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ABSTRACT Community discovery (i.e. community detection) in signed networks is a division of nodes,
such that the edges in the communities are positive and the edges between the communities are negative.
Davis and Harary have solved the problem of community detection when a signed graph is balanced or
weakly balanced. When the signed network is unbalanced, community detection becomes very complex.
In this paper, we propose a novel memetic algorithm (MA) called MACD-SN for community partition
(i.e. community detection) in signed networks. Firstly, we present a novel initialization algorithm used in
initialization of MACD-SN. This method can accelerate the convergence rate of MACD-SN algorithm.
Next, in addition to using frequently-used variation operation (in this paper, variation and mutation are
interchangeable), this paper presents a novel crossover operation and a novel variation operation, which
contributes to increasing the correctness of the MACD-SN algorithm’s operation result and reduces its
running time. Lastly, this paper proposes a new local search algorithm, which may enable the algorithm’s
result to jump away the local best result with a certain probability and draw near the global best result quickly.
For testing the performance of MACD-SN algorithm, we have done many experiments using five kinds of
synthetic signed networks and five real-world signed networks. The test outcomes show that the proposed
algorithm is valid and efficient for signed network cluster partition (i.e. community detection).

INDEX TERMS Genetic algorithm, social network, signed network, community detection.

I. INTRODUCTION
Modern network science is an active field in understanding
complex systems. Actually, a lot of complicated systems
in various fields can be expressed by means of networks,
for example, complex collaborative relationships [1], social
systems [2], information systems [3], etc. In these networks,
nodes (or vertices) represent individual participants, and
edges (or links) represent relationships between participants.
A great deal of research efforts have been done on complex
networks, such as correlation clustering, dynamic network
evolution. Generally speaking, identifying community parti-
tion is an important task in complex network analysis. Com-
munity structures exist in a lot of network systems, such as
politics, economics, engineering, computer science, biology
and so on. A comment on network community discovery can
be found in Ref. [4]. The purpose of community discovery
is to identify clusters with dense links within clusters and
only sparse links between clusters [5]. In theoretical research
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and practical activities, community discovery is of great sig-
nificance. For instance, in the purchasing relations network
between customers and online retailers’ products (such as
www.taobao.com), identifying clusters of customers with
similar interests can establish an effective recommendation
system [4], [6].

In human society, many relationships between people are
signed, either positive or negative. Compared with traditional
networks, the positive and negative edges of signed networks
can more accurately describe cooperation (friendship/trust)
relations and competition (hostility/distrust) relations. When
two people have a relationship of trust, respect or love,
the relationship can be regarded as a positive connection.
But, the relationship with mistrust, disrespect or hatred can
be considered as a negative connection. This network is
called signed network [7], that is, the edge weight is greater
than 0, indicating a positive relationship; the edge weight
is less than 0, indicating a negative relationship; and the
edge weight is equal to 0, indicating that there is no rela-
tionship between these two individuals. Figure 1 shows a
simple signed network. In the figure, the solid line edge
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FIGURE 1. A schematic diagram of a simple signed graph.

represents a positive relationship, and the dotted line edge
represents a negative relationship. Community discovery in
signed networks is quite different from that in unsigned net-
works (that is, networks only contain positive connections).
In unsigned networks, the community structure is defined
as a group of nodes or vertices which have dense connec-
tions within groups and sparse connections between groups.
Whereas for signed social networks, communities (i.e. clus-
ters) are defined not only by the density of connections but
also by the signs of connections. The connections should be
densely positive and sparsely negative in a community while
densely negative and sparsely positive between communi-
ties. Many negative connections exist in the communities
and many positive connections exist between the commu-
nities make community detection more difficult. A strongly
(or weakly) balanced signed network can be divided into
two (or more) clusters, so that all connections within clus-
ters are positive, and all connections between clusters are
negative [8]–[10]. However, due to the existence of negative
connections in clusters and positive connections between
clusters, the real world signed networks are often unbalanced.
Therefore, it is a great challenge to design an effective and
efficient algorithm to discover the community structure in
signed graphs.

Unlike previous work, this paper proposes a new memetic
algorithm to detect community structure in signed networks.
In order to accelerate the convergence of algorithm (decrease
the numbers of loop), a novel population initializationmethod
of memetic algorithm is presented. Besides employing the
frequently-used variation operation, a novel crossover opera-
tion (called randomized two-way crossover operation in this
article) and a novel variation operation (called community
variation operation in this article) are also proposed, which
are capable of enhancing the accuracy of the result of the
algorithm and speeding up the convergence speed of popu-
lation. Randomized two-way crossover operation can prefer-
able retain the hereditary properties of previous generation
individuals, and community variation operation is capable of
enhancing greatly the chromosomes set (i.e. chromosomes
population) multiformity of MACD-SN algorithm. Further-
more, this paper also presents a local solution space search
subroutine to drive the optimal result of the offspring individ-
uals of the MACD-SN method approach the global optimal
result more quickly in the search region. This subroutine
is capable of driving the MACD-SN jump away local best
solution and attain global best solution with a specified odds.
Many experimental results show that the proposed algo-
rithm is effective and efficient for signed network community
partition.

The remaining sections of this thesis are arranged as
follows: The work related to this study is illuminated in
Section II. A few key concepts and background knowledge
connected with this study are introduced in Section III.
Section IV describes presented MACD-SN algorithm for
community identification (i.e. community detection) in the
signed network in detail. This section introduces the pro-
posed MACD-SN algorithm’s chromosome coding method,
initialization algorithm of chromosomes set, computational
formula of fitness used, tournament selection operator for
chromosomes selection, crossover operator and mutation
operators of genetic operation, local search function, etc.
Section V shows the test results on synthetic and real signed
networks. Section VI summarizes the whole paper.

II. RELATED WORKS
In recent decades, due to the emergence of a large number
of community partition problems, scholars have proposed
many algorithms to settle the community partition problems.
Girvan and Newman presented a dividing method, which is
called GN algorithm. In addition, Newman also put forward a
method called FN based on GN algorithm, which uses mod-
ularity function. It is a kind of agglomeration algorithm [11].
In the FN algorithm, each node in the graph is initially
located in a community with only one node. Afterwards,
at every stage, the method continuously consolidates cluster
pair with the largest modularity function increment. Accord-
ing to majorization of modularity function, Moore et al. [12]
proposed a method named CNM to detect community struc-
tures in complex networks. In comparison to the FN method,
CNMmethod can save computing time and is appropriate for
discovering cluster partition in large scale graphs. In [13],
Newman put forward a spectral method as well. The algo-
rithm used a modularity matrix.

In recent years, researchers have proposed many multi-
objective majorization algorithms to solve community
discovery problems. The multi-objective majorization algo-
rithm finds the optimal solution of the task to be solved by
majorizing multiple majorization functions at the same time.
These majorization functions evaluate the discovered cluster
structure from multiple viewpoints. In the literatures, several
frequently cited multi-objective majorization algorithms for
solving community discovery problems are listed as follows.
Shi et al. [14] put forward amulti objective evolutionary algo-
rithm called MOCD. In [15], the authors presented an algo-
rithm named MOEA/D-Net, which is also a multi-objective
evolutionary algorithm (MOEA). Liu et al. [65] proposed
a COMpression based Multi-Objective Evolutionary Algo-
rithm with Decomposition (Com-MOEA/D) for commu-
nity detection. In the prevenient literatures, there are also
two other multi-objective evolutionary algorithms, which are
called MODTLBO/D [16] and MODBSA/D [17], respec-
tively. The author of [18] developed a multi objective genetic
algorithm called MOGA-Net.

Although there are many excellent algorithms that can be
used to detect communities in the unsigned network, these
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algorithms can not be directly applied to the signed network
because of the existence of edge signs in the signed network.
Hence, a large number of scholars have proposed a lot of
community detection algorithms for signed networks after
considering the edge signs of signed networks.

Albayrak et al. [19] apply the spectral algorithm to the
signed network, and present a spectral method on the basis
of the signed Laplacian. They concluded that using signed
Laplacian kernel to divide signed networks into two clusters
is similar to the ratio cut in unsigned networks. Based on
the spectral Laplacian, Tewari et al. [20] propose a com-
munity detection algorithm for signed networks, and defines
the social imbalance (MOIs) on the basis of the l-cycles in
signed networks. However, the spectral method is very time
consuming.

Arenas et al. [21] modified the modularity definition of
the unsigned network and extended it to the signed network.
Bruggeman et al. [22] modified an existing Potts model to
include negative links, resulting in a method similar to signed
graphs clustering (i.e. community detection). The author
of [23] proposed a statistical probability model to identify the
community partition of signed networks. Moura et al. [24]
put forward a mixed integer programming model for cluster-
ing problems related to structural balance. Ismail et al. [25]
presented a high-efficiency two stage algorithm to identify
the community structures in signed social networks. The
objective functions they used are to minimize frustration and
maximize modularity. Dhillon et al. [26] presented a scalable
and efficient clustering algorithm using balance normalized
cut and a multilevel clustering algorithm. Pizzuti et al. [27]
obtained the community structure of the signed network by
maximizing the cluster modularity and minimizing the num-
ber of negative edges within communities and the number of
positive edges between communities. Liu et al. [28] presented
two novel evolutionary algorithms and conducted a large
number of experiments to compare them. The experimen-
tal results show the effectiveness and efficiency of the two
algorithms.

Cheung et al. [29] presented a random walk algorithm
for community detection of signed networks. Firstly, select
a node (i.e. vertex) in the network that has not yet assigned a
community label, and then use the node as the starting node to
perform a specific number of random walks to determine the
set of nodes it can reach along the edge path. Next, the authors
propose a function to determine which vertices are in the
same community as the starting vertex. At the same time,
the function considers the distribution of positive connections
and negative connections between the community and the
rest of the network. From [29], it can see that the result
matrix has block characteristics. By using the above function
to segment the matrix, the matrix will be split into different
block matrices representing different communities.

Du et al. [30] proposed a multi objective discrete par-
ticle swarm optimization algorithm for multi-resolution
signed network clustering. Firstly, the algorithm generates

initial population information including location, speed,
individual optimal solution and neighborhood information.
Next, the new velocity and position of each particle
are calculated, and a small disturbance is added to the
new position; then, the disturbed position is evaluated,
and the neighborhood information and optimal solution
of the particle are updated according to the evaluation
result.

Jiang et al. [31] propose a multi objective evolutionary
algorithm, which is based on similarity. In order to consider
the sign characteristic of signed networks, the authors pro-
posed two new indexes. One index is the signed similarity
index according to the existing similarity index [32]. Another
index is the signed tightness index based on the existing
tightness index [32]. During the run of the algorithm, when
the movement can increase the signed tightness of the cluster
(i.e., community), the node will be moved to another clus-
ter. However, if the movement can not increase the signed
tightness of the cluster, the node will be independent as a
new cluster. A special case is that multiple clusters have the
same vertices during the run of the algorithm, so when two
clusters have more than half of the same vertices, they will
be merged into a new cluster. The author of [33] used the
Signed Stochastic Block-Model in the process of community
detection. Haseyama et al. [34] partition network video by
constructing a weighted signed network and maximizing the
local modularity.

Recently, some scholars have done some very good works
for the community detection of signed networks. For exam-
ple, Attea et al. [44] proposed a new multi-objective signed
community detectionmodel and a new anti-frustration heuris-
tic operator for the community detection of signed networks.
Ma et al. [64] used the relationship between balancedness and
spectrum space, and proposed a spectrum algorithm based
on leading eigenvectors of signed networks to partition clus-
ters, so as to maximize the balancedness. Zhu et al. [45]
proposed a new evolution algorithm for community detection
in imbalanced signed networks which can be modeled as an
optimal partition problem. And the evolving mechanism of
nodes is updated by its neighbors’ information which leads
to form optimal community structure. Yan et al. [48] pro-
posed a new modularized convex nonnegative matrix factor-
ization (NMF) model, which combined signed modularized
informationwith convexNMFmodel to improve the accuracy
of community detection in signed and unsigned networks.
As for model selection, Yan et al. extended the modular-
ity density to signed networks and employed the signed
modularity density to determine the number of communities
automatically.

Most of the algorithms described in this section are based
on global information to identify communities. So far, some
scholars have begun to use local information for community
detection. The knowledge of using local information for com-
munity detection is beyond the scope of this paper, which is
not discussed here.
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III. FUNDAMENTAL NOTIONS AND
BACKGROUND KNOWLEDGE
A. THE DEFINITION OF SIGNED NETWORK AND THE
DEFINITION OF CLUSTER DETECTION OF
SIGNED NETWORK
A signed social network can be modeled as a graph G =
(V ,E), where V = (v1, v2, . . . ,vn) is the set of nodes (or ver-
tices), E = {(vi, vj) | vi, vj ∈ V ∩ i 6= j} is the set of
edges (or links). We can represent graph G by an adjacency
matrix A = (Aij)n×n, where Aij = 1(or −1) if we observe
it is the positive (negative) relationship between vi and vj,
and Aij = 0 means that there is no edge between vi and vj.
If Aij = 1, nodes vi and vj are positive neighbors of each
other; if Aij = −1, nodes vi and vj are negative neighbors of
each other. Given a node vi∈V , a

+

i =
∑
(vi,vj)∈E

∧
Ai,j=1 Aij

and a−i =
∑
(vi,vj)∈E∧Ai,j=−1

∣∣Aij∣∣ are defined respectively
as the positive degree and the negative degree of vi. a+ =∑

vi∈V a+i and a− =
∑

vi∈V a−i are the total positive
degree and the total negative degree of the signed network,
respectively. If for any i and j,Aij >= 0, thenG is an unsigned
network. Here, we do not consider the direction of the edge
between any two nodes, that is, G is an undirected graph in
this paper.

Let C = {c1, c2, . . . , ck} be a set of communities in G,
that is, ci ⊂ V for i = 1, 2, . . . , k . The problem of com-
munity detection in signed networks is accurately expressed
in (1). {

Aij > 0,
(
vi, vj

)
∈ E ∧ vi ∈ cp ∧ vj ∈ cp

Aij < 0,
(
vi, vj

)
∈ E ∧ vi ∈ cp ∧ vj ∈ cq

(1)

where p 6= q, p, q = 1, 2, . . . , k . The problem can be
described as identifying the community partition that max-
imizes the sum of positive edges within communities and
negative edges between communities.

If all the positive edges in the signed network are
in the communities, and all the negative edges are between
the communities, the signed network is balanced; otherwise,
the signed network is unbalanced.

B. A SIGNED MODULARITY FUNCTION
OF SIGNED GRAPHS
In this section, a signed modularity function Qs [21] of the
signed networks will be described. We will use it later in this
study. Its expression is as follows:

Qs=
1

2a+ + 2a−
∑
i

∑
j

[
Aij−

(
a+i a
+

j

2a+
−
a−i a
−

j

2a−

)]
δ
(
ci, cj

)
(2)

where Aij is the element of adjacency matrix A, and ci, cj
denote the communities to which nodes vi and vj belong,
respectively. If ci = cj, δ

(
ci, cj

)
= 1, otherwise,

δ
(
ci, cj

)
= 0. To understand the meaning of a+i (a

−

i ), a
+

j (a
−

j )
and a+

(
a−
)
, please refer to section III-A.

IV. PROPOSED ALGORITHM
Here, we put forward a memetic algorithm use in community
discovery in signed networks, called MACD-SN. At first,
we describe the representation of chromosomes in a popula-
tion. Then, a novel population initialization algorithm is pre-
sented, which can significantly speed up the convergence rate
of the MACD-SN algorithm. Next, a computational formula
for assessing chromosomes within a population is introduced.
At the same time, a selection operator for selecting parent
chromosomes for subsequent genetic operations is described.
Afterwards, we elaborate on a crossover operation (called
randomized two-way crossover operation) and two mutation
operations (called traditional mutation operation and com-
munity mutation operation respectively), which are used in
MACD-SN algorithm. The novel crossover operation and
novel community mutation operation proposed by us can
significantly improve the accuracy of MACD-SN algorithm’s
result and reduce the running time of the algorithm. In the
end, we present a local solution space search subroutine.
This subroutine can make the result of MACD-SN algorithm
jump out of the local optimal result with a certain probability
and approach the global optimal result quickly. The rest of
Section IV will elaborate on each theme. Figure 2 shows the
flow diagram of MACD-SN algorithm.

FIGURE 2. The flow diagram of MACD-SN Algorithm.

A. CHROMOSOME REPRESENTATION
In the classical memetic algorithm, each candidate commu-
nity division of network is denoted by a chromosome, also
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FIGURE 3. (a)A signed network contains 7 vertices, the solid line edge represents a positive relationship, and the dotted line edge represents a negative
relationship; (b)string-based coding method of a individual; (c)schematic diagram of the community structure of the network in (a) decoded by the
individual in (b).

called a solution or an individual. A set of a certain number
of chromosomes is known as a population, i.e., population
popu= {ch1, ch2, . . ., chq}, where chj is the jth chromosome
within the chromosomes set and q is the number of chromo-
somes in the set. Chromosome coding methods frequently
used in the literatures consist of locus-based coding method
and string-based coding method. In order to obtain the cor-
responding community partition by decoding chromosome
conveniently, we make use of string-based coding method.
The jth chromosome in the population of memetic algorithm
can be represented as: chj = [ge1, ge2, . . . , gen]. Among
them, gek is the kth gene (or component) of individual chj,
and the amount of vertices in the signed network is n. The
value range of each gene is {1, 2, . . . , n}. Genes denote the
vertices in the signed network, and the value of the kth gene
denote the community to which vertex vk belongs. In this cod-
ing method, if vertices vi and vj are in the same community,
gei = gej.
The chromosome shown in Figure 3(b) is a string-

based coding method of the signed network illustrated in
Figure 3(a). This signed graph consists of seven vertices. The
number of vertices in the network is 1, 2, 3, 4, 5, 6 and
7 respectively. In Figure 3(b), we can see that the gene values
assigned to vertices 1, 2, 4 and 5 are all 1, and the gene values
assigned to vertices 3, 6 and 7 are all 2. This shows that the
network contains two clusters, in which vertices 1, 2, 4 and
5 are in the same cluster, while vertices 3, 6 and 7 are in
the other cluster. Figure 3(c) illustrates the cluster partition
decoded by the chromosome in Figure 3(b).

B. CREATION OF INITIAL CHROMOSOMES POPULATION
In order to get an excellent memetic algorithm, it is very
important to generate a good initial population. The reason
is that the properties of the initial chromosomes will have
an effect on the convergence rate and the quality of the
final result of the method. Therefore, we propose an efficient
population initialization algorithm to generate a good initial
population and to reduce the convergence time of the whole
algorithm. Before introducing the initialization algorithm,
we first introduced a definition to be used in the algorithm.
Definition 1 [Node Imbalance Degree (NID)]: Let vi be a

node in the signed network G, and c be a community in G,

then the node imbalance degree NID(vi,c) of node vi relative
to community c is calculated as follows:

NID(vi, c) =
∑

vj∈c
∧

(vi,vj)∈E
∧
Aij=−1

∣∣Aij∣∣
+

∑
vj /∈c

∧
(vi,vj)∈E

∧
Aij=1

Aij (3)

Let c1 and c2 be two communities inG. Obviously, accord-
ing to the definition of community structure of signed net-
work, when NID(vi, c1) < NID(vi, c2), the priority should
be given to assigning node vi to community c1. Therefore,
in the initialization process of the MACD-SN algorithm pro-
posed by us, node k (equivalent to vi above) is assigned to
the neighbor community which reduces its node imbalance
degree (NID) to the minimum. Algorithm 1 describes the
pseudocode of the initialization process of the presented
MACD-SN algorithm.

In the above algorithm, the for loop at lines 1 to 24 is
used in producing the initial chromosomes set. The codes
in lines 2 to 4 generate an initial chromosome, each gene
value of which is a random integer randomly generated in the
range of 1 to n. The while loop of lines 6 to 23 continuously
optimizes the generated chromosomes, until in a while loop,
each node cannot optimize its community label according to
its neighbor’s community label. The for loop of lines 8 to
22 optimizes chromosome by a single pass loop from 1 to n.
In line 9, the community labels of the neighbor nodes of the
current node k are stored in the set comms. The codes in
lines 10 to 17 is responsible for finding the community in
comms that minimizes the node imbalance degree (NID) of
node k , and storing it in m. The codes in lines 18 to 21 check
whether the current community label of vertex k is m, if not,
use the m value as the community label of vertex k , and set
the value of the variable flag to 1 to continue the while loop.
In the end, the codes in line 25 return the generated population
of chromosomes.

Each time the for loop of line 1 is executed, it needs to
iterate the popu_size times. Each time the for loop of line 2 is
executed, it needs to iterate n (n is the number of nodes in
the signed network) times. A large number of experiments
show that every time the while loop of line 6 is executed,
it needs to iterate 8 times on average, no more than 13 times
at most. Each time the for loop of line 8 is executed, it needs
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Algorithm 1 Pseudocode of Population Creation Function
Initialize() of MACD-SN Method
Algorithm Parameters: chromosomes set size popu_size;
Algorithm Input: A matrix G representing a signed graph;
Algorithm Output: The initial set of chromosomes
generated;
1: for j = 1 to popu_size do
2: for k = 1 to n do
3: popu[j][k] = A random integer in the range of 1

to n generated randomly; //popu[] is an array
//of chromosomes population. popu[j][k]
//represents the kth gene of the jth
//chromosome.

4: end for
5: flag = 1;
6: while flag do
7: flag = 0;
8: for k = 1 to n do
9: comms = The set of communities to which

the neighbor nodes of node k belong;
10: t = ∞;
11: m = popu[j][k];
12: for each community comm ∈ comms do
13: if NID(k , comm) < t then
14: t = NID(k, comm);
15: m = comm;
16: end if
17: end for
18: if m 6= popu [j] [k] then
19: popu[j][k] = m;
20: flag = 1;
21: end if
22: end for
23: end while
24: end for
25: return popu[];

to iterate n times. It is assumed that the average degree of
nodes in the network is d (d � n). The time complexity
of the statement in line 9 is O(d). In the worst case, the for
loop of line 12 needs to iterate n-1 times for each execution.
Therefore, the time complexity of the initialization process of
MACD-SN algorithm is O(popu_size× n2).

C. FITNESS FUNCTION
In the MACD-SN algorithm proposed in this paper, we use
the signed modularity formula Qs (Eq. 2) introduced in
section III-B as the fitness function. According to [21], the
larger the value of Qs, the better the community partition
obtained.

D. SELECTION OPERATOR
For selecting parent individuals for subsequent genetic opera-
tions, we should propose a good selection operator. In recent
years, many methods have been developed as the selection

algorithm of memetic algorithm (MA). Tournament selection
algorithm is one of them. In order to make the low fitness
individuals appear in the offspring chromosomes set, we need
a method to control elitism. The tournament selection algo-
rithm meets this requirement, so we chose it. One of the
most attractive features of this algorithm is that chromosomes
in the current population have the same probability of becom-
ing the parent chromosomes of subsequent genetic opera-
tions. The flow chart of the algorithm is shown in Figure 4.

FIGURE 4. The flow chart of tournament selection algorithm.

The time complexity of tournament selection algorithm is
O(k2) (k is the number of parent chromosomes to be selected
by the tournament selection algorithm.).

E. CROSSOVER OPERATOR
Crossover operator is also one of the genetic operators of
MA algorithm. The crossover operator applies simultane-
ously to two parent chromosomes chosen by the selec-
tion operator, and reproduces new chromosomes through
interchanging contents between the selected chromosomes.
Hence, the chromosomes produced through crossover oper-
ator possess simultaneously the genetic properties of two
chromosomes of the previous generation [35]. The execution
process of crossover operator is: (1) choosing two chromo-
somes from the parent chromosomes set; (2) exchanging
contents between them in the light of crossover operation
rules to generate novel offspring chromosomes; (3) giving
two novel chromosomes. First, randomly select a crossing
location. Afterwards, according to the specified crossover
probability, the corresponding contents of the two parent
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chromosomes around the location are interchanged. Tradi-
tional crossover operations are listed below: the uniform
crossover, the one-point crossover, the one-way crossover,
the two-point crossover, the two-way crossover, and so on.

For taking full advantage of the community partition infor-
mation of two individuals of the previous generation, enhance
the accuracy of the offsprings produced through crossover
operation and reduce the running time of algorithm, this
paper presents a novel crossover operation, which is named
randomized two-way crossover operation. The pseudo code
of randomized two-way crossover operation is shown in
algorithm 2.

Figure 5 shows an executive process of the crossover oper-
ator of the MACD-SN method. Figure 6 shows an example
of community partition encoded by chromosomes ch1, ch2,
d1 and d2 in Figure 5, respectively.

In Figure 5, ch1 and ch2 are two parent individuals chosen
by the tournament selection algorithm from the previous
generation population. The steps of obtaining a descendant
individual d1 by the individuals ch1 and ch2 of the previous
generation are listed below. Step one: Label all components
of ch1 and ch2 as untouched, assign 0 to all components of
the descendant individual d1. Step two: Generate a random
number r . Suppose r = 0.7. Because 0.5 < r ≤ 1,
in individual ch2, an untouched component 4 is randomly
chosen, and all components with the identical component
value as component 4 in individual ch2, namely compo-
nents 2, 4, 6 and 9, are located. Afterwards, 1 is assigned
to the counter ct, and the present ct value is written in the
components 2, 4, 6 and 9 of the descendant individual d1.
Next, components 2, 4, 6 and 9 within individual ch2 are
labeled as touched. Step three: Generate a random number r .
Suppose r = 0.4. Because 0 ≤ r ≤ 0.5, in individ-
ual ch1, an untouched component 8 is randomly chosen,
and all components with the identical component value as
component 8 in individual ch1, namely components 8 and 9,
are located. Afterwards, ct + 1 = 2 is assigned to ct, and
write the current ct value into the component 8 of the descen-
dant individual d1. Due to the prevenient operation of the
algorithm has written component 9 of d1, this algorithm step
doesn’t change it. Component 9 of the individual d1 remains
unchanged. Afterwards, components 8 and 9 in individual
ch1 are labeled as touched. Step four: Generate a random
number r . Suppose r = 0.2. Because 0 ≤ r ≤ 0.5,
in individual ch1, an untouched component 2 is randomly
chosen, and all components with the identical component
value as component 2 in individual ch1, namely compo-
nents 2 and 6, are located. Because the components 2 and 6 of
d1 have been written in, the algorithm first labels compo-
nents 2 and 6 of ch1 as touched, and then randomly chooses
another untouched component 5 in ch1. Next, the algorithm
locates all components with the identical component value as
component 5 in individual ch1, namely components 4 and 5.
Afterwards, let ct= ct+ 1= 3, and write the current ct value

Algorithm 2 Pseudocode for Function Crossover() That Per-
forms Randomized Two-Way Crossover Operation
Algorithm Parameters: Two parent individuals (i.e.
chromosomes) ch1 and ch2 selected by tournament
selection algorithm;
Algorithm Input: A matrix G representing a signed
graph;
Algorithm Output: The two generated individuals;
1: for i = 1 to 2 do
2: for j = 1 to n do
3: ch1_s[j] = ‘U’; //ch1_s[j] = ‘U’ means ch1[j] has

//not been touched yet, ch1_s[j] = ‘V’ means
//ch1[j] has been touched.

4: ch2_s[j] = ‘U’; //ch2_s[j] = ‘U’ means ch2[j] has
//not been touched yet, ch2_s[j] = ‘V’ means
//ch2[j] has been touched.

5: di[j] = 0;
6: end for
7: ct = 1;
8: repeat
9: Generate a random number r between 0 and 1;
10: if 0 ≤ r ≤ 0.5 then
11: Randomly choose an untouched component in

ch1, assuming that the chosen component is
ch1[k], that is, ch1_ s[k] = ‘U’;

12: Locate all the component locations in ch1 that
have the same component value as the
ch1[k], assuming that these components are
ch1[k1], ch1[k2], . . . , ch1[ks];

13: if di[k1] 6= 0 ∧ di[k2] 6= 0 ∧ · · · ∧di[ks] 6= 0 then
14: for each u ∈ {k1, k2, . . ., ks} do
15: ch1_s[u] = ‘V’;
16: end for
17: goto 11;
18: end if
19: for each u ∈ {k1, k2, . . ., ks} do
20: if di[u] == 0 then
21: di[u] = ct;
22: end if
23: ch1_s[u] = ‘V’;
24: end for
25: else
26: Randomly choose an untouched component in

ch2, assuming that the chosen component is
ch2[k], that is, ch2_ s[k] = ‘U’;

27: Locate all the component locations in ch2
that have the same component value as the
ch2[k], assuming that these components are
ch2[k1], ch2[k2], . . . , ch2[ks];

28: if di[k1] 6= 0 ∧ di[k2] 6= 0 ∧ · · · ∧di[ks] 6= 0
then

29: for each u ∈ {k1, k2, . . ., ks} do
30: ch2_s[u] = ‘V’;
31: end for
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Algorithm 2 (Continued.) Pseudocode for Function
Crossover() That Performs Randomized Two-Way Crossover
Operation
32: goto 26;
33: end if
34: for each u ∈ {k1, k2, . . ., ks} do
35: if di[u] == 0 then
36: di[u] = ct;
37: end if
38: ch2_s[u] = ‘V’;
39: end for
40: end if
41: ct = ct + 1;
42: until all component locations of the descendant

individual di are written in;
43: end for
44: return the generated descendant individuals d1 and d2;

into the component 5 of the descendant individual d1. Due
to the prevenient operation of the algorithm has written
component 4 of d1, this operation doesn’t change it. Then,
components 4 and 5 in individual ch1 are labeled as touched.
Step five: Generate a random number r . Suppose r = 0.6.
Because 0.5 < r ≤ 1, in individual ch2, an untouched com-
ponent 7 is randomly chosen, and all components with the
identical component value as component 7 in individual ch2,
namely components 1, 3 and 7, are located. Afterwards,
let ct = ct + 1 = 4, and write the current ct value into
the components 1, 3 and 7 of the descendant individual d1.
Then, components 1, 3 and 7 in individual ch2 are labeled
as touched. At this time, the individual d1 has been filled,
so the work of producing descendant individual d1 has been
completed. We obtain descendant individual d1. The genera-
tive steps of the other descendant individual d2 are analogous
to that of d1. Figure 5 (c) shows the generation process of
descendant individual d2.
If the chromosome contains m communities on average,

the time complexity of crossover operation isO(m×n). In the
worst case, there are n communities in the parent chromo-
somes of crossover operation, then the time complexity of
crossover operation is O(n2).

F. MUTATION OPERATOR
In the MACD-SN method, in addition to the frequently-used
variation operation (this paper calls it the traditional variation
operation), we also put forward the other variation operation
(this paper calls it the community variation operation). In this
paper, mutation and variation are interchangeable.

As indicated in Figure 3, in classical string-based coding
method, every component denotes a node, and the value
of component stands for the cluster containing the node.
In the cluster identification methods, the frequently-used
mutation operation first stochastically chooses a vertex vs,
after that stochastically chooses a neighbour vertex vt of vs

FIGURE 5. An executive process of the crossover operator of the
MACD-SN method. In the figure, U represents that the relevant
component has been untouched, and V represents that the relevant
component has been touched. The figure in the rectangle represents the
label of the cluster that contains the relevant node. The value 0
represents that the relevant component has not been written. (a)Previous
generation individuals ch1 and ch2. (b)The producing process of
individual d1. (c)The producing process of individual d2.

(vs and vt are not included in the identical cluster), and at last
assigns the cluster label (component value) of vt to the com-
ponent corresponding to vertex vs [18]. The time complexity
of frequently-used mutation operation is O(1).
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FIGURE 6. An example of community partition encoded by chromosomes
ch1, ch2, d1 and d2 in Figure 5, respectively. A solid line indicates a
positive edge and a dotted line indicates a negative edge.

Figure 7 shows an instance of using a traditional variation
operation. As indicated in Figure 7, a chromosome H is
selected first, and afterwards a vertex 5 on chromosome H is
randomly chosen. The adjacent vertices of vertex 5 include
vertices 1, 2, 3 and 4. Suppose that vertex 2 is randomly
chosen. Thus, the component value of vertex 2 is assigned
to the component corresponding to vertex 5.

Previous to describe community mutation operator in
detail, the definition of community imbalance degree is first
described.
Definition 2 [Community Imbalance Degree (CID)]: Let

comm be a community in the signed network G, then the

FIGURE 7. A schematic diagram of a traditional mutation operator.

community imbalance degree CID (comm) of community
comm is calculated as follows:

CID(comm) =
1
nC

∑
vi∈comm

NID(vi, comm) (4)

where nC is the number of nodes in community comm. The
smaller the value of number of CID (comm), the more evident
the cluster structure of cluster comm.

The community variation operation will be described in
detail below. If the CID (comm) is higher than a parameter δ,
we think that the vertices in comm can not constitute a signed
cluster. At this point, we need to use community mutation
operator to reallocate the vertices in comm to more suitable
clusters. In algorithm 3, the operation steps of community
mutation operator of the MACD-SN method are presented.
Figure 8 is an explanatory drawing of the execution steps of
community mutation operator of the MACD-SN method.

Figure 8(a) shows an example of a simple signed graph.
Figure 8(b) illustrates an individual produced through the
graph in Figure 8(a). This individual is composed of three
clusters, i.e. cluster 1, 2 and 3. By equation (4), we may get
CID (comm1) = 4

2 = 2, CID (comm2) = 5
2 = 2.5, and CID

(comm3) = 1/3. Let δ = 2.1. Thus, cluster 2 is chosen for
mutation. Among the neighbors of vertex v2, vertices v1 and
v4 are its positive neighbors, and they are not in the same
cluster as vertex v2. Since the cluster labels of vertices v1
and v4 are both 1, the cluster label of vertex v2 are set as 1.
Among the positive neighbors of vertex v5, vertices v1, v3 and
v4 are not in the same community as vertex v5. Suppose vertex
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FIGURE 8. An instance of the execution process of community variation
operation of the MACD-SN method.

v4 is selected randomly. Therefore, the community label 1 of
vertex v4 is assigned to vertex v5.

The time complexity of community mutation operation
is O(n).

G. LOCAL SEARCH FUNCTION
For memetic algorithm, the local search process is a cru-
cial part. A good local search subroutine may significantly
increase the accuracy of the ultimate result of the algorithm
and reduce the time to find the optimal solution. Therefore,
this paper presents a subroutine called LocalSeek(), which
achieves the above goals well. Algorithm 4 describes the
details of the subroutine LocalSeek().

In algorithm 4, the codes in line 1 generate a random
permutation of the natural numbers from 1 through n and put
it in a set called seq. The iteration from 1 to n of lines 2 to
36 attempt to assign each node in the network to another more
appropriate cluster (i.e. community) in the order of the nodes
specified in the set seq. Obviously, according to the definition
of the signed community, we should first try to put the current
node i into the community to which most of its positive
neighbors belong. When node i has no positive neighbors,
we should try to put node i into the community that one of
its negative neighbors belongs to. Algorithm 4 embodies this
idea. The codes in line 5 put the clusters containing the most
positive neighbours of the current vertex i into the set comms.
(there may be multiple clusters that meet the condition).

Algorithm 3 Pseudocode for Function CommunityMuta-
tion() That Performs Community Mutation Operator
Algorithm Parameters: parent individual H , a threshold
parameter δ;
Algorithm Input: A matrix G representing a signed graph;
Algorithm Output: improved individual H ′;
1: comms = The set of clusters in H ;
2: k = −∞;
3: m = 0;
4: for each cluster comm ∈ comms do
5: if CID(comm) > k then //CID (comm) is the

//community imbalance degree of community
//comm.

6: k = CID(comm);
7: m = comm;
8: end if
9: end for
10:if m 6= 0

∧
CID(m) > δ then

11: ns = All vertices in m;
12: H ′ = H ;
13: while every vertex vs∈ns do
14: Stochastically choose a positive neighbour vt of

vertex vs (vs and vt are not included in the
identical cluster);

15: if there is vt satisfying the condition then
16: H ′[vs] = H ′[vt ];
17: end if
18: end while
19: qsH = Qs value of H computed using formula (2);
20: qsH ′ = Qs value of H ′ computed using formula (2);
21: if qsH ′ > qsH then
22: return H ′;
23: end if
24: end if
25: return H ;

The codes in lines 9 to 15 deal with the case where node i
has positive neighbors. Suppose there are p clusters in
comms, which are comm1, comm2, . . . , commp. After node i
is assigned to clusters comm1, comm2, . . . , commp, the new
clusters formed are newComm1, newComm2, . . . , newCommp,
respectively. The codes in lines 9 to 15 are responsi-
ble for finding the community commj so that the CID
(newCommj) is the minimum value in CID (newComm1),
CID (newComm2), . . . ,CID(newCommp), that is, commj =
arg min

commr∈comms
CID(commr ∪ i). Obviously, at this point,

commj is the most suitable community in the set comms
to merge with node i. The codes in lines 17 to 24 handle
the case where node i has only negative neighbors. The
codes in line 17 put the clusters containing the negative
neighbours of vertex i into the set comms. Suppose there
are q clusters in comms, which are comm1, comm2, . . . ,
commq. After node i is assigned to clusters comm1, comm2,
. . . , commq, the new clusters formed are newComm1,
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Algorithm 4 LocalSeek
Algorithm Parameters: best individual bestOffspring in
the offspring individuals set, a threshold parameter ρ;
Algorithm Input: A matrix G representing a signed graph;
Algorithm Output: revised individual bestOffspring;
1: A stochastic permutation of the natural numbers in

the range of 1 to n is generated and saved in a set
called seq;

2: for count = 1 to n do
3: i = seq[count];
4: comms = ∅;
5: Put the clusters (i.e. communities) containing most

positive neighbors of vertex i into the set
comms(there may be multiple clusters that meet
the condition);

6: k = ∞;
7: m = 0;
8: if comms 6= ∅ then
9: for each cluster comm ∈ comms do
10: newComm = Put node i into cluster comm to

form a new cluster;
11: if CID (newComm) < k then //CID (newComm)

//is the community imbalance
//degree of community newComm.

12: k = CID (newComm);
13: m = comm;
14: end if
15: end for
16: else
17: Put the clusters containing negative

neighbors of vertex i into the set comms;
18: for each cluster comm ∈ comms do
19: newComm = Put node i into cluster comm to

form a new cluster;
20: ifCID(newComm)< k then //CID (newComm)

//is the community imbalance
//degree of community newComm.

21: k = CID(newComm);
22: m = comm;
23: end if
24: end for
25: end if
26: if m 6= 0 then
27: newDivision= Put the vertex i of bestOffspring into

cluster m to produce a novel
individual;

28: qso = Qs value of individual bestOffspring was
computed through formula (2);

29: qsn = Qs value of individual newDivision
was computed through formula (2);

30: if qsn > qso then
31: bestOffspring = newDivision;
32: else if random number r between 0-1 generated

randomly < ρ
33: bestOffspring = newDivision;
34: end if
35: end if
36: end for
37: return bestOffspring;

newComm2, . . . , newCommq, respectively. The codes in
lines 18 to 24 are responsible for finding the cluster commj
so that the CID (newCommj) is the minimum value in CID
(newComm1),CID (newComm2), . . . ,CID(newCommq), that
is, commj = arg min

commr∈comms
CID(commr ∪ i). Obviously,

at this point, commj is the most suitable cluster in the set
comms to merge with node i. The codes in lines 26 to 35
are responsible for deciding whether node i can be placed
in the cluster commj (i.e. cluster m) found. If possible, place
node i in the cluster m. The codes in line 27 put the node i of
the individual bestOffspring into the cluster m to form a new
individual newDivision. The codes in line 28 use equation
(2) to calculate the Qs value for individual bestOffspring and
assign the calculated Qs value to variable qso. The codes
in line 29 use equation (2) to calculate the Qs value for
individual newDivision and assign the calculated Qs value
to variable qsn. The codes in line 30 determines if qsn is
greater than qso. If qsn is greater than qso, the codes in
line 31 take the individual newDivision as the best individual
bestOffspring in the offspring population. If qsn is not greater
than qso, the codes in line 32 randomly generate a real
number r between 0 and 1, and determines whether it is less
than the input parameter ρ of the algorithm. If less than,
the codes in line 33 take the individual newDivision as the
best individual bestOffspring in the offspring population. The
codes in line 37 return the improved individual bestOffspring.
Our subroutine LocalSeek() has one outstanding merit.

This merit is that it may accept a worse result within a certain
odds. In the process of solving, this merit enables LocalSeek()
to increase the accuracy of the result of the algorithm, and
also helps the algorithm jump away from the local best
solution. In algorithm 4, the conditional statement in line 32
implements this function. When the algorithms find the local
optimal solution, some other algorithms will terminate the
iteration. On account of some other algorithms can not find
the global best solution by movement in a small area near the
local best solution. Nevertheless, the LocalSeek() presented
in this paper can do this with a specified odds, namely, it may
adopt a result with a certain odds that is worse than the present
result. This is helpful for the subroutine to jump out of the
local best result and attain the global best result after a few
moving operations.

In algorithm 4, the time complexity of the statement in
line 1 is O(n × log n). Each time the for loop of line 2 is
executed, it needs to iterate n times. It is assumed that the
average degree of nodes in the network is d (d � n). The
time complexity of the statement in line 5 isO(d). In the worst
case, the for loop of line 9 needs to iterate n − 1 times for
each execution. Similarly, in the worst case, the for loop of
line 18 needs to iterate n − 1 times for each execution. The
time complexity of the statement in line 17 is O(d). Because
d � n, the time complexity of LocalSeek() is O (n2).

Algorithm 5 gives the pseudo code of the main function of
MACD-SN algorithm.
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Algorithm 5 MACD-SN Method
Algorithm Parameters: population size popu_size, num-
ber of parent individuals selected by tournament selection
algorithm k , crossover probability p1, mutation probability
p2 of traditional mutation operator, mutation probability p3
of community mutation operator, a threshold parameter δ
used in community mutation operator, a threshold parame-
ter ρ used in the function LocalSeek(), amount of iterations
without revision gt;
Algorithm Input:AmatrixG representing a signed graph;
AlgorithmOutput: a cluster partition comms of the signed
graph;
1: popu= initialize(popu_size); //produce initial individual
//population;
2: repeat
3: Use formula (2) to compute the fitness function

value of every individual in the population popu;
4: for i = 1 to k do //Using tournament selection

//algorithm to select parent individuals for
//subsequent genetic operations.

5: Randomly select k individuals from the
population set popu;

6: Using the selected k individuals to build a
maximum heap;

7: offs[i] = The top element of the maximum heap;
//offs[] is a individuals set selected for
//subsequent genetic operations.

8: end for
9: i = 1;
10: while i ≤ k-1 do
11: if rand(0,1) ≤ p1 then
12: (offs[i], offs[i+1])=Crossover(offs[i], offs[i+1]);

//Perform a randomized two-way crossover
//operation. The Crossover function returns
//two individuals, offs[i] and offs[i+ 1].

13: end if
14: i = i+ 2;
15: end while
16: for i = 1 to k do
17: if rand(0,1) ≤ p2 then
18: offs[i] = The traditional mutation operator is

executed on the offs[i];
19: end if
20: end for
21: for i = 1 to k do
22: if rand(0,1) ≤ p3 then
23: offs[i] = CommunityMutation(offs[i], δ); //The

//community mutation operator is executed
//on the offs[i];

24: end if
25: end for
26: bestOffspring = The individual with the maximum

fitness function value in offs;

Algorithm 5 (Continued.)MACD-SN Method
27: bestOffspring = LocalSeek(bestOffspring, ρ);
28: popu = popu + offs + bestOffspring;
29: popu=The set of the first popu_size individuals

with the largest fitness in the population popu;
30: until no improved amount of iterations for the

optimal individual in population popu >= gt;
31: comms = Cluster partition of individual with the

biggest fitness function value in the population
popu;

32: return comms;

According to the analysis of the prevenient sections,
in algorithm 5, the time complexity of the statement in
line 1 is O(popu_size × n2). The time complexity of the
statement in line 3 is O(popu_size). The time complexity of
the codes in lines 4 to 8 is O(k2)(k is the number of parent
chromosomes to be selected by the tournament selection
algorithm.). On average, the time complexity of the codes in
lines 10 to 15 is O(k × m × n)(m is the average number of
communities contained in a single chromosome.). The time
complexity of the codes in lines 16 to 20 is O(k). The time
complexity of the codes in lines 21 to 25 is O(k × n). The
time complexity of the statement in line 26 is O(k). The time
complexity of the statement in line 27 is O(n2). The time
complexity of the statement in line 29 is O(popu_size ×
log(popu_size)). The time complexity of the statement in
line 31 isO(popu_size+n). Through a large number of exper-
iments, we can see that the average execution times of repeat
statement in line 2 is about popu_size/3. Therefore, the time
complexity of MACD-SN algorithm is O(popu_size × k ×
m× n+ popu_size× n2).

V. EXPERIMENTAL RESULTS
In our experiment, the MACD-SN algorithm proposed
in this paper is verified in the synthetic and real-world
signed networks. We also make comparisons with other four
famous algorithms, namely, FEC [29], SSL [36], DM [7]
and SISN [37]. We use normalized mutual information
(NMI) [62] to assess the capability of the methods. Given that
A and B are two partitions of a network, then NMI (A,B) is
defined as follows.

NMI (A,B) =
−2

∑CA
i=1

∑CB
j=1 C ij log (

C ijN
C i.C.j

)∑CA
i=1 C i. log (

C i.
N )+

∑CB
j=1C.j log (

C.j
N )

(5)

where N is the number of nodes of the network, C is a
confusion matrix. Cij equals to the number of nodes shared in
common by community i in partition A and by community j in
partition B. CA (or CB) is the number of clusters in partition
A (or B), Ci. (or C.j) is the sum of elements of C in row i
(or column j).NMI takes value between 0 and 1. The larger the
value of number ofNMI, themore evident the cluster structure
obtained.
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In this paper, the source codes of FEC, SSL, DM and
SISN are obtained from the original author. MACD-SN is
implemented by C# 4.0 using Microsoft Visual Studio 2010.
In the experiment, we set the parameters popu_size = 1000,
k = 500, p1 = p2 = p3 = 0.3, δ = 3.9, gt= 3, and ρ = 0.15.

A. SYNTHETIC SIGNED NETWORKS
By using the generation model in reference [29], the synthetic
signed networks used in our experiment are produced. This
model can be described as

SG(c, n, k, pmin, pm−, pm+)

where c is the number of communities, n is the number of
vertices in each community, k is the average degree of the
vertices, pmin is the probability that a link falls within a com-
munity, pm- is the probability that a link within communities
is negative, and pm+ is the probability that a link between
communities is positive. pm- and pm+ are also known as the
yawp parameters.

In order to verify our method effectively, in our experi-
ment, we produce five kinds of synthetic signed networks,
which have different characteristics. These kinds of synthetic
signed networks include two different types of networks:
balanced networks and unbalanced networks. Among them,
only networks 1 is balanced, and other kinds of networks are
imbalanced.
Networks 1: The generation model of this kind of networks

is SG (6, 42, 42, pmin, 0, 0). Among them, in the interval
[0, 1], pmin increases gradually, and the increment of each
step is 0.1. Because the positive edges are within the clusters
and the negative edges lie between the clusters, this kind of
signed networks are balanced. We carry out five methods on
11 networks of this kind of networks. In Figure 9, we describe
the results of the five algorithms.

As shown in Figure 9, the MACD-SN and SISN can accu-
rately discover all communities in the networks. This means
that the two algorithms are not sensitive to the variation of the
parameter pmin and they have good detection ability within
the balanced signed graphs. The SSL algorithm also has
excellent detection ability, when pmin ≤ 0.8, it can correctly
identify the communities.
Networks 2: The generation model of this kind of networks

is SG(6, 42, 42, 0.5, pm-, 0). Among them, in the interval [0,
1], pm- increases gradually, and the increment of each step
is 0.1. This kind of signed networks is imbalanced, but the
yawp only consists in the clusters. In these signed networks,
the positive edges do not exist between clusters. The greater
the numerical value of pm-, the more minus edges the clusters
contain.

The outputs of the five methods running on Networks 2 are
shown in Figure 10. As we can see, when pm- varies from
0 to 1, the numerical values of NMI of the MACD-SN algo-
rithm and SSL algorithm are both 1. This result shows that
MACD-SN and SSL can perfectly identify the community
structures in this kind of signed networks. The performance
of the other three algorithms is relatively poor.

FIGURE 9. The output of MACD-SN algorithm and four comparison
algorithms on Networks 1.

FIGURE 10. The outputs of MACD-SN algorithm and four comparison
algorithms on Networks 2.

Networks 3: The generation model of this kind of net-
works is SG(6, 42, 42, 0.5, 0, pm+). Among them, in the
interval [0, 1], pm+ increases gradually, and the increment
of each step is 0.1. In this kind of networks, noises only
exists between clusters, and there are no negative edges in
the clusters, so this kind of signed networks is imbalanced.
The greater the numerical value of pm+, the more positive
edges there are between clusters in the network.
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FIGURE 11. The outputs of MACD-SN algorithm and four comparison
algorithms on Networks 3.

Figure 11 shows the outputs of the five methods on Net-
works 3. In Figure 11, we may observe that MACD-SN is
capable of identifying the clusters in the networks well, but
when pm+ > 0.1, the detection ability of SSL decreases.
On the whole, the sorting results of the five algorithms by
performance are MACD-SN, SSL, SISN, DM and FEC.
Networks 4: The generation model of this kind of networks

is SG(6, 42, 42, 0.5, pm-, 0.5). Among them, in the interval
[0, 1], pm- increases gradually, and the increment of each
step is 0.1. In this kind of networks, not only the negative
edges exist within the clusters, but also the positive edges
exist between the clusters, so this kind of signed networks is
imbalanced. The greater the numerical value of pm-, the more
minus edges the clusters contain.

The outputs of the five methods running on Networks 4
are shown in Figure 12. We can see that in Figure 12,
when pm- ≤ 0.3, MACD-SN can perfectly identify commu-
nities in the networks; when pm- > 0.3, the performance of
MACD-SN decreases. The SSL also has good accuracy, but
the DM and FEC have very bad accuracy. Among the five
algorithms, the performance of SISN is in the third place.
Networks 5: The generation model of this kind of networks

is SG(6, 42, 42, 0.5, 0.5, pm+). Among them, in the interval
[0, 1], pm+ increases gradually, and the increment of each
step is 0.1. Due to some negative edges consist in the clusters
and a number of positive edges consist between the clusters,
this kind of signed networks is imbalanced. The greater the
numerical value of pm+, the more positive edges there are
between clusters in the network.

Figure 13 shows the results of the five methods running on
networks 5. We can see that in Figure 13, MACD-SN has the

FIGURE 12. The outputs of MACD-SN algorithm and four comparison
algorithms on Networks 4.

FIGURE 13. The outputs of MACD-SN algorithm and four comparison
algorithms on Networks 5.

best accuracy among the five algorithms. SSL is in second
place. The rest are in order: SISN, FEC, and DM. In order
to further prove the high performance of our presented algo-
rithm, in Chart 1, we show the average values of NMI.
These average values are derived from the results of every
method executing on the above five kinds of signed networks.
In Chart 1, we may observe that our algorithm shows the best
accuracy among the five comparison algorithms.
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Chart 1. The average NMI values of the five algorithms.

B. REAL SIGNED NETWORKS
About the real signed networks, in the experiment, we choose
two real-world networks with true cluster partition and three
real-world networks without true cluster partition to test our
method. Two real signed networks that possess true cluster
partition are Gahuku-Gama subtribes network (GGSN) [39]
and Slovene parliamentary party network (SPPN) [38], sep-
arately. Three real signed networks that lack true cluster
partition are Slashdot network [40], Country network [41],
and Epinions network [40].

The SPPN shows the relationships among the Slovenian
parliament’s 10 political parties in 1994. The plus and minus
edges separately represent the alike and unalike relationships
between the political parties. The true cluster partition of the
SPPN consists of two clusters. The GGSN was created based
on Reads study on the cultures of the Eastern Central High-
lands of New Guinea. This network describes the political
alliance and enmities among the 16 Gahuku-Gama subtribes,
which were distributed in a particular area and were engaged
inwarfarewith one another in 1954. The positive and negative
links of the network correspond to political arrangements
with positive and negative ties, respectively.

FIGURE 14. Results of the MACD-SN running on SPPN.

The results of our algorithm running on SPPN are shown
in Figure 14. In Figure 14, we may observe that MACD-SN
detects two clusters on SPPN. The red circle vertices are
in one cluster, and the blue square vertices are in the other
cluster. Since all the plus edges are in the clusters and all
the minus edges are between clusters, SPPN is balanceable.

The final results of our algorithm is in line with the true
cluster partition of SPPN.

FIGURE 15. Results of the MACD-SN running on GGSN.

The results of MACD-SN algorithm running on GGSN
are shown in Figure 15. In Figure 15, the vertices with the
identical color and shape are in the same cluster. There are
three clusters in GGSN. In Figure 15, we can see that most
positive edges are in the clusters, and all negative edges are
between the clusters. This shows that GGSN is an imbalanced
signed network. The outputs of MACD-SN algorithm is in
line with the true cluster partition of the GGSN.

TheCountry networkwas generated using the Correlates of
War data set from 1996 to 1999 [41]. The vertices represent
the nations, the plus edges denote the military leagues, and
the minus edges represent the military antagonisms. In the
tests, we remove insular vertices in the graph and all con-
nected components except the largest connected components
in the graph, and only retain the maximal connected compo-
nent. This maximal component consists of 144 vertices and
1243 edges.

MACD-SN algorithm puts all the vertices into eight
clusters. The outcomes of the algorithm are presented in
Figures 16 and 17. Figure 16 visually presents the cluster
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FIGURE 16. Result of the MACD-SN running on Country network.

FIGURE 17. Result of the MACD-SN running on Country network.

partition of the Country network. In Figure 16, the minor
circles are used to represent the vertices, solid lines are used
to represent the positive edges, and dashed lines are used to
represent the negative edges. The vertices with the identical
color are in the identical cluster and constitute the larger
circle. Figure 17 shows an adjacency matrix rearranged based
on cluster partition. In Figure 17, pink and blue dots represent
positive and negative edges, severally. Eight clusters of ver-
tices are divided by solid lines with a green color. The number
on the right in Figure 17 is the number of the clusters, which
have a one-to-one correspondence with the number near the
big circles in Figure 16.

In Figures 16 and 17, we can see that, (1) Among the
eight clusters, clusters 2, 3, 4, 6 and 7 have dense pos-
itive edges. (2) Among the eight clusters, there are two
clusters with relatively sparse positive edges, which are
clusters 1 and 8 respectively. (3) The cluster 5 is composed
of many peripheral vertices, in which there are few edges.

FIGURE 18. Output of SSL running on the Country network.

FIGURE 19. Result of the MACD-SN running on Slashdot network.

(4) The negative edges mainly exist between clusters.
(5) There are no negative edges between the clusters 2 and 4,
but there are a large amount of positive edges between one
vertex of the cluster 2 and the vertices in the cluster 4.
(6) There are few edges between clusters 6 and 7, but there
are a large amount of positive edges between two vertices of
the cluster 7 and the vertices in the cluster 6.

We also compare the result of our algorithm with that of
SSL. Figure 18 presents the output of the SSL on the Country
signed graph. In Figure 18, we may observe that the running
result of MACD-SN is significantly superior to that of SSL.

We also run our algorithm MACD-SN on the Slashdot
network and Epinions network [40]. Epicions is a famous net-
work of consumers reviews. Users may believe or not believe
other users reviews. Slashdot is a debate website where users
can see other users as pals or foes. After all the insular vertices
within the network are removed, 126828 vertices are left in
the Epinions network and 73099 in the Slashdot network.
In our experiment, the two remaining networks were used.
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In the Epinions network, our algorithm identifies sixteen
clusters. In Slashdot network, our algorithm identifies six
clusters. Figure 19 shows an adjacency matrix of the Slashdot
network rearranged based on cluster partition. In Figure 19,
pink and blue dots represent positive and negative edges,
respectively. Six clusters of vertices are divided by solid lines
with a green color. According to the order from top left to
bottom right on the main diagonal, the number of vertices
in each cluster is 1741, 54398, 5922, 6413, 2746 and 1879,
severally. In Figure 19, wemay observe that the largest cluster
with 54398 vertices is loose, and the rest of clusters are
dense. Among the six clusters, the clusters with 6413 ver-
tices and 1879 vertices include a large number of negative
edges, while the clusters with 1741 vertices, 5922 vertices
and 2746 vertices include a large number of positive
edges.

VI. CONCLUSION
In the research field of signed graphs, cluster structure is an
important network feature. For the sake of better study and
take advantage of the signed networks, it is crucial to discover
their cluster partition. In this paper, we propose a memetic
method named MACD-SN for cluster partitions in signed
networks. The individual coding method of MACD-SN algo-
rithm adopts the well-known string-based coding method.
In order to speed up the convergence, we proposed a new
initialization algorithm for the cluster partitions of signed
networks. The fitness function of MACD-SN algorithm uses
the Qs function presented in [21]. In order to select par-
ent individuals for succedent genetic operations, we adopt
a well-known operator (i.e. tournament selection operator),
which provides chromosomes in the parent population iden-
tical probabilities to be chosen for subsequent genetic opera-
tors. In addition to the frequently-used mutation operation,
this paper also presents a novel crossover operation and a
novel mutation operation. The novel randomized two-way
crossover operation can preferable retain the hereditary prop-
erties of the previous generation individuals, and the novel
community mutation operator may greatly enhance the pop-
ulation diversity. Moreover, this paper presents a novel local
search subroutine, which may enhance the accuracy of the
ultimate output of theMACD-SN and reduce its running time,
and enable the algorithm to jump out of the local best solution
with a specified odds and attain the global best solution.
For verifying the detection ability of the proposed algorithm,
a large number of tests have been executed on five kinds of
synthetic signed graphs and five real signed graphs. Next,
we compare the test outcomes with four well-known signed
network cluster partition methods. The comparison outcomes
show that the performance of MACD-SN method is better
than the other four methods, which indicates that the method
proposed in this paper is an excellent method to identify
cluster partitions in signed networks. The disadvantage of
MACD-SN algorithm is that it can’t detect overlapping com-
munities in signed networks. We will solve this problem in
our future work.
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