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ABSTRACT Due to the risk of data leakage while training deep learning models in a shared environment,
we propose a new privacy-preserving deep learning (PPDL)method using a structural image de-identification
approach for object classification. The proposed structural image de-identification approach is designed
based on the fact that the degree of structural distortion of an image object has the greatest impact on
human’s perceptual system. Thus, by modifying only the structural parts of the original one using order
preserving encryption(OPE), the proposed structural image de-identification approach decreases only the
recognition rate by human. From the experimental results using different standard datasets, we show that the
object classification accuracy of the proposed structural image de-identification method is almost the same
as the deep learning performance for non-encrypted images, without revealing the original image contents
including sensitive information. Also, by handling the trade-off between object classification accuracy and
privacy protection for the de-identified image, we experimentally find the optimal size of input image for
the proposed structural image de-identification approach.

INDEX TERMS Data privacy, deep learning, image encryption, structural similarity, vector graphics.

I. INTRODUCTION
Recently, the performance of deep learning has become to
exceed human ability in various application services such as
language translation service, image recognition, self-driving
car service and so on [1], [2]. To realize the wide deployment
of deep learning, deep learning techniques such as improved
deep neural network(DNN) models, optimization algorithms
and data augmentation methods such as rotation, flip and
shifting have rapidly developed [3]–[5]. Also, since we com-
monly require the large amount of computing power to make
deep learning techniques work effectively [6], [7], many
cloud service providers deployed cloud computing environ-
ments such as Microsoft Azure, Google Cloud AI [8], [9].
However, due to the risk of data leakage while transmitting
data into the cloud server, serious privacy concerns can cause
users not to use deep learning services on cloud computing
environment.

For example, once an adversary penetrates cloud comput-
ing environment, all contents of user data for learning can
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be exposed to the adversary. Especially, it is known that
compared to the text data, the exposure of the image data
with dense information causes more critical privacy issues
[10], [11]. To resolve the critical privacy issue, we expect
cloud service providers to learn our data without exposing the
private information. Let us consider an input image in Fig. 1.
From the input image on client side, only a human face itself
may not reveal any private information. However, an associa-
tion between the human face and a context on the input image
can be used to recognize a person’s private information.
For example, the association between the human face and a
licence plate in the input image can reveal his private informa-
tion such as name and age. Also, the association between the
human face and a house location on background can reveal his
residence or favorite travel places.Without informed consent,
the associated data can be used by adversaries or cloud service
providers when deriving value to cause some critical privacy
issues.

As a representative solution, differential privacy technique
such as the Oasis Lab’s commercial platform allows the data
to remain anonymous and obscured [12]. As another repre-
sentative solution, privacy-preserving deep learning (PPDL)
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FIGURE 1. Example of privacy exposures in deep learning environments
using cloud GPU server.

enables deep learning computation on input data without
revealing the original content. When protecting the privacy
of data transmitted to cloud servers, service developers using
PPDL can use encrypted data in deep learning. The cur-
rent state-of-the-art PPDL methods which use encrypted data
can be categorized into two groups: (1) fully homomorphic
encryption(FHE)-based methods [13]–[15]; (2) pixel-value-
based encryptionmethods [16], [17]. Even though such PPDL
methods were successfully deployed when training deep
learning models using encrypted images directly, their usage
is constrained due to the following limitations.

Even though FHE-based methods have strong encryption
strength, their usage is mainly limited due to its slow eval-
uation(test) time, difficulty in applying the state-of-the-art
DNN models and the fact that data augmentation techniques
for performance improvement cannot be used in encrypted
state [13]–[15]. As a representative approach to obtain good
performance in the most recent deep learning models, pixel-
value-based PPDL methods were proposed.

Pixel-value-based PPDL methods show the good-
enough classification accuracy on color images such as
CIFAR-10 [18] and ImageNet [19]. These methods have
evolved because data augmentation techniques can be
adopted in an encrypted state [17]. However, since pixel-
value-based PPDL methods are designed using a probability-
based approach, they have limitations in relying on the
performance of random number generator. Also, since pixel-
value-based PPDL methods require to change the RGB pixel
values, they cannot directly analyze the gray-scale images.

In this paper, we propose a new type of privacy-preserving
approach using structural image de-identification, which is a
vector-driven approach of an image for PPDL on object clas-
sification. The proposed approach prevents private informa-
tion existing within training image data from being exposed

by unauthorized personnel when the data resides in a shared
environment like cloud system. The proposed approach is
designed to enable the use of state-of-the-art deep learning
techniques for better performance, such as various DNN
models and data augmentation, as well as to analyze gray-
scale images directly for general purposes.

Note that even though an image object contains a huge
amount of noise that does not affect the structural shape
of an object, humans can still recognize the image object
[20], [21]. Based on these previous observations, the pro-
posed structural image de-identification method modifies
only the structural features of image object to decrease the
recognition rate of human. Thus, instead of increasing the
noise level, privacy could be substantially enhanced by tak-
ing advantage of humans’ sensitivity to structural change of
images.

When modifying only the structural features of the image,
we use the concept of vector graphics file [22]. After trans-
forming the original input image into the vector graphics
file, we shift the points(represented by x and y) on image
while maintaining their position order using order preserv-
ing encryption(OPE) [23]. OPE changes the distribution of
the original data points(x, y) into a targeted distribution.
However, it doesn’t change the order of the original data
when being encrypted. As a result, the proposed structural
image de-identification decreases the recognition rate for the
private object by human. Also, since other attribute values
on an image except the x- and y- coordinate values do not
change, we can keep the high classification accuracy of deep
learning.

FIGURE 2. Operational overview of the proposed structural image
de-identification PPDL approach.

In Fig. 2, let us overview how the private object in an
input image can be protected by using the proposed structural
image de-identification method. Even though the image data
transmitted to the GPU server on clouding computing envi-
ronment is exposed to an adversary, the private object in the
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input image is protected because the structural shape of the
image object is modified not to be identified by human and
also, de-identified image cannot be restored to the original
input image.

Main contributions of this paper can be summarized
into three folds: (1) To the best of our knowledge,
we design, implement, and evaluate a new structural image
de-identification approach using OPE for the first time.
The primary objective of the proposed structural image
de-identification approach is to protect the privacy of the
input data to DNN models for object classification while
keeping the high accuracy; (2) We measure trade-off values
between utility and privacy according to various parameter
values of input image size. That is, we find the optimal size
of input image in the context of the trade-off between object
classification accuracy and privacy; (3) From the evaluation
results under various parameters using different well-known
standard datasets, we show the effectiveness of the proposed
structural image de-identification method.

The rest of this paper is organized as follows. In section II,
we describe the related works. In section III, we show some
preliminary analysis results for designing the proposed struc-
tural image de-identification approach. After describing the
details of the proposed structural de-identification approach
in section IV, we show the evaluation results under various
parameters using standard image datasets such as CIFAR-10
and ImageNet in section V. Finally, we conclude the paper in
section VI.

II. RELATED WORK
In this section, after categorizing PPDL approaches according
to the usage of encryption methods, we overview the charac-
teristics of the state-of-the-art PPDL approaches.

As a representative non-encryption method, Dwork et al.
proposed differential privacy(DP) to provide privacy pro-
tection for individual data [24]. DP adds noise to original
data and thus, generates fake dataset which have the same
distribution as original data. Even though DP allows us
to identify the features of the entire set of data, we can-
not identify the individual sensitive data. As a practical
DP-based PPDL approach, Phan et al. proposed the deep
private auto-encoder(dPA) model for analyzing the data with
added noise [25]. They perturbed the objective functions of
deep auto-encoder to enforce the differential privacy. They
have shown that the dPA model is very effective and effi-
cient through theoretical analysis and experimental results.
However, the dPA model cannot be used with a certain
deep learning model because it is designed only for a spe-
cific model, i.e., deep auto-encoder. Abadi et al. also pro-
posed a practical DP-based PPDL approach, called private
stochastic gradient descent(pSGD) algorithm [26]. Since
such approach applies directly to gradient computations,
it can be applied to various deep learning models. However,
experimental results of pSGD showed that accuracy signif-
icantly reduced into 73% for CIFAR-10 dataset compared
to 94% for MNIST dataset. These DP-based PPDL methods

showed the significant results in quantifying how much data
are compromised and how much privacy can be protected.
As a practical solution, Oasis lab’s Chorus automatically
applies differential privacy for general purpose data analysis.
Chorus has been released as open-source for protecting indi-
vidual privacy [12]. However, the DP-based PPDL models
result in reducing the object classification accuracy because
the large amount of added noise eventually distorts the
data [27].

The state-of-the-art privacy-preserving methods which
directly use encrypted data for evaluation are mainly
categorized into two groups: (1) FHE-based PPDL [13]–[15],
[28], [29]; (2) Pixel-value-based encryption [16], [17].

As a representative FHE-based method,
Nathan Dowlin et al. proposed CryptoNet, which trained
the deep learning models with FHE-encrypted data [13], for
the first time. To compute FHE-encrypted data, CryptoNet
transformed the activation and loss functions into polynomial
functions. However, CryptoNet required very high computa-
tional complexity and could be trained only on CPU. To over-
come the above issues from CryptoNet, Florian Bourse et al.
proposed a new approach, called FHE-DiNN [28]. Although
FHE-DiNN greatly improved the evaluation time and the
size of network compared to CryptoNets, it showed low
classification accuracy. Xiaoqian Jiang et al. proposed a new
approach, called E2DM, which uses a new matrix com-
putation mechanism to improve the evaluation time [29].
Le Trieu Phong et al. proposed a new approach using
additively homomorphic encryption to protect the gradi-
ents over the cloud server while considering the trade-
off between utility and privacy [14]. Very recently,
Ahmad Al Badawi et al. proposed homomorphic convolu-
tional neural networks(HCNN), which encrypts the train-
ing data using FHE, for classifying MNIST and CIFAR-10
datasets with graphics processing units(GPUs) [15]. These
FHE-based PPDL approaches need to transform non-linear
activation functions and loss functions into polynomial func-
tions in order to cope with the linear operation of FHE.
As a result, the FHE-based PPDL approaches cannot work
with the state-of-the-art DNN models. Also, the FHE-based
PPDL approaches need high computation complexity while
evaluating the test data. FHE-based PPDL approaches have a
limitation that they do not allow us to use data augmentation
for the encrypted data.

As a representative pixel-value-based encryption approach,
Masayuki Tanaka proposed block-wise pixel shuffling algo-
rithm for 8-bit RGB image [16]. Because data augmenta-
tion must be done before encryption to improve the object
classification accuracy, this method requires a lot of com-
puting resources. Recently, Warit Sirichotedumrong et al.
proposed a new pixel-based image encryption approach to
generate Negative-Positive transformation and color shuffled
image [17]. The new pixel-based image encryption approach
improved the object classification accuracy by adding a
simple layer, called an adaptation layer, in front of the
existing DNN model. They also reduced computer resource
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TABLE 1. Characteristics of representative PPDL approaches.

consumption by enabling data augmentation after encryption.
However, their usage was limited to the RGB color images
because the pixel-value-based encryption approach required
to change the RGB pixel values.

Similar to the encryption-based PPDL approaches includ-
ing FHE-based PPDL and pixel-value-based encryption
approaches, the proposed structural image de-identifcation
approach for PPDL uses OPE to generate encrypted input
image. However, different from FHE-based PPDL approach,
the proposed PPDL approach can be used with any deep
learning model. The evaluation time is much faster than
the other encryption-based approaches. Also, data augmen-
tation can be applied after encryption. Different from the
pixel-value-based encryption approach, the proposed PPDL
approach can classify the gray-scale image well. Compared
to DP-based PPDL, the proposed PPDL approach also shows
the higher accuracy. We summarize the characteristics of
representative PPDL approaches in Table. 1 for comparison.

III. PRELIMINARIES
In this section, we show why we use vector graphics files
instead of raster graphics images. We describe how to com-
bine different measurement indices for the proposed struc-
tural image de-identification approach. Also, we introduce a
privacy threat scenario where data privacy can be infringed
when training deep learning model.

A. RASTER GRAPHICS IMAGE V.S. VECTOR
GRAPHICS IMAGE
A raster graphics image has an RGB color for each pixel [30].
Well-known image formats, e.g., JPG, PNG and BMP, belong
to raster graphics image formats. According to the arrange-
ment of RGB color channels, raster graphics images represent
objects and the combination of pixel color values allows us to
recognize and classify objects. However, if each pixel value
changes carelessly, objects in the raster graphics image can-
not be easily identified by deep learning. When analyzing the
input images, whose pixel values are encrypted, using convo-
lutional neural network(CNN) models, we actually observed
the poor classification accuracy. This is because each pixel in
an image has a value from 0 to 255 following modular opera-
tion and thus, a mixing and an overlap can be observed from
the converted image as shown in Fig. 3. Thus, information of
objects in the raster graphics image can be easily damaged.

On the other hand, vector graphics file uses geometric
information such as curves and polygons to represent images.

FIGURE 3. Conversion on pixel image. Here, an overlap occurs where the
original pixel values are different before conversion but, the pixel values
are the same as after conversion. A mixing can be observed at the pixels
where small original pixel values are converted into larger ones.

FIGURE 4. Conversion on vector graphics file. While the color of shape is
unchanged, only the structural shape slightly changes.

Even though the size of vector graphics file varies, mathemat-
ical operations can help to render it without compromising
image quality [22]. Fig. 4 (a) shows the content of a vector
format file together with the corresponding vector graphics
file. Note that the < path > tag in the vector format file
consists of properties such as positions, line thickness, colors,
and so on and thus, describes a shape of the corresponding
vector graphics file. As a result of a random shift for each
pixel, we can observe that the < path > tag in Fig. 4 (b) has
the different position(d) but, the same color(fill). As a result,
even though we can observe some variation in structural
shape of the original image, object in the vector graphics file
can be easily maintained into the same shape.
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The relationship between vector graphics and raster graph-
ics can be expressed as shown in equation 1.

Vectorize(RI ) := VI

Rasterize(VI ) := RI (1)

where as RI is raster graphics image and VI is vector graphics
image.

In optimal cases, vector images produced by vectorizing
the original raster image are not different from the original
raster image when viewed by the human recognition system.
Likewise, raster images produced by rasterizing the origi-
nal vector image are not different from the original vector
image when viewed by the human perception system. In other
words, as shown in equation 2, the value of dissimilarity is
close to zero, and the value of similarity is close to one.

Dissimilarity(RI ,VI ) ' 0;

Similarity(RI ,VI ) ' 1. (2)

B. PERFORMANCE MEASUREMENT INDICES
Most deep learning studies have used Lpnorm to measure the
degree of modification in the original image due to adversar-
ial perturbation. However, as Sabour et al. showed in [21],
Lpnorm has limitation when measuring human’s recognition
rate. As shown in Fig. 5, let us consider three images, whose
original images are the same. We can observe that the nor-
malized L2 distance between the original image and either the
messed-up image or the darkened image is almost the same.
However, humans can recognize the difference between two
of them. This observation shows that only Lpnorm cannot
measure the object classification accuracy of human’s visual
system.

FIGURE 5. L2norm and SSIM values between the original image and a
perturbed image, i.e., messed up image and darkened image.

To measure the object classification accuracy of human’s
visual system, we use structural similarity(SSIM ) index,
which was introduced by Z. Wang et al. [31]. The key
assumption underlying SSIM is that the degree of distortion
of structural information has the greatest impact on percep-
tual quality since human visual systems are specialized in
deriving structural information from images. Values of SSIM
range from 0 to 1. Here, the value closer to 1 indicates that
human perception system identifies no difference between the
original image and the converted image. As shown in Fig. 5,

the SSIM index between the original image and either the
messed-up image or the darkened image is slightly different.
From the SSIM indices, we can recognize that the darkened
image is more similar to original image than the messed-up
image.

Based on these observations, we suggest a new measure-
ment index, called Structural based De-Identification Mea-
surement (SDIM ). Since SDIM is designed by combining
L2norm with SSIM , SDIM is used to handle the trade-off
between object classification accuracy and privacy under
image de-identification.

C. THREAT MODEL
By analyzing of context information between objects in
the image, personal information such as personal residence
and location information can be exposed unintentionally.
As shown in Fig. 1, let us consider an example where the
input data for deep learning are transmitted into deep learn-
ing server on cloud computing environment. Here, the input
data in the cloud computing server for deep learning can be
accessed without authority by someone in the deep learning
environment. In the same way as MITM(man in the mid-
dle) attack, data privacy exposure can be occurred during
transmission to cloud computing sever. Also, due to deep
learning characteristics that require lots of training data,
there is also a risk of privacy exposure if related agencies
share their data. Thus, when the input data for deep learning
are stored or shared externally, privacy infringement can be
occurred due to unintended data exposures.

IV. STRUCTURAL IMAGE DE-IDENTIFICATION
In this section, we describe in detail the operation of the
proposed structural image de-identification for PPDL not to
disclose the original image. Also, we describe how to find
the optimal size of the input image in the context of the trade-
off between object classification accuracy and privacy under
image de-identification.

A. OVERALL OPERATION
To understand the operation of the proposed structural image
de-identification approach, we first overview the overall oper-
ation. As shown in Fig. 6, the proposed structural image
de-identification approach follows three steps: (1) Vector-
ization, which transforms the original raster graphics image
into vector graphics file; (2) Position OPE, which partially
applies OPE to positions on vector graphics file; (3) Rasteri-
zation, which transforms the position-shifted vector graphics
file into de-identified raster graphics image.

In Vectorization step, the original raster graphics image is
converted to the vector graphics file as shown in Fig. 6. Only
the image format changes from raster to vector but, the other
features in the original image do not change. Thus, the vector
graphics file has the same size as the original raster graphics
image.

In Position OPE step, position values in the vector graphics
file are encrypted using OPE. As shown in Fig. 6, the image
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FIGURE 6. Overall operation of the proposed structural image de-identification approach.

size changes from 32 × 32 to 291 × 291 due to OPE-based
encryption. While the position value(d) in the < path > tag
changes, all other attributes remain the same as the vector
graphics file before encryption.

Unfortunately, the OPE-encrypted vector graphics file can-
not directly be used as an input to CNN models. Thus,
in the Rasterization step, the vector graphics file transformed
by position OPE is converted back to the raster graphics
image. As shown in Fig. 6, the rasterization step generates
a de-identified raster graphics image of the 224 × 224 size,
which is a reduced size of the position-shifted vector image.

Overall operation of the proposedmethod can be expressed
into:

Rasterize(PosOPE(Vectorize(OI ))) := DeI , (3)

where OI is original raster graphics image and DeI is
de-identified raster graphics image.

B. DETAILED OPERATION
We describe detailed operation of each step of the proposed
structural image de-identification approach for PPDL.

1) STEP1: VECTORIZATION
In Algorithm 1, we show how to convert the original graphics
image into vector graphics file. After reading the original file,
we resize the image to fit the Paramsize value(Lines 2 to 5).
Results from Vectorization also vary following the optional
parameters of the Vectorize function, i.e., Paramvec_opt . Here,
Paramvec_opt is a set of hyper-parameters such as the blur-
radius, number of color, path-omit and so on. Thus, the value
of the vector variable is set according to the parameter value
of the target quality of vectorization such as the ‘default’,

Algorithm 1 Vectorization Procedure
1: procedure Vectorization(Paramsize, Paramvec_opt )
2: image = Read(original_path);
3: if image.size != Paramsize then
4: image = resize(image, Paramsize);
5: end if
6: vector = Vectorize(Paramvec_opt );
7: vector_image = vector .convert(image);
8: file.write(vector_image);
9: end procedure

‘gray-scale’, ‘detail’ and so on(Line 6). Following the con-
figuration value stored in the vector variable, the original
raster image is converted into the vector image(Line 7). The
converted vector image is most affected by the quality, size of
the original raster image. Finally, the converted vector image
is stored into a vector graphics file(Line 8).

Let us consider the vectorization function changes only the
graphics file format. However, after converting the original
graphics image into vector graphics file, the SSIM value,
i.e., a similarity indicator based on a person’s perception
system, is not close to one. Also, if the quality of the original
image is low, two critical problems are observed. For exam-
ple, as shown in Fig. 7, some features which are important in
deep learning can disappear. In Fig. 7 (a), we observe that a
bird object itself disappears after vectorization. In Fig. 7 (b),
we also observe that dog’s eye and nose are missing after
vectorization. To address such vanishing problems in vector
graphics images, we use the image size larger than 32px.

In Fig. 8, we show that as the size of the original image
increases from 32×32 to 224×224, the visibility of converted
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FIGURE 7. Object and feature vanishing examples in the Vectorization
step: (a) a bird image; (b) a dog image.

FIGURE 8. Vector graphics images under various resizing options after
applying vectorization. Here, the above original image is the 32 × 32 size
of a deer image and the below one is the 32 × 32 size of a truck image.
Images on the right side of each original image show vector graphics
images obtained from vectorization when gradually increasing the size of
the original image from 32 × 32 to 224 × 224.

vector graphics image becomes the same as the original
image. That is, from the two images in Fig. 8, we observe
that a deer and the wheel of truck are clearly visible. From
this observation, we optionally resize the input size before
vectorization.

2) STEP2: POSITION OPE (POS-OPE)
In position OPE step, we encrypt the height and width val-
ues, and d attribute value in the < path > tag of the
vector graphics image file. As a result, even though the
x- and y-coordinate values of pixels change, the order of pixel
remains intact. The attributes of stroke-width, color , and fill
in the < path > tag are also kept intact.

In Algorithm 2, we show how to convert a vector graphics
file into an position-shifted vector image file. First, we set the
cipher value to encrypt the position of each point using OPE
key(Paramkey) and OPE range(Paramrange) (Line 2). Using
the variable cipher , we set the offset value to prevent the loss
of data when the encrypted value is negative (Line 3). After
reading the vector graphics file from vectorization, we obtain
a < path > tag array (Lines 4 to 5), and then obtain an d
attribute in each < path > tag (Lines 6 to 7). We encrypt
each numerical value in ds, which are data segments from d
(Lines 8 to 14). After encrypting all x- and y-axis values,
we also encrypt the height and width values of the image
(Lines 16 to 22). Finally, we generate the position-shifted
vector graphics file (Line 23).

To distribute the OPE-converted pixel values randomly,
we set the conversion range of pixels about 100 times larger
than the maximum value of the input value. That is, we set the
range of OPE-converted pixel value into −99999 to 99999,
which is much larger than the pixel value in the input image

Algorithm 2 Position OPE Procedure
1: procedure Pos_OPE(Paramkey, Paramrange)
2: cipher = OPE(Paramkey, Paramrange);
3: offset = cipher .encrypt(0);
4: doc = minidom.parse(vector_path);
5: paths = doc.getElementsByTag(‘path’);
6: for pe in paths do
7: d = pe.getAttribute(‘d’);
8: ds = d .split();
9: for p in ds do

10: if is_number(p) then
11: c = cipher .encrypt(p) − offset;
12: ds = re.sub(p, c, ds);
13: end if
14: end for
15: end for
16: vec = doc.getElementsByTag(‘vec’);
17: height = vec.getAttribute(‘height’);
18: width = vec.getAttribute(‘width’);
19: enc_height = cipher .encrypt(height) − offset;
20: enc_width = cipher .encrypt(width) − offset;
21: vec = re.sub(height , enc_height , vec);
22: vec = re.sub(width, enc_width, vec);
23: file.write(vec);
24: end procedure

of the 32 × 32 size. This allows us to distribute enough the
previous vector values, but we have to consider data loss.
Note that the position-related numeric values inside the vector
graphics file from vectorization are all positive. However,
since the OPE-converted values can be negative depending
on the OPE key, data loss can happen. Thus, after setting an
offset value into the encrypted zero-value, we subtract each
converted numeric variable from the offset value.

3) STEP3: RASTERIZATION
In Rasterization step, the position-shifted vector graphics file
is converted back to the raster graphics image. We note that
the vector image file encrypted using OPE cannot directly
be used as an input to CNN models. Also, let us note that
if the position-shifted vector file is exposed to an adversary,
the private object in the original input image can be exposed
because OPE is vulnerable to the chosen plaintext attack [32].

To address such two problems, the rasterization step con-
sists of ‘‘resize’’ to reduce height and width and ‘‘rasterize’’
to convert back to raster graphic image from vector graphic
image. The process of ‘‘Resize’’ prevents the encrypted val-
ues by OPE from being expose. Also, regardless of the
size of the original image, the size of resultant de-identified
image can be maintained constant like 224 × 224 and the
training time can be kept low. Since the CIFAR-10 data
is a three-dimensional array data of 32 × 32 × 3 and the
de-identified raster image is also a three-dimensional array
data, proposed PPDL approach enables the generated new
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FIGURE 9. Structural de-identification procedure of 8 CIFAR-10 images following three steps of the proposed structural
image de-identification approach. From step 1, original images in (a) are converted into vector graphics images in (b). From
steps 2 and 3, de-identified images in (c) are generated.

FIGURE 10. Rasterization problem. Vector images of the same size were
converted to raster images of 75 × 75 and 224 × 224.

image to be trained without changing the existing CNNmod-
els. In addition, since the objects in de-identified image have
been modified at the same level as the objects in original
three-dimensional image, we can apply data augmentation in
the cloud server.

The size of one pixel in the raster graphics image depends
on pixel density (dpi), but is fixed at 25.4mm in 1dpi.
Extremely, while a single object can be represented by multi-
ple pixels in large image, multiple objects in small image can
be represented by one pixel. As shown in Fig. 10, depending

on the degree of resizing, vector graphics image may not all
be represented in raster graphics image. Based on our exper-
imental results, we reduce the size of image by at least 30%.

C. STRUCTURAL IMAGE DE-IDENTIFICATION EXAMPLE
After randomly selecting eight images with the differ-
ent class labels from CIFAR-10 dataset, we showed how
original raster graphics images changed into de-identified
images following the proposed three steps in Fig. 9. While
images in Fig. 9 (a) represent the original raster graph-
ics images, images in Figs. 9 (b) and (c) show vector graphics
images obtained from the vectorization step and de-identified
images obtained from the position OPE step and the rasteri-
zation step, respectively.

By comparing the original images in Fig. 9 (a) with the
de-identified images in Fig. 9 (c), we observe that the white
margin created by OPE lowers the human recognition rate.
However, since the overall layouts or colors in object are
well kept, CNNmodel for deep learning can correctly classify
each image into one of ten classes.

D. MEASUREMENT INDICES
As being described in [14], there is a trade-off between the
object classification accuracy of deep learning models and
the object privacy in the privacy-preserved image. Indeed,
since protecting only specific privacy-sensitive objects within
the image is more challenging, most existing PPDL methods
encrypt the entire image for preserving private information.
That is, object classification accuracy decreases after encrypt-
ing private objects in the image.

From the observation that human visual system is
slightly different from deep learning system, we use the
L2norm index with the structural similarity (SSIM ) index
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TABLE 2. Structural based de-identification measurement (SDIM). Here, each value is the average value measured for 10,000 test images in CIFAR-10.

for estimating the trade-off between the object classifica-
tion accuracy and the object privacy in the de-identified
image. By combing the L2norm index with the SSIM index,
we use a performance measurement index, called Struc-
tural De-IdentificationMeasurement(SDIM ). Note that while
L2norm implicitly measures the degree of modification in
adversarial images [33], SSIM measures a human recognition
rate of an object in an image [31]. Also, with L2norm, deep
learning model can calculate the dissimilarity between the
modified image and the original image. With SSIM , we can
measure the structural similarity between the original image
and the modified image. Thus, SDIM is used to measure the
trade-off between the object classification accuracy of deep
learning models and the object privacy within the input image
in the proposed PPDL method.

To obtain the SDIM value, let us consider two
terms: (1) Structural Similarity of Position OPE(SSIMPos);
(2) De-identification Indicator(DI );

1) STRUCTURAL SIMILARITY OF POSITION
OPE (SSIMPos) INDEX
To measure the performance of the proposed method, it is
required to determine how much structural similarity has
decreased through position OPE. The structural similarity
(SSIM ) values through position OPE can be measured from
the fact that structural image de-identification is a combined
procedure of vectorization and position OPE. That is, struc-
tural similarity of position OPE (SSIMPos) can be formulated
into the following equation:

SSIMPos := SSIMDei − SSIMVec. (4)

From equation 4, the greater the gap between the SSIM value
of de-identified image and the vector image is, the better
the de-identification through position OPE works. Since the
value of SSIM has a range from 0 to 1, the value of SSIMPos
closer to −1, when SSIMDei is 0 and SSIMVec is 1, indicates
that human perception system cannot identify the objects in
the de-identified image.

In Table. 2, from the original CIFAR-10 image of the
32 × 32 size, we observed that the SSIMVec value is
0.6673 for vectorized images and the SSIMDei value is
0.3477 for de-identified images. From equation 4, the value
of SSIMPos is −0.3196.
In the vectorization step, we note that object vanishing

and feature vanishing can be observed. This means that
unintended information can be lost in the vectorization step.
Bartolini et al. introduced that the value of SSIM larger
than 0.94 indicates that human can clearly recognize objects
even though the image is converted into the compressed
image [34]. Since the SSIMVec value of 0.6673 is lower than
the least recommended value(: 0.94), the original image of
the 32× 32 size is not suitable for de-identification.

To solve the above problem, we perform de-identification
while increasing the size of an original CIFAR-10 image
from the 32× 32 size. As a result, we measure the values of
SSIMVec for a set of images obtained from vectorization and
SSIMDei for a set of images obtained from de-identification,
respectively. From values for SSIMVec under various size
of image in Table. 2(a), we observe that as the size of the
original image increases, values of SSIM after vectorization
approaches to 1. On the other hand, from values for SSIMDei
under various sizes of an image in Table. 2(b), we observe
that as the size of the original image exceeds the 50×50 size,
values of SSIMDei gradually increase. These observations
imply that we need to find the optimal point which considers
both vectorization and image de-identification. In Table. 2(c),
we observe that while SSIMPos values decrease when the size
of image is smaller than 50×50.We also observe that SSIMPos
values increases when the size of image is larger than 50×50.
From the experimental results, the 50×50 size is determined
into the optimal size for CIFAR-10 images since the value of
SSIMPos was closest to −1.

2) DE-IDENTIFICATION INDICATOR (DI)
Successful privacy-preserving deep learning requires to con-
sider the trade-off between object classification accuracy
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and privacy. While deep learning performance can be pre-
dicted through the value of L2 distance in general, privacy can
be measured through the value of SSIM . That is, the smaller
the L2Norm is, the smaller the difference from the original
image is. Also, the smaller the SSIM value is, the larger
the difference from the original though human perception is.
In Table. 2(d), we show the normalized values of L2normDei
under various sizes of a de-identified image. We can observe
that as the size of image increases, the value of L2normDei
decreases. In Table. 2(b), we can observe that as the size of
the image exceeds the 50 × 50 size, the value of SSIMDei
increases.

Since the smaller SSIM value and L2norm distance value
are the better indicators in de-identification, we determine the
sum of both values into an indicator of the trade-off between
classification accuracy and privacy, i.e., De-identification
Indicator(DI):

DI (α) := SSIMDei ∗ α + L2normDei ∗ (1− α), (5)

where α(0 ≤ α ≤ 1) is a ratio which represents the
trade-off coefficient between privacy and performance. At the
column (e) in Table. 2, we show values of DI under various
sizes of an image when α = 0.5. Here, the value α set into
0.5 means that privacy and performance weights are equal.
From the lowest DI value, we also observe that the 50 × 50
size is the optimal size of the image for de-identification.

3) STRUCTURAL DE-IDENTIFICATION
MEASUREMENT (SDIM) INDEX
While SSIMpos shows how de-identification influences on the
performance of the proposed PPDL approach, DI shows the
trade-off between object classification accuracy and privacy.
To consider the trade-off between object classification accu-
racy and privacy under image de-identification, we define a
new metric, called Structural based De-Identification Mea-
surement (SDIM) as follows:

SDIM (α) := SSIMPos + DI (α), (6)

where as the value of SDIM decreases, the performance of
the proposed PPDL increases in practice. At the column (f)
in Table. 2, we show how the values of SDIM change under
various sizes of an image. We observe that the value of SDIM
is minimized at the 50× 50 size of image. This indicates that
the 50 × 50 size of image in CIFAR-10 is the optimal input
image for structural image de-identification when consider-
ing the trade-off between object classification accuracy and
privacy under image de-identification.

In order to employ an user’s image data as input to the
proposed PPDL method, it is recommended to choose the
optimal image size to protect the privacy of the object within
image while maintaining the performance of object classifi-
cation. A image size with the smallest value of measuring the
SDIM value by resizing the user’s image data to various sizes
becomes the optimal image size. On CIFAR-10 used in this
paper, likewise the 50 × 50 with the smallest SDIM value is
the optimal size, the optimum size for user’s image data can

be predicted through SDIM values without training the DNN
model.

E. SECURITY ANALYSIS
In this section, we show security analysis results of the pro-
posedmethod. Under the ciphertext-only attack and the order-
revealing attacks on OPE including chosen plaintext attack
(CPA) [35] and the Leakage-Abuse attack [36], we analyze
the security strength of the proposed method.

1) CIPHERTEXT-ONLY ATTACK TOLERANCE
Let us assume that an adversary acquires a de-identified
image without authority during transmission to cloud com-
puting server or within a cloud system. Also, let us con-
sider that the brute-force attack is used as an attack type of
ciphertext-only attack.

If an image with X × Y pixels is divided into pixels,
the number of pixels, n, is given by

n = X × Y . (7)

Unlike negative-positive transformation and color shuf-
fling method [17] that is the most recent pixel-value-based
image encryption method, the proposed method shifts only
the position of the pixel in the vectored graphics image.
Because color values do not change, the color value of each
pixel in de-identified image is mapped to one of color values
in the original image.

Note that after applying the Position OPE into each pixel,
the pixel values can also be changed into white color in a
white background. Thus, if we assume that all n pixels have
different colors, the pixel value of the generated de-identified
image can be mapped to one of n+ 1 colors. That is, the fea-
tured spaces of the proposed method can be represented into:

N (n) = (n+ 1)n. (8)

On the other hand, in negative-positive transformation and
color shuffling method, each pixel value is replaced into the
original value p or p⊕255 valuewith aP(r) = 0.5 probability.
Also, the order of RGB is shuffled with a P(r) = 0.167
probability. That is, the featured spaces of negative-positive
transformation and color shufflingmethod [17] are given into:

NNP(n) = 23n × 6n = 8n × 6n. (9)

Since N (n) > 64n � NNP(n), where n > 64, the proposed
method has the larger featured space than the latest pixel-
value-based method. That is, when the image size is larger
than 8× 8, security of the proposed method is much stronger
than the latest pixel-value-based method against the brute-
force attack.

2) ORDER-PRESERVING ENCRYPTION TOLERANCE
OPE is known to be vulnerable to CPA attacks [35] and
Leakage-Abuse attacks [36] because there is a possibility of
deducing the original values based on the sequence informa-
tion between the original data and the encrypted one.
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FIGURE 11. Simple example of structural image de-identification approach. Here, values between the position values of original vector
graphics and the position values generated by re-vectorization are dissimilar. Also, the sequence information encrypted by OPE in
position-shift vector graphics is not directly exposed.

From equation 1, the relationship between vectorization
and rasterization can be expressed into:

Rasterize(Vectorize(PI )) := PI , (10)

where as PI is Plain Image.
In the proposed method, position OPE and resize oper-

ations are located between vectorization and rasterization
in equation 10, Thus, de-identified image cannot to be
restored into plain original image. For example, in Fig. 11,
the position-shift vector graphics image size, 300, is known
only to OPE users. Thus, the proposed method cannot be
performed in reverse because the target size value, 300,
is unrevealed. Even though we know the OPE key, we cannot
restore the original image from de-identified image due to the
resize operation in the rasterization. Since the values between
the original vector graphics image and the images generated
by re-vectorization are dissimilar as shown in Fig. 11, the pro-
posed method is not vulnerable to the leakage-abuse attack.
Also, as shown in Fig. 11, the proposed method does not
use the encrypted value using OPE and does not expose the
sequence of encrypted data. Thus, the proposed method is not
vulnerable to the chosen plaintext attack.

V. EVALUATION RESULTS
To show how effective the proposed structural image
de-identification approach is, wemeasured the object classifi-
cation accuracy using CIFAR-10 [18] dataset which is amajor
dataset used as benchmarks in the deep-learning literature.
The CIFAR-10 dataset consists of 60,000 32 × 32 colour
images in 10 classes, which are 50,000 training images and
10,000 test images and each of which has a single object
in. Specifically, we evaluated the performance of the pro-
posed approach by answering the following questions for
de-identification:
• How does the various sizes of an input images being
vectorized or de-identified influence on the performance
of the CNN model?

• How does the size of the final de-identified image influ-
ence on the object classification accuracy of the CNN
model?

• Is the proposed structural image de-identification
approach adequate to process gray-scale images?

• Does the proposed structural image de-identification
approach show the good-enough object classification
accuracy compared with existing method?

• Does the proposed structural image de-identification
approach show the good-enough object classification
accuracy under various datasets?

A. EXPERIMENTAL ENVIRONMENT
To measure the performance of the proposed structural image
de-identification approach, we used the GPU server, which
consists of Intel(R) Xeon(R) CPU E5-2630v3 @2.40GHz
with 8 cores, 62 GB RAM and an NVIDIA(R) GeForce RTX
2080 Ti.

As a set of input images, we used CIFAR-10 [18], which is
a standard dataset to evaluate the performance of the deep
learning approaches. Since the proposed structural image
de-identification approach can work with any DNN models,
we used the Inception ResNet V2 model [3], which adds
the advantage of the ResNet model using the skip connec-
tion [37] to the Inception V3model which has the various size
of multi convolution layer [38]. This state-of-the-art DNN
model was trained using a RMSprop algorithm, where the
learning rate was initially set to 0.001 for 250 epochs. Also,
the learning rate was set to 0.0005 for 100 epochs, 0.0003 for
125 epoches and 0.0001 for 200 epochs. We used a weight
decay of 1e − 6, and a batch size of 64. We also used data
augmentation(rotation, shifting and flip) for preprocessing
the input images to the DNN model.

To implement our method, we used imagetracerjs [39] in
the vectorization step, pyope [40] in the position OPE step
and ImageMagick [41] in the rasterization step. Specifically,
in the vectorization step, we used SVG vector file format
with the options ‘default’. In the position OPE step, we set
the OPE key to ‘‘jX4ZXXmM3qTgAjez/1j/EVz5tCcmQ711
bz8hqIMJap0=’’. OPE output values were bounded between
−99999 and 99999. Also, the offset value is set to −796
to prevent loss of data. In the rasterization step, we used
‘-density = 288’ and ‘-resize = 224 × 224!’ options to
generate de-identified images.

In general, when evaluating the performance of deep learn-
ing models, different performance metrics such as accuracy,
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precision, recall, and F1-score1 can be used. We noted that
since images in CIFAR-10 are uniformly distributed for each
class, accuracy is better than F1-score [42] when evaluat-
ing the deep learning model. Thus, the object classification
accuracy was used as a metric for images in CIFAR-10.
Also, since images in ImageNet are non-uniformly dis-
tributed(imbalanced) for each class, we measured F1-score
for evaluating the deep learning model and accuracy for
comparison with the analysis results for CIFAR-10.

B. EXPERIMENTAL RESULTS
In this section, we show the experimental results to answer
the above five questions. Also, we compare the object clas-
sification accuracy of the proposed approach with a recent
pixel-based-encryption approach.

1) HOW DOES THE VARIOUS SIZES OF AN INPUT IMAGE
BEING VECTORIZED OR DE-IDENTIFIED INFLUENCE
ON THE PERFORMANCE OF THE CNN MODEL?
To observe the influence of the various size of input images
being vectorized or de-identified on the performance of the
CNNmodel, we measured the values of SDIM and the object
classification accuracy of the proposed approach for four
different sizes: 32× 32, 42× 42, 50× 50, and 64× 64.

TABLE 3. Image classification accuracy under various sizes of an image.

Table. 3 show our measurement results. First, we observed
that the larger the size of the original raster graphics image
is, the more accurate the classification of the vector graphics
image is. This is because the size of the input image to the
CNN model increases, vanishing problems in the vectoriza-
tion step are being solved. Second, we observed that the
object classification accuracy for de-identified images was
almost the same as the object classification accuracy of vector
graphics image. This observation implies that the vanishing
problems is important. Third, we observed that as the size of
the original image increases, the object classification accu-
racy of the CNN model under the various sizes of an input
image being vectorized or de-identified increases. Fourth,
we observed that when the size of input images are set to
50 × 50, the value of SDIM was lowest while the highest

1Accuracy represents the ratio of the number of correct predictions over
the total number of predictions made. Precision represents the ratio of the
number of samples that belong to the actual positive class over the number of
samples predicted to be positive, and recall represents the ratio of the number
of samples predicted to be positive over the actual number of positive class
samples. F1-score is determined into the harmonic mean of the precision and
recall.

classification accuracies of being vectorized or de-identified
images were observed at the 64×64 size of input images. This
is because as the size of the input image to the CNN model
increases, it becomes easy for human to identify the input
image. This observation implies that in the context of the
trade-off between object classification accuracy and privacy,
we need to adjust the weight between classification accuracy
and privacy according to the deep learning applications.

2) HOW DOES THE SIZE OF THE FINAL DE-IDENTIFICATION
IMAGE INFLUENCE ON THE OBJECT CLASSIFICATION
ACCURACY OF THE CNN MODEL?
To evaluate the performance of the proposed struc-
tural de-identification approach under various sizes of
de-identified images, we generated multiple datasets with
the different sizes from an image with the 50 × 50 size
and then, measured the performance of the proposed PPDL
approach. As shown in Table. 4, the object classification
accuracy of the CNN model gradually increased as the size
of de-identified image increases. This is because if the size
of de-identified image is too small, the objects in the image
might be represented using small number of pixels. In other
words, even though decreasing the size of de-identified image
is good for avoiding the exposure of the OPE-encrypted data
while reducing the evaluation time, the object classification
accuracy becomes worse.

TABLE 4. Classification accuracy under various sizes of a rasterization
image whose original size is 50 × 50.

3) IS THE PROPOSED STRUCTURAL IMAGE
DE-IDENTIFICATION APPROACH ADEQUATE
TO PROCESS GRAY-SCALE IMAGES?
To show that the proposed structural image de-identification
approach is even adequate to analyze gray-scale images,
we measured the performance of the proposed struc-
tural image de-identification approach after converting the
CIFAR-10 images into gray-scale images. For examples,
we showed gray-scale images converted from CIFAR-10
color images and the corresponding de-identified gray-scale
images in Figs. 12 (a) and (b), respectively.

From Table. 5, we compared the values of SSIMPos and
SDIM for color images with those for the converted gray-
scale images with the same size. As a result, we found that the
value of SSIMVec was close to 1 and then, the value of SSIMDei
was close to 0. Also, from the result that the SSIMPos value
was close to −1, we found that gray-scale images and color
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FIGURE 12. Examples of de-identified gray-scale image.

TABLE 5. Comparison under different color channels on an image:
RGB color image v.s. Gray-scale image.

images showed the same characteristics when using the pro-
posed PPDL. Also, the value of SDIM of a gray-scale image
was close to −1 than the RGB color image. This observation
verifies that since the proposed structural de-identification
approach transforms only the structural features of image,
it can effectively process images with one channel such as
gray-scale image as well as images with multiple channels
such as RGB color image.

The CNNmodel in experimental environment described in
subsection V(A) achieved an accuracy of 83.56%. Unlike the
pixel-value-based encryption [16], [17] approach which uses
pixel values of three RGB channels, we confirmed that our
approach works well for gray-scale image just as color image
through the accuracy and SDIM values.

4) DOES THE PROPOSED STRUCTURAL IMAGE
DE-IDENTIFICATION APPROACH SHOW THE GOOD-ENOUGH
OBJECT CLASSIFICATION ACCURACY COMPARED WITH
EXISTING METHOD?
To show how the proposed structural image de-identification
approach predicts the class labels even by using encrypted
images, we compared the object classification accuracy of
the proposed approach with those of the CNN model using
plain images, which are the non-encrypted images. Note that
among the most recent PPDL approaches, the pixel-value-
based encryption approach obtained good performance in the
most recent deep learning models. Thus, we also compared
the proposed structural image de-identification approachwith
the state-of-the-art pixel-value-based encryption approach,

TABLE 6. Accuracy and brute-force attack tolerance comparison of
different encryption-based PPDL methods under CIFAR-10 dataset.

i.e., the negative-positive and color shuffling method [17].
We implemented the negative-positive and color shuffling
method and produced dataset by stretching the original image
into the 224 × 224 size [17] when training the CNN model
described in section V(A).

From the experimental results in Table. 6, the pro-
posed structural image de-identification approach showed
the object classification accuracy of 87.10%, while the
negative-positive and color shuffling method [17] showed the
object classification accuracy of 82.16%. That is, the pro-
posed de-identification approach showed the better classifi-
cation accuracy than the negative-positive and color shuffling
method. In addition, where n > 64, the proposed method has
the larger featured space than the negative-positive and color
shuffling method. That is, when the image size is larger than
8× 8, security of the proposed method is much stronger than
the negative-positive and color shuffling method against the
brute-force attack.

5) DOES THE PROPOSED STRUCTURAL IMAGE
DE-IDENTIFICATION APPROACH SHOW THE GOOD-ENOUGH
OBJECT CLASSIFICATION ACCURACY UNDER
VARIOUS DATASETS?
To show that the proposed structural image de-identification
approach presents the good-enough object classification
accuracy under various datasets, we measured the perfor-
mance with ImageNet [19]. As a well-known standard dataset
for image classification, ImageNet contains 14,197,122
images with 20,000 classes. We selected ImageNet because
different from CIFAR-10, where image objects are uniformly
distributed for each class, ImageNet consists of images
whose objects are non-uniformly distributed (imbalanced)
for each class. For performance comparison with CIFAR-10,
we randomly selected 68,904 images, which consist
of 58,492 images for training and 10,412 images for test, with
139 classes.

Since ImageNet has the various sizes of images, we resized
each image into 32 × 32, which is the size of image in
CIFAR-10, to make an input image for deep learning. Note
that we focus on measuring the performance of the proposed
structural image de-identification approach under various
datasets. After using the ResNet50 model with Adam Opti-
mizer for simplicity, we measured the object classification
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accuracy for the plain image and the de-identified image with
the same parameter values in Section V(A).

From the experimental results for ImageNet, we observed
that the object classification accuracy and F1-score for the
de-identified image were less than those for the plain image
by as much as 6.39% and 0.06, respectively. However, since
SDIM of the de-identified image was -0.4313, the experi-
mental results showed that human perception system could
not identify the objects in the de-identified image due to
the increase of privacy. From the experimental results for
ImageNet and the others for CIFAR-10, we also observed
that the proposed structural image de-identification approach
shows the good object classification accuracy even though
any image dataset with uniform or non-uniform distribution
of images for each class is used for learning.

VI. CONCLUSION
Due to the risk of data leakage while training deep learning
models involving an enormous amount of data including
sensitive information, general deep learning approach can
expose the private information in training data. To address
such privacy concerns, we proposed a new PPDL method,
called structural image de-identification approach, which
trains encrypted data itself without decryption. Based on the
intuition that the human visual system is sensitive to struc-
tural change, the proposed structural image de-identification
approach converts input images into vectors for modifying
only the structural parts of the original one. Different from
FHE-based methods whose usage is limited due to diffi-
culty in applying the state-of-the-art DNN models directly
and so on, the proposed structural image de-identification
approach can employ any DNN models using encrypted
data. Different from pixel-value-based encryption meth-
ods which cannot analyze the gray-scale images directly,
the proposed structural image de-identification approach
showed the good performance even for the gray-scale images.
From the evaluation results using CIFAR-10, we showed
that the object classification accuracy of the proposed struc-
tural image de-identification approach was higher than the
other encryption-based PPDL approaches. From the evalua-
tion results using CIFAR-10 and ImageNet with the different
distributions of images for each class, we also showed that
the object classification accuracy of the proposed structural
image de-identification approach was the same as the perfor-
mance of CNN models for the non-encrypted image.
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