], [21].
To address this issue, we use a mapping approach to convert
the two-dimensional decision space to a high-dimensional
decision space [26]. In this way, the randomly generated
initial solutions are not very close to or on the Pareto front.
In this paper, the dimension of the decision space of MPDMP
is set as 10.

3) PS1 AND PS2
The other two problems are PS1 and PS2 [25]. Similar to
MPDMP, the PS problems are distance-based problems, and
the objectives of a solution are the distances between the
solution and the vertexes of the polygon in the decision
space. However, the polygon of the PS problems is an
(M − 1)-dimensional polygon rather than a two-dimensional
M -sided polygon. The difference between PS1 and PS2 is
that PS1 is unconstrained and PS2 is constrained. In addition,
for PS2, the dimension of the Pareto set can be modified.
In this paper, the dimensions of the decision spaces of PS1 and
PS2 are both set to 30.

4) NON-DOMINATED SORTING GENETIC
ALGORITHM II (NSGA-II)
The non-dominated sorting genetic algorithm II
(NSGA-II [1]) is a popular MOEA based on the Pareto
domination relation in the evolutionary optimization com-
munity. NSGA-II uses non-dominated sorting and density
estimation to guarantee the convergence and the diversity of
solutions, respectively. The non-dominated sorting is used as
the main fitness evaluation criterion to push the population
of solutions toward the Pareto front. The density estimation
(i.e., crowding distance in [1]) is used as the secondary fitness
evaluation criterion to increase the diversity of solutions in the
population over the entire Pareto front.

To generate datasets by NSGA-II, the population size is set
to 200 and the maximum number of the function evaluations
is set to 40000. That is, each dataset has 200 subsets
of solutions (i.e., S1, S2, . . . , S200), where Si denotes the

solutions generated in the i-th generation. The SBX crossover
and the polynomial mutation are used to generate the datasets
forMPDMP, PS1 and PS2, where each solution is represented
by a real number vector (i.e., read number coding). Following
the practice in [4], [5], the crossover probability and mutation
probability are set to 1 and 1/D, respectively, where D is the
dimension of the decision space (i.e., the number of decision
variables). The distribution indices of both operators are set
to 20. For MOKP where each solution is represented by a
binary string (i.e., binary coding), the one-point crossover
with the probability 1 and the bit-flip mutation with the
mutation probability 1/D are used to generate new solutions.
The same greedy repair method as in [21], [22] is used to
handle infeasible solutions. It is worth noting that all the
datasets are obtained from PlatEMO [27].

B. SETTINGS FOR ND-TREE
There are two parameters in the ND-Tree: the maximum size
of a leaf node (C) and the number of child nodes (B). In the
experiments, different values of B are considered (i.e., B ∈
{6, 10, 14, 18}), and different values of C are considered
(i.e., C ∈ {10, 15, 20, 25}).

We use a slightly different implementation of the ND-Tree
approach in [18]. The only difference lies in the method
of handling 2-objective cases. In the implementation of
the ND-Tree approach provided by [18], when a new
2-objective solution is inserted into a leaf node, the new
solution is compared with the solutions in the leaf node.
However, this process is redundant since it has already
been performed when the ND-Tree is updated with the new
solution, as described in Section II. In this study, to perform a
fair comparison, this redundant process is removed. For three
or more objectives, our implementation is exactly the same as
in [18].

All experiments are performed on a machine with
32 Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20 GHz running
Ubuntu 16.4.

C. COMPARISON OF THE RESULTS
In this subsection, we compare the runtime between the
ND-Tree approach and the ND-Tree-Reverse approach on the
datasets generated by NSGA-II on the above four problems.
Table 1 shows the runtime (in microseconds) of the ND-Tree
approach and the ND-Tree-Reverse approach with C ∈

{10, 15, 20, 25} and B = 6. In Table 1, the ND-Tree
approach and the ND-Tree-Reverse approach are referred
to as NT and NTR, respectively. The ND-Tree approach
with C is denoted as NT(C). Similarly, the ND-Tree-Reverse
approach with C is denoted as NTR(C). Table 2 shows the
runtime (in microseconds) of the ND-Tree approach and
the ND-Tree-Reverse approach with B ∈ {6, 10, 14, 18}
and C = 20. Similar to Table 1, the ND-Tree approach and
ND-Tree-Reverse approach with B are denoted as NT(B) and
NTR(B), respectively. From Table 1 and Table 2, we can
conclude that the ND-Tree-Reverse approach is much faster
than the ND-Tree approach in all cases. For example, when
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TABLE 1. Runtime (in microseconds) of the ND-Tree approach (NT) and the ND-Tree-Reverse approach (NTR) on the datasets of MOKP, MPDMP, PS1, and
PS2. Four different values of C are considered (i.e., 10, 15, 20, and 25) and B = 6. NT(C) and NTR(C) refer to the ND-Tree approach with C and the
ND-Tree-Reverse approach with C , respectively. The best results are shaded. The three symbols +, −, and ≈ denote that the NTR is significantly faster
than, slower than, and similar to NT, respectively.

TABLE 2. Runtime (in microseconds) of the ND-Tree approach (NT) and the ND-Tree-Reverse approach (NTR) on the datasets of MOKP, MPDMP, PS1, and
PS2. Four different values of B are considered (i.e., 6, 10, 14, and 18) and C = 20.

C = 10, B = 6, and M = 2, the ND-Tree-Reverse approach
is more than two times faster than the ND-Tree approach.

1) RELATIVE RUNTIME
To show the results in Table 1 more clearly, in this
subsection, we define the relative runtime as the runtime of
the ND-Tree-Reverse approach divided by the runtime of the
ND-Tree approach. For example, if the relative runtime is 0.5,
the runtime of the ND-Tree-Reverse approach is half that of
the ND-Tree approach. Thus, the smaller the relative runtime
is, the better the ND-Tree-Reverse approach performs relative
to the ND-Tree approach.

2) EFFECTS OF DIFFERENT VALUES OF C
Figure 4 (a) shows the relative runtime of the ND-Tree-
Reverse approach on MOKP with C ∈ {10, 15, 20, 25}
and B = 6. When M = 2 and C = 10, the relative
runtime forMOKP is approximately 0.5. The relative runtime
gradually increases with the increase inC . For example, when
M = 2, the runtime of the ND-Tree-Reverse approach is
approximately 0.5 times smaller than that of the ND-Tree
approach with C = 10. However, with C = 25, the runtime
of the ND-Tree-Reverse approach is approximately 0.8 times
smaller than that of the ND-Tree approach. Although the
relative runtime withM > 2 increases with the increase in C ,
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FIGURE 4. Relative runtimes over different values of C on the datasets of (a) MOKP, (b) MPDMP, (c) PS1, and (d) PS2 with M ∈ {2, 3, 5, 10}.

FIGURE 5. Relative runtimes over different values of B on the datasets of (a) MOKP, (b) MPDMP, (c) PS1, and (d) PS2 with M ∈ {2, 3, 5, 10}.

their growth is smaller than that with M = 2. In general,
the relative runtime for MOKP is approximately 0.5.
Figure 4 (b)-(d) show the relative runtimes on MPDMP, PS1,
and PS2, respectively. Similarly, the relative runtime for the
threeMOPs increases with the increase inC , and their relative
runtime is approximately 0.5.

3) EFFECTS OF DIFFERENT VALUES OF B
Figure 5 shows the relative runtime of the ND-Tree-Reverse
approach on MOKP, MPDMP, PS1 and PS2 when C = 20
and B ∈ {6, 10, 14, 18}. In all cases, the relative runtime
has almost no change with the increase in the parameter B.
This observation shows that the performance of the proposed
strategy is not sensitive to the parameter B.

4) DISCUSSION
As discussed in Section III, split in the ND-Tree approach has
a constant time complexity since it depends onC andB.When
C and B are set to small values, split is executed frequently,
but the time cost of each execution is very low. When C and
B are very large, split is executed less frequently, but the time
cost of each execution is large. Thus, the time cost of split
compensates the frequency of split to keep the runtime of
the two approaches less sensitive to C and B. This is also
consistent with the results from [18].

Figure 6 (a) shows the runtime (in log scale) of the
ND-Tree approach and the ND-Tree-Reverse approach for

FIGURE 6. Runtime (in log scale) of the ND-Tree approach (NT) and the
ND-Tree-Reverse approach (NTR) on the datasets of MOKP for
(a) different values of C and (b) different values of B. NT-Mm and
NTR-Mm denote the ND-Tree approach and the ND-Tree-Reverse
approach when the number of objectives M is m, respectively.

different values of C on MOKP with B = 6. The ND-Tree
approach with M = m is denoted as NT-Mm in Figure 5.
Similarly, the ND-Tree-Reverse approach with M = m is
denoted as NTR-Mm. As shown in Figure 6 (a), the runtime
of the ND-Tree approach and the ND-Tree-Reverse approach
for MOKP has no significant change with the increase in C .
However, compared to the ND-Tree-Reverse approach, when
C increases, the runtime of the ND-Tree approach decreases
slightly. Thus, the relative runtime of the ND-Tree-Reverse
approach increases with the increase in C . In other words,
the ND-Tree-Reverse approach is less sensitive to the value
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TABLE 3. Runtime (in microseconds) of the seven update approaches on the datasets generated by NSGA-II on MOKP, MPDMP, PS1, and PS2 with
M ∈ {2, 3, 5, 10} over 21 independent runs, where C = 20 and B = 6. NT denotes the ND-Tree approach, NTR denotes the ND-Tree-Reverse approach, and
the NTRg denotes the ND-Tree-Reverse approach for updating the non-dominated tree every g generations. The best results are shaded. The three
symbols +, −, and ≈ denote that NTRg is significantly faster than, slower than, and similar to NT, respectively.

ofC compared to the ND-Tree approach. The two approaches
show results similar to those of the other three problems.

Figure 6 (b) shows the runtime (in log scale) of the
ND-Tree approach and the ND-Tree-Reverse approach for
different values of B on MOKP with C = 20. The runtime
of the ND-Tree approach and the ND-Tree-Reverse approach
for MOKP almost remains constant with the increase in B.
This is why the relative runtime is not sensitive to the
parameter B.

V. INVESTIGATION OF OPTIMAL FREQUENCY
To obtain the non-dominated solutions from all the exam-
ined solutions, there are two strategies for updating the
ND-Tree. That is, the ND-Tree approach updates the
ND-Tree with the normal order (i.e., {S1, S2, . . . , S200}),
and the ND-Tree-Reverse approach updates the ND-Tree
with the reverse order (i.e., {S200, S199, . . . , S1}), where Sg
is a subset of solutions generated at the g-th generation.
In this section, we investigate the effect of the update
frequency on the performance of the ND-Tree-Reverse
approach. That is, the ND-Tree-Reverse approach is applied
every g generations, where g ∈ {5, 10, 20, 50, 100}. For
instance, if the ND-Tree is updated every 100 generations,
the solutions used to update the ND-Tree are in the order of
{{S100, S99, . . . , S1}, {S200, S199, . . . , S101}}. Table 3 shows
the runtime (in microseconds) of the ND-Tree approach,
the ND-Tree-Reverse approach, and the ND-Tree-Reverse
approach for updating the ND-Tree every g generations,
where g ∈ {5, 10, 20, 50, 100}. Because the results are
similar for different values of C and B, we only show the
results with C = 20 and B = 6 in Table 3. The original
ND-Tree approach is denoted as NT, the ND-Tree-Reverse

approach for updating the ND-Tree every g generations
is denoted as NTRg, and the ND-Tree-Reverse approach
for updating the ND-Tree once at the end of the evo-
lutionary process is denoted as NTR. Clearly, for all
instances, the ND-Tree-Reverse approach is the optimal
approach. That is, updating the ND-Tree once with the
reverse strategy at the end of the evolutionary process is
suggested.

To show the results more clearly, Figure 7 shows the
relative runtime of the six update approaches (i.e., NTR5,
NTR10, NTR20, NTR50, NTR100, and NTR) for the four
MOPs (i.e., MOKP, MPDMP, PS1, and PS2). Similar to the
definition of the relative runtime in Section IV, the relative
runtime of an approach is the runtime of the approach divided
by the runtime of theND-Tree approach, which can be viewed
as NTR1 since it updates the ND-Tree every generation.
As shown in Figure 7, with the decrease in the update
frequency (i.e., the increase in g), the relative runtime of the
update approach also decreases. For instance, in Figure 7 (a),
whenM = 10, the relative runtime of MOKP decreases from
1 to 0.6 with the decrease in the update frequency. This is
because when we update the ND-Tree with a low frequency,
the solutions inserted into the ND-Tree earlier are less likely
to be replaced by later solutions.

Although the experimental results suggest utilizing the
ND-Tree-Reverse approach to obtain the non-dominated
solutions once at the end of the evolutionary process,
the ND-Tree-Reverse approach with a certain frequency is an
excellent approach when we need to use the UEA during the
evolutionary process. In this situation, the ND-Tree-Reverse
approach with a certain frequency is a suggested approach
instead of the original ND-Tree approach.
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FIGURE 7. Relative runtimes over different values of g on the datasets of (a) MOKP, (b) MPDMP, (c) PS1, and (d)PS2 with M ∈ {2, 3, 5, 10}.

VI. CONCLUSION
In this paper, we proposed a simple yet effective strategy to
enhance the ND-Tree approach to obtain the non-dominated
solutions at the end of the evolutionary process. Experimental
results showed that the ND-Tree approach with the reverse
strategy is much faster than the ND-Tree approach on
MOKP, MPDMP, PS1, and PS2 with up to 10 objectives.
We also investigated the effect of the frequency of updating
the UEA on the performance of the reverse strategy. The
experimental results suggested that the most efficient way is
to update the UEA only once at the end of the evolutionary
process. Moreover, with the decrease in the update frequency,
the runtime of the ND-Tree-Reverse approach also decreases.

In the future, we may need to examine the performance
of various approaches (including ND-Tree and ND-Tree-
Reverse) on very large datasets. In our computational
experiments in this paper, the termination condition was
specified as 40,000 (200 generations of the population
with 200 solutions). This means that the total number of
examined solutions is 40,000. The advantages of the proposed
ND-Tree-Reverse approach can be more clearly shown by
difficult test problems. This is because these problems require
a greater computational load (e.g., 10,000 generations of
the population with 1000 solutions) for initial solutions that
are far away from the Pareto front. It is also an interesting
research topic to examine their performance on datasets
where almost all solutions are non-dominatedwith each other.
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