
Received May 27, 2020, accepted June 15, 2020, date of publication June 29, 2020, date of current version July 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3005734

Strategic Interaction Multi-Agent Deep
Reinforcement Learning
WENHONG ZHOU , JIE LI, YITING CHEN, AND LIN-CHENG SHEN, (Member, IEEE)
College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China

Corresponding author: Jie Li (lijie09@nudt.edu.cn)

ABSTRACT Despite the proliferation of multi-agent deep reinforcement learning (MADRL), most existing
typical methods do not scale well to the dynamics of agent populations. And as the population increases,
the dimensional explosion of joint state-action and the complex interaction between agents make learning
extremely cumbersome, which poses the scalability challenge for MADRL. This paper focuses on the
scalability issue of MADRL with homogeneous agents. In a natural population, local interaction is a more
feasible mode of interplay rather than global interaction. And inspired by the strategic interaction model
in economics, we decompose the value function of each agent into the sum of the expected cumulative
rewards of the interaction between the agent and each neighbor. This novel value function is decentralized
and decomposable, which enables it to scale well to the dynamic changes in the number of large-scale
agents. Hereby, the corresponding strategic interaction reinforcement learning algorithm (SIQ), is proposed
to learn the optimal policy of each agent, wherein a neural network is employed to estimate the expected
cumulative reward for the interaction between the agent and one of its neighbors. We test the validity of the
proposed method in a mixed cooperative-competitive confrontation game through numerical experiments.
Furthermore, the scalability comparison experiments illustrate that the scalability of the SIQ algorithm
outperforms the independent learning andmean field reinforcement learning algorithms inmultiple scenarios
with different and dynamically changing numbers.

INDEX TERMS Multi-agent deep reinforcement learning, scalability, local interaction, large scale.

I. INTRODUCTION
Multi-agent reinforcement learning (MARL) sophisticatedly
combines the game theory, multi-agent system and reinforce-
ment learning (RL). Recently, with the introduction of deep
neural networks, the performances of multi-agent deep rein-
forcement learning (MADRL) in many tasks are impressive,
such as learning communication protocol [1], [2], playing
computer games [3]–[5], motion planning and control [6]–[8]
and trajectory prediction [9], [10].

The research scope of MADRL includes training schemes
[11], collaborative relationships [12], multi-task learning [13]
and scalability [14], [15]. Here, the scalability is defined as
the ability to adapt to dynamic changes in the number of
agents during training and execution while ensuring effective
interactions. It is a basic capability required by MADRL (or
MARL) in practical applications where a large number of

The associate editor coordinating the review of this manuscript and

approving it for publication was Chenguang Yang .

agents may be involved, or the number may change dynami-
cally due to possible contingencies and confrontations.

In MARL, agents not only interact with the environment,
but also interact with each other. The interactions of agents
are bidirectional, such that their action decision processes
are coupled: each agent is affected by the others, and vice
versa [11]. Some works directly or indirectly integrate the
states of all agents into a joint state to make a joint action
decision [16], [17] for all agent. Although this method takes
all the interactions into consideration, it would cause dimen-
sion explosion since the joint state-action space exponentially
increases with the growth in the number of agents, as well as
their potential interactions. Moreover, when the number of
agents changes (increases or decreases), their joint dimen-
sions also change accordingly, but these methods do not
support dynamic changes in the input and output dimensions.
So the learned policy can only be applied to the scenarios that
the number of agents is identical to that of the training one.

As a result, most methods for MADRL are just appropriate
for the scenarios with a small and fixed number of agents,

119000 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-9155-5153
https://orcid.org/0000-0001-5255-5559

W. Zhou et al.: Strategic Interaction MADRL

and the scalability is a bottleneck that MADRL needs to
address. This work tries to explore a solution to the scalability
problem of MADRL, which not only enables MADRL to
actively adapt to dynamic changes in the number of agents,
but also enables the learned policy to be applied to scenarios
with abundant agents. Especially, We restrict the agents to
be homogeneous and partially observable, the observation
and communication scopes are limited, so each agent cannot
obtain perfect global information except its own private state,
local observation or communication. And, each agent’s policy
should be irrelevant with the permutation of its neighbors.

A. RELATED WORKS
Although several works have been published recently
summarizing the development and current status of
MADRL, including MADDPG [11], QMIX [17],COMA
[18], value-decomposition networks [19], QTran [20], there
is little research on the scalability of MADRL in scenarios
with a large number of agents, so here we summarize and
compare the existing scalable methods from the perspective
of whether to consider the interaction of agents, while some
other MARL methods are detailed in [21]–[25].

First, the simplest scalableMADRLmethod is independent
learning (IL), which simplifies the problem by assuming no
interactions among agents. Independent learning can handle
the scalability problem naturally because it just takes private
perception into consideration when making a decision with-
out any interaction, so the input and output dimensions of
the neural network have nothing to do with other agents [8].
Fan et al. [7] and Long et al. [6] proposed collision avoid-
ance algorithms based on independent Q learning for multi-
robot. Each robot used a radar to sense the surrounding
environment to construct its input variable of the network.
An independent Q learning algorithm was embedded in the
multi-agent platform to make action decisions for large-scale
agents. Although IL may work for MADRL, it is challenged
by the greedy resulting from treating each other as part of the
domain. It has been proved that the initiative interaction in
MADRL is conducive to improving cooperation or competi-
tion faster [26], [27].

Then, some methods based on interaction are presented.
Khan et al. [14] proposed a scalable centralized algorithm
for homogeneous agents, which collects the policy network
parameters of all agents to update the global parameters, and
the global parameters are used to initialize the policy network
of all agents in the next round of training. This algorithm can
handle the scalability problem ofMADRL to some extent, but
ignores the fact that the others’ policies are also being updated
synchronously during the training process. Everett et al. [28]
proposed a method to encode the joint state of finite agents
as a fixed-length vector by utilizing the temporal associa-
tion ability of Long Short-Term Memory (LSTM) to solve
the scalability problem of MADRL. Zhang et al. [29] pro-
posed two decentralized actor-critic algorithms for networked
agents, which are applicable to large-scale MARL problems.
But the global state and joint actions of all agents are required

to train the critic networks, so the algorithms may fail when
the global state or joint actions are not available, which is
often the case in large-scale agents. However, the dimensions
of the neural network must be broad enough to formulate
the relationship of all agents and the order of the joint state
is fixed, which indicates that this method is not efficient
and flexible in practical application. The mean field rein-
forcement learning (MFQ) algorithm [15] solved the scala-
bility problem by modeling the agents’ interactions as those
between each agent and the mean action from its neighbors,
which extremely simplifies the multi-agent interaction prob-
lem. This algorithm also provides an idea to solve the scala-
bility problem of MADRL from the perspective of modeling
the interactions of agents.

B. CONTRIBUTION
This paper studies the scalability issue ofMADRLwith abun-
dant homogeneous agents whose scale varies dynamically.
Our solution is a value-based method that can be executed in
a decentralized fashion, and the learned policy can be shared
to homogeneous agents.

Generally, local interaction is a natural and practical inter-
play way for natural swarms, such as ants, bees, and birds,
rather than global interaction. We introduce the strategic
interaction model of economics to formulate the MARL
problem. Inspired by this model, the behavior of an agent
selecting an action in response to the play of a neighbor is
called an interaction pair between them. The interaction func-
tion is defined to evaluate the expected cumulative reward
of the interaction pair between each agent and one of its
neighbors. Since the interaction function cannot be easily
and analytically formulated, we design a deep neural network
to approximate it. And the sum of the interaction functions
between the agent and all its neighbors is defined as the
agent’s state-action value (Q) function. The purpose of cal-
culating the Q function is to establish a learning algorithm to
learn the optimal policy from the data to maximize the reward
of the agent. Accordingly, following centralized training and
decentralized execution paradigm, a corresponding strategic
interaction reinforcement learning algorithm (SIQ) based on
double Q networks is proposed, wherein a policy is learned
from the experiences of all homogeneous agents and shared
by all these agents. Hereby, each agent makes its action
decision to interplay with others based on the learned policy
to maximize its expected cumulative reward.

The major contribution in this paper are: A decentralized
and scalable MARL formulation based on strategic inter-
action model is presented to handle the scalability issue of
MADRL by approximately decomposing each agent’s com-
plex interactions with others into the sum of interaction pairs
between the agent and every neighbor. In particular, this novel
Q function applies not only to traditional MARL but also
to MADRL. Experiments illustrate that the scalability of the
corresponding SIQ algorithm is better than the existing IL
and MFQ algorithms in scenarios with different numbers of
agents and dynamic changes in agents’ population.

VOLUME 8, 2020 119001

W. Zhou et al.: Strategic Interaction MADRL

This paper is organized as follows. Section II briefly intro-
duces some basic knowledge ofMARL. Section III details the
scalable MADRL formulation and the deductive process of
the SIQ algorithm. In Section IV, the experimental details and
results are presented and analyzed. Finally, we conclude the
paper and consider avenues for future research in Section V.

II. PRELIMINARIES AND NOTATION
In this section we introduce the relevant background and
notations that we build on in the remainder of the paper.
The mathematical model of MARL can be formulated as a
Markov Decision Process with the tuple:

(n, S,A1, . . . ,An,P, r1, . . . , rn, γ)

Assuming there are n agents in the multi-agent system, where

• S is the state space, and s ∈ S is a state. Specifically, s
could be a joint state formed by all agents’ local states
or a panorama of the environment.

• Ai denotes the action space of agent i, i ∈ [1, . . . , n], and
ai ∈ Ai represents its action. The dimension of action
space Ai is assumed to bemi. a

1
= (a1, . . . , an) is defined

as the joint action of all agents, so a ∈ (A1 × . . .× An).
• P : S × (A1, . . . ,An) × S → [0, 1] is the transition
function that characterizes the probability distribution of
the next state given the current state and joint action.

• ri is the immediate reward of agent i, which is related
to the reward space, such as (r1, . . . , rn)

1
= r(s) or

(r1, . . . , rn)
1
= r(s, a). The reward space describes

the relationship between agents, including cooperation
(team-games, where agents receive an identical reward
at each time step), competition (zero-sum games) and
mixed cooperation-competition (general-sum games).

• γ is a constant discount factor for emphasizing the extent
to which the system considers the short and long term
consequences.

Without loss of generality, this paper assumes that the
agents in the environment are homogeneous, so they can share
a common action space as well as a policy. For each agent,
the others who are within its communication range are called
as its neighbors, and the agent can directly communicate with
its neighbors without delay.

In MARL, the joint policy of all agents can be defined as
π

1
= π (a|s) = (π1, . . . , πn). For agent i, its policy πi is

defined as a conditional probability distribution from joint
state s and other agents’ actions to its action ai at time t:

πi(ai|s, a−i) = P[ai(t) = ai|s(t) = s, a−i(t) = a−i]. (1)

where a−i
1
= (ai, . . . , ai−1, ai+1, . . . , an). Policy πi is deter-

mined by the joint state and other agents’ actions, which
indicates that action ai is affected by other agents, and vice
versa.

Following the joint policy π , the long term expected cumu-
lative reward of agent i when starting in the joint state s at

time t is defined as the state value function (V function):

Vi(s) = Eπ [
∞∑
k=0

γ kri(t + k + 1)|s(t) = s], (2)

where k ∈ [0, . . . ,∞) is the discrete time sequence. Further-
more, the expected cumulative reward of agent iwhen starting
in the joint state s and taking the joint action a is defined as
state-action value function (Q function):

Qi(s, a) = Eπ [
∞∑
k=0

γ k (ri(t + k + 1)|s(t) = s, a(t) = a)]. (3)

Following the joint policy π , Vi(s) can also be decomposed
as:

Vi(s) =
∑
a

π (a|s)Qi(s, a). (4)

So (3) can be rewritten as:

Qi(s, a) = ri(t + 1)+ γ
∑
s_

Pass_
∑
a_

π (a_|s_)Qi(s_, a_), (5)

where a_ is the next joint action and s_ is the next joint state,
and Pass_ = P[s(t + 1) = s_|s(t) = s, a(t) = a].
The optimal Q function of agent i is:

Q∗i (s, a) = ri(t + 1)+ γ
∑
s_

Pass_maxa_Q∗i (s_, a_) (6)

And for each agent i, the optimal action a∗i is satisfied with:

a∗i = argmaxaiQ
∗
i (s, ai, a

∗
−i) (7)

where a∗
−i

1
= (a∗i , . . . , a

∗

i−1, a
∗

i+1, . . . , a
∗
n). It is obvious that

the action of each agent in a multi-agent environment will
affect others’ action decisions and also be affected by others’,
so the optimal action solutions for all agents are coupled.
As the number of agents increases, the computational com-
plexity of optimal actions increases exponentially, so that
there is almost no stable equilibrium that all agents can
satisfy (7) [11].

III. STRATEGIC INTERACTION MADRL
Existing centralized MARL methods suffer from the curse
of dimensionaltiy with regards to the joint state-action space.
Furthermore, due to the action decisions of all agents being
highly coupled, calculating a global equilibrium for all agents
is currently intractable. Thus we resort to the strategic inter-
action model [30], which is a local interaction game model
broadly used in coordinate game and economics.

The strategic interaction model is shown in Figure 1. On a
vertex, each player is directly connected to finite neighbors,
and those neighbors are collected by a nonempty setN . Each
player makes action decision in response to its neighbors’
plays. When a player takes an action, it would receive instant
payoff from each of its interacting neighbors, and each payoff
is determined by the actions of the player itself and the
corresponding neighbor. If the player chooses action ω while
a neighbor k takes υk , the immediate payoff is formulated by
G(ω, υk), and the total payoff of primary player is the sum of

119002 VOLUME 8, 2020

W. Zhou et al.: Strategic Interaction MADRL

FIGURE 1. Strategic interaction model. Player 0 directly communicates
with neighboring players 1,2,3,4, and the interactions between agent 0
and its neighbors can be shaped as the sum of the interaction pairs
between itself and each neighbor.

immediate payoffs from all its interacting neighbors, which
is denoted as:

G(ω) =
∑
k∈N

G(ω, υk) (8)

The strategic interaction model formulates the payoff of
each player with local interaction pairs without obtaining
the joint state and joint action of all agents, which signif-
icantly reduces computational complexity while retaining
direct interactions.

To break the dimension curse of MARL, we could adapt
the idea of using local strategic interaction pairs to factorize
the value function of each agent with the local state as well
as the actions of each agent and its neighbors. Then each
agent only directly interacts with its neighbors and makes its
decentralized action decision according to its value functions.

Instead of passive observation [6], [8], agents use active
local communication to achieve decentralized interactions
with their neighbors. Communication enables agents to act
as a group rather than as a collection of individuals, so as to
achieve collaboration faster. InMARL, compared with global
communication, local communication relaxes the agent’s
assumptions, such as communication bandwidth and comput-
ing ability, meanwhile increases the scalability.

For agent i, its local state is si and the action is ai, set
Ni contains its ni neighbors. ci

1
= (ci1, . . . , cini) denotes

the communicate information from all its neighbors, where
cij(j = 1, . . . , ni) is the communication information from
neighbor j to agent i and it could be task-dependent, such as
position, speed and so on. Specially, ci0 means that there is no
neighbor around agent i. We define (si, cij, ai) as an interac-
tion pair between agent i and neighbor j. And Qij(si, cij, ai) is
the interaction function of the interaction pair between agent
i and neighbor j. Then, as shown in Figure 2, the Q function
of agent i is defined as the sum of all its interaction functions:

Qi(si, ci, ai) =
ni∑
j=1

Qij(si, cij, ai). (9)

FIGURE 2. Illustration of the strategic interaction Q function under local
interactions. Each agent only interacts with its neighbors within
communication range. And the strategic interaction Q function is defined
as the sum of the expected cumulative rewards of the interaction
between the agent and each neighbor.

The major difference between (9) and others decompo-
sition methods, such as QMIX [17], value-decomposition
networks [19], QTran [20], is that it decomposes the value
function of each agent into the sum of the expected cumu-
lative rewards of the interaction between the agent and each
neighbor, while the latter ones decompose the global value
function into the sum of individual functions. Compared with
IL in [6]–[8], [31], (9) not only formulates a novel Q function
that considers the local interactions, but also enables agents
to achieve a high degree of scalability on the basis of main-
taining decentralized collaboration. So the MARL methods
based on this formulation are able to adapt to the dynamic
change of the number of agents, and then the learned policy
can be flexibly applied to scenarios with different numbers of
homogeneous agents.

Specifically, in order to collaborate effectively with neigh-
bors, it is necessary to know the intentions of its neighbors [8].
For example, in a collision avoidance scenario, it is necessary
to know the position and action of its neighbors. In this paper,
to calculate the interaction function Qij(si, cij, ai), the local
state and current action of neighbor j are required. Since all
agents make action decisions synchronously and the neigh-
borhood relationships of agents are symmetric, the action
of agent i is also required for calculating Qji, which makes
the action solving process of all agents coupled with each
other. So it is impossible to obtain the current actions of the
neighbors.

However, since the last actions of agents have been exe-
cuting from the last time stamp till now, we can utilize the
last action of neighbor j to indicate its intention by telling
the agent what neighbor j just did. Then the communication
information of agent i from neighbor j is redeclared as cij =
(scij, a

′
j), where s

c
ij is the motional state of neighbor j, and a′j

is its last action. Note that scij 6= scji. Thus we calculate the Q
function for agent i as follows:

Qi(si, ci, ai) =
∑
j∈Ni

Qij(si, scij, a
′
j, ai). (10)

In action space Ai, agent i can obtain its action decison by
using the ε − greedy policy to balance the exploitation and
exploration during the training process. Given the local state
si and communication information ci, the policy of agent i

VOLUME 8, 2020 119003

W. Zhou et al.: Strategic Interaction MADRL

with strategic interactions could be defined as follows:

π (ai|si, ci) =

1− ε +

ε

|Ai|
ai = argmax

ai
Qi(si, ci, ai)

ε

|Ai|
otherwise.

(11)

Although this novel Q function applies not only to tradi-
tional MARL but also to MADRL, it is difficult to explicitly
formulate Qij(si, ai, cij) with an explicit formulation or sev-
eral eigenvectors, so we appeal to the deep neural network
to approximate the interaction function, which has power-
ful fitting ability [32]. The structure of the designed neural
network is shown in Figure 3. In deep RL, a neural network
is usually trained with the experience replay mechanism that
is widely used to stabilize and converge the training process
[4]. An experience is usually formed by tuple (s, a, r, s_) that
includes state, action, immediate reward and the next state. In
the interaction function, communication information is added
to the input variables, so the experience of agent i is reformed
as: (si, ci, ai, ri, si_, ci_), where ci and ci_ are the current
and next communication informations from neighbors. The
dimension of each communication information is determined
by the number of neighbors interacting with the agent at
that moment, not the number of all agents, which breaks the
dimensional curse.

FIGURE 3. The structure of the neural network. The superscript h indicates
that this is a hidden layer. Con is the concatenation of hidden layers of
agent i and neighbor j . The portion in the dotted box is used to handle
the communication information from neighbor j . The output dimension of
the neural network is equal to the action space dimension of the agent i .

In an environment with large scale homogeneous agents,
all agents share identical state space and action space. If they
perform a cooperativemission, their policies are similar, so all
agents can share a single interaction function to calculate their
own Q functions respectively, which significantly improves
the diversity of training data and is beneficial to improving the
training efficiency [4]. Similar to [33], all agents’ experiences
are collected into a buffer to train the neural network of the
interaction function in a centralized paradigm, and the trained
network is distributed to each agent for solving their actions
respectively.

However, the original deep Q learning may overestimate
the Q value. In order to overcome this disadvantage, double
Q networks algorithm is proposed by [4], and its validation
is also verified by [3], [34]. So we opt for this algorithm to
train the designed neural network. This algorithm employs
an evaluation network Qe and a target network Qt , which are
the instantiations of Qij in (10) using parameters φe and φt
respectively. Thus, the two networks have the same architec-
ture and similar parameters.

To train the double Q networks with experience ei =
(si, ci, ai, ri, si_, ci_), the loss function is defined as:

Li(φe) =
1
2
(yi − Qe(si, ci, ai, φe))2, (12)

where yi = ri + γQt (si_, argmax
ai_

Q(si_,ai_, ci_,φe), ci_, φt)

and yi is called as Temporal-Difference target.
After that, the derivative of the loss function Li(φe) with

respect to the parameters φe can be obtained by:

∇φeLi(φe) = −(yi − Qe(si, ai, ci, φe))∇φeQe(si, ai, ci, φe).

(13)

The derivative term ∇φeLi(φe) is used to update the evalu-
ation network parameters φe:

φe = φe − α∇φeLi(φe)

= φe + α(yi − Qe(si, ai, ci, φe))∇φeQe(si, ai, ci, φe), (14)

where α is interpreted as the learning rate.
And the target network parameters φt can be updated with

φe as follows:

φt = τφe + (1− τ)φt (15)

where τ is the target update rate.
All agents’ experiences are stored and randomly sampled

to update the network parameters iteratively until the loss
function and the network parameters converge. Basing on
the above deduction, we propose the scalable Multi-agent Q
learning (SIQ) algorithm to learn a decentralized policy for
a group of agents. More details about the algorithm can be
found in Algorithm 1.

IV. NUMERICAL EXPERIMENTS
We train and evaluate the proposed method on a
multi-agent confrontation platform that contains a mixed
cooperative-competitive confrontation game [31]. In the fol-
lowing experiments, we firstly verify and analyze the pro-
posed SIQ algorithm, and then compare the scalability of
SIQ algorithm with independent learning and mean field
reinforcement learning algorithms in several scenarios with
different numbers of agents.

A. MULTI-AGENT ENVIRONMENT
A multi-agent environment that supports large-scale agent
simulation and allows a wide variety of agents is essential
for training and evaluating the proposed algorithm. MAgent
is developed by Geek.AI organization and popularly used in

119004 VOLUME 8, 2020

W. Zhou et al.: Strategic Interaction MADRL

Algorithm 1 Strategic Interaction Q Learning (SIQ)
Initialize networks Qe and Qt with parameters φe and φt
Initialize the experience replay buffer D
Initialize the environment with n agents
Setup configuration: max training round nround , max step
nstep, minibatch size d
for k = 1,. . . ,nround do
for m = 1,. . . ,nstep do
for i = 1,. . . ,n do
For each agent i, obtain its local state si and com-
munication information ci.
Calculate Qi with Qe(φe) as:

Qi(si, ci, ai) =
∑
j∈Ni

Qij(si, scij, a
′
j, ai).

Opt for the optimal action ai to maximize Qi.
end for
Step with the actions (a1, . . . , ani) or exploration
operations to obtain rewards (r1, . . . , rni)
for i = 1,. . . ,n do
For each agent i, obtain the next local state si_
and new communication information ci_ from the
updated environment
Form the experience (si, ci, ai, ri, si_, ci_), then
store it into D

end for
Sample a minibatch randomly from D
for j = 1,. . . , d do
For experience ej, calculate Qej, next action deci-
sion aj_ and the Temporal-Difference target yj, then
the loss function is:

Lj(φe) = (yj − Qej)2

end for
Average the loss functions:

L(φe) =
1
d

d∑
j=1

Lj(φe)

Update the parameters φe by minimizing the average
loss function L(φe)
if update target network then

Update parameters φe with φe:

φt = τφe + (1− τ)φt

end if
end for

end for

recent researches [14], [15], [31] because of its abundant sce-
narios, including confrontation, gathering, pursuit and tiger,
as well as its cross-plarform ability and environmental munif-
icence. Owing to the open source of the MAgent1 platform,

1https://github.com/geek-ai/MAgent

we can easily adapt the environment to train and test the
proposed algorithms. As far as we know, this platform is the
only one for now satisfying the requirements of large-scale
quantity and scalability.

Here we choose the confrontation scenario and modify it
according to our requirement. Themodified scenario contains
abundant homogeneous agents with identical state spaces and
action spaces. The agents in the environment are divided
into the red and blue teams, and each team is supposed to
learn a cooperative policy to eliminate its enemy. Different
algorithms can be respectively embedded into the two teams
tomake the action decisions for their members.With different
algorithms and settings, the agents can learn skills such as
attack, pursuit, escape, etc.

B. MODEL AND PARAMETERS SETTING
To calculate the Q function of each agent for making its action
decision, the input variable should include the agent’s local
state and the received motional states and actions from its
neighbors. In the neural network shown in Figure 3, the Con-
volutional Neural layer is used to handle its local state input,
Multilayer Perceptrons are used to process its communication
information and hidden layers, and ReLu functions are used
as the activation functions.

The basic rewards of the confrontation scenario are
shaped as follows: -0.005 for each movement, which encour-
ages agents to accomplish task as soon as possible, 5 for
diminishing an opponent and 0.2 for a valid attack. The
hyper-parameters of the SIQ algorithm are given in Table 1.
Specially, the exploration probability ε in (11) is set to be 1 at
the beginning of the training, which will encourage agents
to make action decisions randomly to explore the environ-
ment. Then the exploration probability gradually decreases to
0.05 as the training goes on, and the agents could exploit the
trained neural networks to make action decisions to maximize
their cumulative rewards.

TABLE 1. Hyper-parameters configuration.

C. RESULTS AND DISCUSSIONS
1) VALIDITY VERIFICATION OF SIQ ALGORITHM
This experiment is supposed to verify the validity of the
proposed SIQ algorithm. In the environment initialization,
both red team and blue team consist of 64 agents and the
map size is 40 × 40. The number of agents here far exceeds
that in [11], [28]. Here, the number of agents in the training
scenario is low, because we want to learn a policy that can
be learned at a lower cost (including time and computing

VOLUME 8, 2020 119005

W. Zhou et al.: Strategic Interaction MADRL

resources) in an environment with fewer agents, but it can
be well applied to those scenarios with more agents. And if
realized, this also could prove that the proposed algorithm can
address the MADRL scalability challenge.

Both teams use the SIQ algorithm to train their own neural
networks, and each team shares its own neural network with
all members to calculate their Q functions. The parameters of
the neural networks for two teams are initialized randomly.
Each training round would be terminated if the simulation
step arrives the maximal or one team is annihilated.

One of the many trials is randomly chosen to illustrate the
training process. There are four sub-figures in Figure 4, which
are the results of simulation when the training terminates at
round nround = 1, 100, 200, 300 respectively. And the two
curves in Figure 5 show the changes in single-step average
rewards of the agents in both teams.

FIGURE 4. Combat terminal results at different training rounds.

FIGURE 5. Single-step average rewards of the two teams.

During the preliminary training, due to the high exploration
probability and the random initialization of neural networks’
parameters, the actions of both teams are conducted from
random sampling. So both teams do not aggressively combat
against each other, which is proved by their survivors’ num-
bers in sub-figure 4(a) when the training process reaches the
maximum step. When nround = 100, the comparison of their
survivors displays that the red team has more survivors than
the blue one, which indicates that the red team has learned
better network parameters temporarily. At round nround =
200, the blue team wins the match, while the red team wins
when nround = 300. It is obvious that both teams have
gradually learned how to combat against their opponents, but
the winning and losing between them is alternate, which can
also be seen from the alternating rise between the two curves
in Figure 5. As the training progresses, both the two teams
can win the match before reaching the maximum step limit,
and their single-step average rewards are getting higher and
higher, so their neural networks are constantly evolving and
their policies are gradually improving.

The results of this experiment show that although the num-
ber of agents in the training process is varying, the novel
Q function can be competent for handling the scalability
issue, and the corresponding SIQ algorithm can learn a effec-
tive policy to accomplish the cooperative confrontation task.
More tests of the performance of the proposed method in the
scenarios with agents in different scales will be carried out in
subsection IV-C2.

2) SCALABILITY COMPARISONS
SIQ is a scalable MARL algorithm based on value function,
we compare it with two other scalable baselines,IL and MFQ
algorithms, on the MAgent platform. On the one hand, agents
are partially observable and they may die due to the attack
from their opponents, so we exclude algorithms that require
global information and input variables with fixed dimension,
such as QMIX [17] and QTran [20], etc. One the other hand,
one may concatenate all agents’ local information to replace
the global information, such as MADDPG [11]. However,
when the number of agents is large or the dimension of
local information is very high, the joint dimension would
be extremely high, which would be cursed by dimension-
ality. And the concatenation cannot avoid the permutation
irrelevant issue. Also, Yang et al. [15] have proved that on
the MAgent platform, MFQ outperforms IL, and the latter
performs far better than the actor-critic and mean-filed actor-
critic algorithms. Therefore, we exclude algorithms that are
only applicable to a small number of agents and the number
is fixed as well as those perform poorly.

Firstly, in the environment where its configuration is same
as one in subsection IV-C1, we respectively train the SIQ, IL,
and MFQ algorithms multiple times. The single-step average
rewards of the three algorithms during training are shown
in Figure 6. Obviously, as the training progresses, the average
reward of the SIQ algorithm increases faster than the ones
of IL and MFQ algorithms. It is reasonable since the SIQ

119006 VOLUME 8, 2020

W. Zhou et al.: Strategic Interaction MADRL

FIGURE 6. Single-step average rewards of the three algorithms.

algorithm takes a more complicated interaction model into
consideration and uses a more complex network to formulate
agents’ interactions.

Qualitatively, the SIQ algorithm is the highest computa-
tional complexity, while the IL algorithm is the lowest one.
Theorectical analysis is not easy, so we indirectly analyze it
based on the training time of the algorithms. The average
training time of the three algorithms are compared exper-
imentally in Table 2. However, from the statistic results,
we find that the MFQ algorithm spends the least time, and
the SIQ algorithm spends the most but there is only a small
increase. The possible reason is that in each training episode,
if agents follow a better policy, they could complete the task
faster and win the game, and their rewards would be higher,
which is also illustrated by the average individual rewards
in Figure 6.

TABLE 2. Average training time of the three algorithms.

Furthermore, we also compare the scalability of the three
algorithms in different confrontational scenarios, wherein the
population of each team varies from 12 to 576 in different
scenarios. In each confrontation scenario, the red and blue
teams select two different ones of the three algorithms to
make action decisions for all of their members. So the cross-
wise tests cover three antagonistic relations, including MFQ
vs IL, SIQ vs IL and SIQ vsMFQ. And the network structures
and parameters are loaded from the training results without
modification or retraining. In all scenarios, each test is carried
out for 100 rounds, and then we calculate the win-rates to
evaluate the algorithms’ performances. If there is a dead heat,
the game will be declared a draw. The final win-rates of the
crosswise comparisons are presented in Figure 7.

FIGURE 7. Win-rates of the three algorithms in different scenarios. Map
size increases by 20 units each time, and the number of agents in each
team will increase accordingly. The red dotted line indicates a draw.

It can be seen roughly from Figure 7 that the comprehen-
sive performance of the IL algorithm is the worst, while the
SIQ algorithm performs best. However, the win-rate of MFQ
vs IL is not stable in all the scenarios. Specifically, in the
scenario with 12 agents, the win-rate is 0.215; in the other
cases, it exceeds 0.5. This may imply that the scalability of the
MFQ algorithm is not always superior to the IL algorithm in
all scenarios. Therefore, the interaction with average actions
of neighbors does not always promote cooperation.

In all these scenarios, the win-rates of SIQ vs IL and
SIQ vs MFQ exceed 0.5, and when the number of agents is
greater than 12, they are close to or equal to 1. This implies
that the introduction of the strategic interaction model can
significantly promote the collaboration of agents, thereby
improving their ability to perform complex tasks. It is because
the SIQ algorithm takes into account the more complex inter-
actions between agents. And our method more accurately
models the interaction between the agent and each of its
neighbors, and can fully consider the potential cooperation
or competition between the agents, so that the agent can
make more reasonable decisions. In particular, this advan-
tage can be maintained when the number of agents changes
dramatically, because each agent only takes into account
interactions with its neighbors who are directly determined
by the local communication topology. Conversely, the MFQ
algorithm simply considers the mean action of each agent’s
neighbors, which may ignore the intents of the neighbors in
some complex situations. For example, in a collision avoid-
ance mission, two neighbors moving in opposite directions
may be mistaken for a fixed obstacle. Furthermore, when
the number of neighbors is large enough, the mean action
would be equal to a constant according to Law of Large

Numbers, lim
n→∞

(
n∑
1
an)/n = E(an) = constant. Then the

mean action would be meaningless and the MFQ algorithm
would degenerate into the IL algorithm. In addition to these
tests, we further test the win-rate of the SIQ algorithm in other
scenarios, and the comparison results are similar.

In general, the outstanding performance of the SIQ algo-
rithm demonstrates its scalability in different scenarios, and

VOLUME 8, 2020 119007

W. Zhou et al.: Strategic Interaction MADRL

a well-trained SIQ network can be used in the scenarios with
hundreds and even more agents.

V. CONCLUSION
This paper focuses on scalability issues of MADRL for
homogeneous agents. We define the interaction pair to
describe the local interplay of an agent with one of its neigh-
bors. A novel MARL formulation based on the strategic
interaction model of economics is presented, which approx-
imates the Q function of each agent with the sum of the
expected cumulative rewards of related interaction pairs. By
transforming the multi-body decentralized interaction into
the sum of multiple two-body local interactions, the novel Q
function is scalable to the dynamic changes in the number of
large-scale agents. Then the corresponding SIQ algorithm is
proposed to train a neural network that is used to estimate
the expected cumulative rewards of an interaction pair. The
empirical experiments testify that the proposed method can
learn a effective and sharing policy for homogeneous agents
in cooperative tasks. Furthermore, the crosswise comparison
experiment justifies the outstanding scalability of the pro-
posed SIQ algorithm. This offers an effective solution for the
scalability issue of MADRL, especially in scenarios that the
population of agents is abundant and dynamic.

However, due to the design of a more complex interaction
model, the computational complexity of our method is higher
than the baselines, which should be further analyzed and
simplified in future work. In the training process, we note
that the performance of the neural network is sensitive to
its hyper-parameters configuration, and at the same time the
tuning work of the hyper-parameters is time-consuming and
requires a lot of experience. We will further improve the per-
formance of the SIQ algorithm via Population Based Training
[35] that could be used to learn the hyper-parameters of the
neural network and even to tune its structure.

REFERENCES
[1] J. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, ‘‘Learn-

ing to communicate with deep multi-agent reinforcement learning,’’
in Proc. Neural Inf. Process. Syst., Barcelona, Spain, Dec. 2016,
pp. 2137–2145.

[2] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, ‘‘Learn-
ing to communicate to solve riddles with deep distributed recurrent
Q-networks,’’ 2016, arXiv:1602.02672. [Online]. Available: http://arxiv.
org/abs/1602.02672

[3] C. Schulze and M. Schulze, ‘‘ViZDoom: DRQN with prioritized experi-
ence replay, double-Q learning and snapshot ensembling,’’ in Proc. Intell.
Syst. Conf., London, U.K., vol. 1, Sep. 2018, pp. 1–17.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[5] J. Heinrich and D. Silver, ‘‘Deep reinforcement learning from self-play in
imperfect-information games,’’ 2016, arXiv:1603.01121. [Online]. Avail-
able: http://arxiv.org/abs/1603.01121

[6] P. Long, T. Fanl, X. Liao, W. Liu, H. Zhang, and J. Pan, ‘‘Towards
optimally decentralized multi-robot collision avoidance via deep rein-
forcement learning,’’ in Proc. IEEE Int. Conf. Robot. Automat. (ICRA),
Brisbane, QLD, Australia, May 2018, pp. 6252–6259.

[7] T. Fan, P. Long, W. Liu, and J. Pan, ‘‘Fully distributed multi-robot collision
avoidance via deep reinforcement learning for safe and efficient naviga-
tion in complex scenarios,’’ 2018, arXiv:1808.03841. [Online]. Available:
http://arxiv.org/abs/1808.03841

[8] Y. F. Chen, M. Liu, M. Everett, and J. P. How, ‘‘Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,’’ in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), Singapore,
May 2017, pp. 285–292.

[9] N. Deo andM.M. Trivedi, ‘‘Multi-modal trajectory prediction of surround-
ing vehicles with maneuver based LSTMs,’’ in Proc. IEEE Intell. Vehicles
Symp. (IV), Changshu, China, Jun. 2018, pp. 1179–1184.

[10] S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi, ‘‘Sequence-
to-sequence prediction of vehicle trajectory via LSTM encoder-decoder
architecture,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Changshu, China,
Jun. 2018, pp. 1672–1678.

[11] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch, ‘‘Multi-
agent actor-critic for mixed cooperative-competitive environments,’’ in
Proc. Annu. Conf. Neural Inf. Process. Syst., Long Beach, CA, USA, 2017,
pp. 6379–6390.

[12] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,
J. Aru, and R. Vicente, ‘‘Multiagent cooperation and competitionwith deep
reinforcement learning,’’ PLoS ONE, vol. 12, no. 4, pp. 1–12, 2017.

[13] S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian, ‘‘Deep decentral-
ized multi-task multi-agent reinforcement learning under partial observ-
ability,’’ in Proc. 34th Int. Conf. Mach. Learn., Sydney, NSW, Australia,
Aug. 2017, pp. 2681–2690.

[14] A.Khan, C. Zhang, D.D. Lee, V.Kumar, andA. Ribeiro, ‘‘Scalable central-
ized deep multi-agent reinforcement learning via policy gradients,’’ 2018,
arXiv:1805.08776. [Online]. Available: http://arxiv.org/abs/1805.08776

[15] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang, ‘‘Mean field
multi-agent reinforcement learning,’’ inProc. 35th Int. Conf. Mach. Learn.,
Stockholm, Sweden, 2018, pp. 5571–5580.

[16] V. Conitzer and T. Sandholm, ‘‘AWESOME: A general multiagent learning
algorithm that converges in self-play and learns a best response against sta-
tionary opponents,’’Mach. Learn., vol. 67, nos. 1–2, pp. 23–43,May 2007.

[17] T. Rashid, M. Samvelyan, C. S. de Witt, G. Farquhar, J. Foerster, and
S. Whiteson, ‘‘QMIX: Monotonic value function factorisation for deep
multi-agent reinforcement learning,’’ inProc. 35th Int. Conf. Mach. Learn.,
Stockholm, Sweden, 2018, pp. 4295–4304.

[18] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
‘‘Counterfactual multi-agent policy gradients,’’ in Proc. 32th AAAI Conf.
Artif. Intell., New Orleans, LA, USA, 2018, pp. 2974–2982.

[19] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and
T. Graepel, ‘‘Value-decomposition networks for cooperative multi-agent
learning,’’ in Proc. Int. Joint Conf. Auton. Agents Multiagent Syst.,
Stockholm, Sweden, 2018, pp. 2085–2087.

[20] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, ‘‘QTRAN:
Learning to factorize with transformation for cooperative multi-agent rein-
forcement learning,’’ in Proc. 36th Int. Conf. Mach. Learn., Long Beach,
CA, USA, Jun. 2019, pp. 10329–10346.

[21] A. OroojlooyJadid and D. Hajinezhad, ‘‘A review of cooperative multi-
agent deep reinforcement learning,’’ 2019, arXiv:1908.03963. [Online].
Available: http://arxiv.org/abs/1908.03963

[22] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, ‘‘A survey and critique of
multiagent deep reinforcement learning,’’ Auton. Agents Multi-Agent Syst.,
vol. 33, no. 6, pp. 750–797, Nov. 2019.

[23] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, ‘‘Deep reinforcement
learning for multiagent systems: A review of challenges, solutions, and
applications,’’ IEEE Trans. Cybern., early access, Mar. 20, 2020, doi:
10.1109/TCYB.2020.2977374.

[24] K. Zhang, Z. Yang, and T. Başar, ‘‘Multi-agent reinforcement learning:
A selective overview of theories and algorithms,’’ 2019, arXiv:1911.10635.
[Online]. Available: http://arxiv.org/abs/1911.10635

[25] L. Buşoniu, R. Babuška, and B. De Schutter, ‘‘Multi-agent reinforcement
learning: An overview,’’ in Innovations in Multi-Agent Systems and Appli-
cations. Berlin, Germany: Springer, 2010, pp. 183–221.

[26] D. Szer and F. Charpillet, ‘‘Improving coordination with communication
in multi-agent reinforcement learning,’’ in Proc. 16th IEEE Int. Conf. Tools
Artif. Intell., Boca Raton, FL, USA, Nov. 2004, pp. 436–440.

[27] K. Cao, A. Lazaridou, M. Lanctot, J. Z. Leibo, K. Tuyls, and S. Clark,
‘‘Emergent communication through negotiation,’’ in Proc. Int. Conf.
Learn. Represent., Vancouver, BC, Canada, 2018, pp. 1–15.

119008 VOLUME 8, 2020

http://dx.doi.org/10.1109/TCYB.2020.2977374

W. Zhou et al.: Strategic Interaction MADRL

[28] M. Everett, Y. F. Chen, and J. P. How, ‘‘Motion planning among dynamic,
decision-making agents with deep reinforcement learning,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Madrid, Spain, Oct. 2018,
pp. 3052–3059.

[29] K. Zhang, Z. Yang, H. Liu, Z. Tong, and T. Başar, ‘‘Fully decentralized
multi-agent reinforcement learning with networked agents,’’ in Proc. 35th
Int. Conf. Mach. Learn., Stockholm, Sweden, 2018, pp. 9340–9371.

[30] L. E. Blume, ‘‘The statistical mechanics of strategic interaction,’’ Games
Econ. Behav., vol. 5, no. 3, pp. 387–424, Jul. 1993.

[31] L. Zheng, J. Yang, H. Cai, M. Zhou, W. Zhang, J. Wang, and Y. Yu,
‘‘MAgent: Amany-agent reinforcement learning platform for artificial col-
lective intelligence,’’ in Proc. 32nd AAAI Conf. Artif. Intell., New Orleans,
LA, USA, 2018, pp. 8222–8223.

[32] H. He, J. Boyd-Graber, K. Kwok, and H. Daumé, III, ‘‘Opponent modeling
in deep reinforcement learning,’’ in Proc. 33rd Int. Conf. Mach. Learn.,
New York, NY, USA, 2016, pp. 1–10.

[33] Y. Yang, Y. Wen, L. Yu, W. Zhang, Y. Bai, and J. Wang, ‘‘A study of AI
population dynamics with million-agent reinforcement learning,’’ in Proc.
Int. Joint Conf. Auton. Agents Multiagent Syst., Stockholm, Sweden, 2018,
pp. 2133–2135.

[34] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning with
double Q-learning,’’ in Proc. 30th AAAI Conf. Artif. Intell., Phoenix, AZ,
USA, 2016, pp. 2094–2100.

[35] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue,
A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan, C. Fernando,
and K. Kavukcuoglu, ‘‘Population based training of neural net-
works,’’ 2017, arXiv:1711.09846. [Online]. Available: http://arxiv.org/abs/
1711.09846

WENHONG ZHOU received the B.S. degree in
flight vehicle design and engineering from the
Harbin Institute of Technology, Harbin, China,
in 2014, and the M.S. degree in control science
and engineering from the National University of
Defense Technology, Changsha, China, in 2017,
where he is currently pursuing the Ph.D. degree
in control science and engineering. His current
research interests include artificial intelligence,
swarm control, and corresponding applications

to unmanned aerial systems.

JIE LI received the B.S. degree in automation and
the M.S. and Ph.D. degrees in pattern recognition
and intelligent systems from the National Univer-
sity of Defense Technology, Changsha, in 2006,
2008, and 2014, respectively. From 2014 to 2019,
he was a Lecturer with the Unmanned Aerial
Systems Laboratory. Since 2020, he has been an
Assistant Professor with the College of Intelli-
gence Science and Technology, National Univer-
sity of Defense Technology. His research interests

include swarm intelligence, emergent behavior, multi-agent cooperation,
distributed control, and collective decision-making.

YITING CHEN received the B.S. degree in
automation from the National University of
Defense Technology, Changsha, in 2017, where
she is currently pursuing the Ph.D. degree in con-
trol science and engineering. Her research interests
include multi-agent systems, deep reinforcement
learning, and collective decision making.

LIN-CHENG SHEN (Member, IEEE) received the
B.E., M.S., and Ph.D. degrees in automatic control
from the National University of Defense Technol-
ogy. He is currently a Full Professor and the Dean
of the School of Postgraduates. He has initiated
and organized several workshops and symposia,
including the International Workshop on Bionic
Engineering, in 2012, and the Chinese Automa-
tion Congress, in 2013. He has published over
100 technical papers in refereed international jour-

nals and academic conference proceedings. His current research interests
include mission planning, autonomous and cooperative control, biomimetic
robotics, and intelligent control. Since 2007, he has been serving as an
Editorial Board Member of the Journal of Bionic Engineering.

VOLUME 8, 2020 119009

	INTRODUCTION
	RELATED WORKS
	CONTRIBUTION

	PRELIMINARIES AND NOTATION
	STRATEGIC INTERACTION MADRL
	NUMERICAL EXPERIMENTS
	MULTI-AGENT ENVIRONMENT
	MODEL AND PARAMETERS SETTING
	RESULTS AND DISCUSSIONS
	VALIDITY VERIFICATION OF SIQ ALGORITHM
	SCALABILITY COMPARISONS

	CONCLUSION
	REFERENCES
	Biographies
	WENHONG ZHOU
	JIE LI
	YITING CHEN
	LIN-CHENG SHEN

