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ABSTRACT The instance reduction is one of the data preprocessing methods and aims to remove noises
and (or) redundant instances from the training set. In the instance reduction, one of the most representative
techniques is the edition method which can remove harmful instances from the training set to improve the
prediction accuracy of k nearest neighbor (KNN). Nevertheless, most of existing edition methods still have
some drawbacks, such as the parameter dependency, high computational time and relatively low accuracy.
To solve these problems, we present a new fast parameter-free edition method based on local sets with
natural neighbors (ELS). In ELS, we define a new concept of local sets by introducing natural neighbors.
ELS can use the local sets to keep more reasonable class boundaries and effectively filtering out noisy
instances (including global outliers). The main advantages of ELS are that (a) it is parameter-free; (b) it can
remove global outliers and noisy instances; (c) it is relatively fast. Experiments clearly verify that (a) ELS
outperforms existing representative edition methods in improving the prediction accuracy of KNN; (b) ELS
can improve the performance of the condensation method and hybrid method in terms of both accuracy and
reduction; (c) ELS consumes relatively low running time.

INDEX TERMS Data preprocessing, instance reduction, edition methods, natural neighbors, local sets,
nearest neighbors.

I. INTRODUCTION
The k-nearest neighbor (KNN) [1]–[3] is one of the most
representative instance-based classifiers and usually found as
a benchmark for experimental and theoretical studies in data
mining, image processing, pattern recognition and machine
learning, etc. Despite the good performance of KNN, it also
has some drawbacks, such as large storage requirements,
a great deal of computational time for classification and sensi-
tivity to noises. The instance reduction (IR) [4], [5] can solve
these problems by removing the noises and (or) redundant
instances.

The IR is one of the data pre-processing techniques
and often applied to instance-based classifiers (i.e., KNN).
Specifically, the IR searches the optimized subset S in the
same feature space as the original set X, subject to accu-
racy(S)≥ accuracy(X) [6]. In practical applications, we often
treat IR as the bi-objective problem of the trade-off between
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reduction and accuracy. Therefore, there exist different solu-
tions to different applications.

In general, the IR is divided into condensation methods,
edition methods and hybrid methods. Condensation meth-
ods usually remove some well-classified instances and then
obtain a minimal set that does not affect the performance
of the whole training set. The condensing nearest neighbor
(CNN) [7] is the most classical condensation method. Sub-
sequently, some improved algorithms of condensation meth-
ods [8]–[13], such as the SNN (selective nearest neighbor
rule) [8], the GCNN (generalized condensed nearest neigh-
bor rule) [9] and the IB2-3 (instance-based) [10], are pro-
posed. Compared to condensation methods, edition methods
aim to improve the prediction accuracy of the trained clas-
sifier by filtering out harmful instances (i.e., noises). One
of the representative examples of the edition method is the
ENN (edited nearest neighbor) [14] which filters out some
instances that are not misclassified by KNN. Other variants
of ENN include the all-KNN (ALL-KNN) [15], the repeated
ENN (RENN) [15] and the modified ENN (MENN) [16].
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Hybrid methods, which combine the characteristics of edition
methods and condensation methods, also have been widely
used for the time being [17]–[22]. The edition method is our
focus in this paper.

Recently, many improved approaches [23]–[32] of edition
methods have been proposed by using different theories and
algorithmic models. However, most of the existing edition
methods [23]–[32] still have drawbacks.

• Most of them heavily rely on user-defined parameters,
resulting in difficulty in application and instability in
performance.

• Although some parameter-free methods [27], [31] are
developed, they still achieve relatively low accuracy
or (and) consume relatively high running time.

To solve these drawbacks above, we introduce a new fast
parameter-free edition method with natural neighbors-based
local sets (ELS) in this paper. In ELS, we introduce natural
neighbors [33] to define a new concept for local sets without
any parameters. Compared to the existing local set [31], our
local set has faster computational time and better describes
the local characteristics. Through ELS, we can keep more
reasonable class boundaries, while effectively filtering out
noisy instances and global outliers. The main advantages of
ELS are that (a) it is parameter-free; (b) it can remove global
outliers and noisy instances; (d) it is relatively fast.

In our experiments, we adopt 4 representative editionmeth-
ods, 1 condensation method and 1 hybrid method as compar-
ison algorithms. Also, 22 real data sets are used to evaluate
the proposed algorithm. Main contributions of our work are
listed as follows:

(a) We propose a fast parameter-free edition algo-
rithm (ELS) to remove noisy instances and several global
outliers effectively. Compared with representative ones, ELS
is parameter-free, has faster computational time and improves
the accuracy of KNN better.

(b) We define a new concept for local sets by the fast
searching for natural neighbors. Compared to the local set
of the work [30], [31], the new concept for local sets can
describe the local characteristics of data sets faster and better.

(c) Condensation methods and hybrid methods can use
ELS as a noise filter to improve their performance in terms
of both accuracy and reduction.

The rest of the paper is organized as follows. Section II
describes related work. In Section III, some preparations are
introduced. In Section IV, we describe our algorithm. Com-
parison experiments prove the effectiveness of our algorithm
in Section V. Section VI concludes this paper andmakes plans
for the future.

II. RELATED WORK
The earliest edition method is ENN proposed byWilson [14].
Many hybrid methods, such as the ATISA [18] (adaptive
threshold-based instance selection algorithm), the BNNT
(binary nearest neighbor tree) [19] and the IRB (instanceRank
based on borders) [21], use the ENN as a step to filter out

noisy instances. Despite the excellent performance of ENN,
it is oversimple. Recently, some improvements based on ENN
are proposed to improve the performance of edition methods.
To sum up, they can be divided into three categories, edition
methods based on nearest neighbors (NN-based editionmeth-
ods), graph-based edition methods and edition methods based
on local sets.

Most of the edition methods including ENN are based on
nearest neighbors. Two well-known variants of ENN are the
RENN [15] and the ALL-KNN [15]. The ALL-KNN run
ENN k times, where the number of neighbors varies from 1 to
k . In addition, the RENN runs ENN repeatedly until no noisy
instances are removed. The MENN [16] is another variant of
ENN, and it removes the noisy instance if it does not agree
with all of its k+l nearest neighbors, where l is the number of
instances in the training set which are at the same distance as
the last neighbor. By considering sample-size sensitivity, the
multi-edit (Multiedit) [26] is proposed. It divides the training
set into n blocks (n > 2), where an instance in each block
misclassified by KNN is discarded. By taking account of
the symmetric distribution of prototypes, the nearest cen-
troid neighbor edition (NCNEdit) [24] is proposed, where an
instance can be removed if it is misclassified by its k nearest
centroid neighbors. In addition, the edited nearest-neighbor
estimating class probabilistic and threshold (ENNTh) [25] is
also an improved algorithm of ENN. The ENNTh applies
a probabilistic NN rule and deletes an instance from the
training set if it is misclassified by this probabilistic NN rule.
In recent years, an edition method based on natural neighbors
(ENaN) [27] have been developed to improve ENN. ENaN
filters out noisy instances if they are misclassified by their
natural neighbors. In general, the performance of almost all
existing NN-based edition methods depends on the selection
of parameter k . Moreover, most of them have relatively high
time complexity (i.e., O(n3)).

Graph-based edition methods usually need to construct
a very complex structure of graphs, and then they use
the information of edges and points implicit in the graph
structure to delete noisy instances. Therefore, most of the
graph-based approaches have a high time complexity of
O(n3) and depend on parameters. The most representative
algorithms of graph-based edition methods are the relative
neighborhood graph edition (RNGE) [23] and the cut edges
weight statistic (CEWS) [28]. They filter out noisy instances
by constructing the relative neighborhood graph. The edi-
tion based on hit miss networks (HMN-E) [29] is another
graph-based edition method. HMN-E constructs a k-nearest
neighbor graph (k = 1) and deletes the sample if it is isolated
or has more ‘miss’ than ‘hit’ points.

The local set is proposed by Brighton and Mellish [30].
Recently, Leyva et al. propose a new edition method based on
local sets (LSSm) [31]. The LSSm deletes sample x if harm-
fulness(x) > usefulness(x). Although LSSm is parameter-
free and sometimes achieves relatively high performance,
the process of computing local sets is also relatively time-
consuming (the time complexity is O(n2)).
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III. PRELIMINARIES
A. NOTATIONS
The Euclidean distance is adopted. For convenience, the main
notations used in this paper are listed as follows:

• X: the training set of nd-dimensional instances.
• S: the optimized subset.
• l(x): the class label of sample x.
• NaN(x): the natural neighbors of sample x.
• NNr (x): the r nearest neighbors of sample x.
• Nb = {time1, time2, . . . timen}: it records the number,

where timei (i = 1, 2, . . . , n) or Nb(xi) is the number of
sample xi that is considered as the neighbor of other samples.

• λ : the natural neighbor eigenvalue.
• Outliers: the set of outliers.
• LS(x): the local set of sample x.
• LSC(x): the local set cardinality of sample x.
• Harmfulness(x): the harmfulness of sample x.
• Usefulness(x): the usefulness of sample x.
• | ∗ |: | ∗ | indicates the number. For example, |NaN(x)| is
the instances number of NaN(x).

B. NATURAL NEIGHBORS
The natural neighbor [33] is a completely new definition of
neighbors without parameters and has been used to solve the
problem of the parameter selection for KNN [34], [35]. This
definition comes from the understanding of social networks.
If two people are true friends, they should treat each other
as friends. When all people have a friend, a natural stable
structure will be formed in social networks. This situation
also happens in data objects.
Definition 1 (Natural Stable Structure): Object xi is a nat-

ural neighbor of object xj if xi considers xj as a neighbor and
xj considers xi as a neighbor at the same time. If every object
has at least one natural neighbor, the data set has formed a
relatively stable state, named Natural Stable Structure (NSS)

(∀xi)(∃xj)(r ∈ n) ∧ (xi 6= xj)

→ (xi ∈ NNr (xj)) ∧ (xj ∈ NNr (xi)) (1)

In formula (1), the search round r increases from 1 to
λ, where λ is the natural neighbor eigenvalue (NaNE). The
NNr (x) is the r nearest neighbors of sample x.
Definition 2 (Natural Neighbor Eigenvalue): Natural

Neighbor Eigenvalue λ is equal to the search round r , when
the NSS has been formed.

λ = rr∈n{r|(∀xi)(∃xj)(r ∈ n) ∧ (xi 6= xj)

→ (xi ∈ NNr (xj)) ∧ (xj ∈ NNr (xi))} (2)

According to the descriptions above, the natural neighbor
for data objects is described as follows:
Definition 3 (Natural Neighbor): The natural neigh-

bor (NaN) of xi is defined as follows:

xj ∈ NaN (xi)⇔ xi ∈ NNλ(xj) (3)

FIGURE 1. A LS in a two-dimensional space.

In fact, samples with a higher density have more NaNs,
while samples with a lower density have fewer NaNs. Espe-
cially, Outliers have no natural neighbors.
Definition 4 (Outliers): Sample x belongs to outliers if

sample x has no natural neighbors.

x ∈ Outliers⇔ |NaN (x)| == 0 (4)

In general, the natural neighbor is parameter-free because
it has an adaptive value of k (i.e., λ). Besides, we also find
some outliers by the natural neighbor in Definition 4. A more
detailed description can be seen in existing work [22], [27].
Next, we define the concept of local sets with natural
neighbors.

IV. PROPOSED ALGORITHM
A. LOCAL SETS WITH NATURAL NEIGHBORS
The earliest definition for the local set of an instance x is the
set of samples whose distance to x is smaller than the distance
between x and its nearest neighbor from a different class [30].
However, the process of calculating the local sets [30] is rel-
atively time-consuming. In section, we define a new concept
for local sets by fast searching for natural neighbors.
Definition 5 (Local Sets): Local set (LS) of xi is defined as

follows:

LS(xi) = NaN(xi) ∪ xi (5)

In definition 5, LS(xi) represents the local neighborhood
consisting of sample xi and xi’s natural neighbors. Each local
neighborhood (i.e., LS) describes the local characteristics of
data sets. Next, we describe another definition named the
local sets cardinality.
Definition 6 (Local Sets Cardinality): Local set cardinal-

ity (LSC) of xi is the number of instances contained in LS(xi).
The LSC can be defined as follows:

LSC(xi) = |LS(xi)| (6)

Fig. 1 gives an example to show the LS with 8 instances
in a two-dimensional space, where NaN(A) = {B, C, D, E},
LS(A) = {A, B, C, D, E} and LSC(A) = 5. In fact, there are
distinctive characteristics and advantages of our LS.

We first summarize the characteristics of our LS:
(a) For ∀x, LSC(x)≥1.
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FIGURE 2. A toy example on a complex data set, where enemy neighbors
of red circles are green squares.

(b) In a data set, the LSC of different samples may be
different. If the LSC of a sample is relatively large, the sample
is likely to be in a high-density region, and vice versa. The
reason is that samples with higher density have more natural
neighbors.

(c) The Max( LSC (x ∈ X)) = λ + 1. In other words,
the largest LSC of all local sets on a data set is λ + 1.
Especially note that the λ is not an external parameter. It is
an adaptive and dynamic value [33].

(d) Our LS is parameter-free because the natural neighbor
contained in our local sets does not require user-defined
parameters.

Next, we illustrate the advantages of our local set by giving
an in-depth comparison between our LS and the one of the
work [30].

(a) Our LS can use LSC to describe local densities of data
sets and find several global outliers because the LS of a global
outlier usually contains only itself. However, the local set of
the work [30] does not have the ability.

(b) The computational time of our LS is faster than the
one of the work [30]. In detail, the time complexity of cal-
culating our LS isO(nlogn), while the time complexity of the
work [30] is O(n2).
(c) Our LS is more suitable for complex data sets than the

one of the work [30]. Fig. 2 uses a toy example to illustrate,
where there are 3 classes of the green square, the red circle
and the blue triangle. In Fig. 2, all circles’ neighbors from
the different classes are the square (the arrow in Fig. 2 points
to enemy neighbors), which leads to troubles in using the
local set of the work [30] to filter out noises and select border
samples [31]. In contrast, our LS is based on more reasonable
strategies with natural neighbors. Also, the natural neighbor
has been effectively used in complex data sets (e.g. data
sets with some variations in densities or manifold distribu-
tion [34]).

The more detailed algorithm for calculating LS is
described in algorithm 1.

Algorithm 1 returns LS and LSC. The time complexity of
algorithm 2 is O(nlogn) because kd tree [36] is applied. The
steps 1-8 are used to search for the NaN and calculate LS and
LSC. The stopping conditions of algorithm 1 is implied in

Algorithm 1 Calculate Local Sets (CLS)
Input: X
Output: LS, LSC
1: r = 1;
2: Create a kd tree T from data set X;
3: ∀xi ∈X, LS(xi) = {xi}, LSC(xi) = 1; Nb(xi) = 0;
4: for each sample xi in X, find its r-th neighbor xj

by using T
5: Nb(xj) = Nb(xj)+ 1;
6: LS(xj) = LS(xj)∪{xi};
7: LSC(xj) = LSC(xj)+ 1;
8: end for
9: Compute Num% Num is the number of sample xi that

Nb(xi) == 0;
10: If Num does not change for 2 times
11: returnLS, LSC;
12: else
13: r = r+1;
14: goto step 4;
15: end if

formula (1) and calculated in steps 9-15. In addition, noises
can also affect the number of iterations of Algorithm 1. So we
add another condition that Num does not change for 2 times.
In general, the LS with natural neighbors offers a novel

fast way to describe the neighborhood of each sample, which
makes it an effective tool for some tasks related to data
mining, such as the edition methods of IR.

B. PROPOSED EDITION METHOD
In this section, we will introduce a fast parameter-free edition
method based on our LS. Our inspiration comes from the
understanding of the local neighborhood. Normal instances
should have the same class label as their local neighbor-
hoods;. By contrast, noisy instances should have a different
class label from their local neighborhoods. Based on this
motivation, we designed the ELS by defining the harmfulness
and usefulness of each sample inDefinitions 7-8, whereLS(y)
represents a local neighborhood and l(y) represents the class
label of the local neighborhood.
Definition 7 (Harmfulness of xi) : The harmfulness of

sample xi can be defined as follows:

Harmfu ln ess(xi) = |{y|xi ∈ LS(y) & &l(y) 6= l(xi)}| (7)

Definition 8 (Usefulness of xi) : The usefulness of sample
xi can be defined as follows:

Usefu ln ess(xi) = |{y|xi ∈ LS(y) & &l(y) == l(xi)}| (8)

According to definitions 7-8, the usefulness of sample x is
the number of instances y, where LS(y) (i.e., a local neigh-
borhood) contains x and y’s label (i.e., the label of the local
neighborhood) is the same as that of sample x. By contrast,
the harmfulness of sample x is the number of instances y,
where LS(y) contains x and y’s label is different from that
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FIGURE 3. ELS on artificial data sets.

of sample x. If a sample is a noisy instance, its harmfulness
is naturally greater than its usefulness.
Definition 9 (Noisy Instances): If sample xi is a noisy

instance, it should satisfy the following condition:

Harmfulness(xi) > Usefulness(xi) (9)

Especially, if the LSC of sample x is 1, we regard this
sample x as an outlier because the LS of an outlier usually
contains only itself. The definition of outliers can also be
defined by our LS and is described as follows:
Definition 10 (Outliers): If sample x is an outlier, it should

satisfy the following condition:

Outliers = {x|LSC(x) == 1} (10)

According to formulas (7)-(10), we can fast filter out noisy
instances and global outliers without any parameters. Our
proposed edition method is described in Algorithm 2.

Algorithm 2 returns ES without harmful instances and
global outliers. In detail, step 2 is used to calculate LS and
LSC for X. In steps 3-8, some samples whose LSC are
1 or ‘Harmfulness’ > ‘Usefulness’ are removed. The time
complexity of step 2 is O(nlogn). The time complexity of
steps 3-8 is O(n). As a result, the time complexity of ELS
is O(nlogn).

C. ILLUSTRATIVE EXAMPLES
In this section, we use 2 two-dimensional artificial data sets
of Triangle and Banana to visually demonstrate the efficiency
of our algorithm in filtering out noisy instances. The Triangle
has 2340 instances and 3 classes. By contrast, the Banana is
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Algorithm 2 Edition Method Based on Local Sets (ELS)
Input: X
Output:ES (Edited Set)
1: ES = ∅;
2: [LS, LSC] = CLS(X);
3: For each sample x in X, calculating Usefulness(x)

and Harmfulness(x), according the LS;
4: for all xi in X, LSC(xi) > 1
5: if Usefulness (xi) >= Harmfulness(xi)
6: ES = ES ∪ xi;
7: end if
8: end for

an artificial data set with 8800 instances and 2 classes. More
details are described in Fig. 3 (a)-(f). Fig. 3 (a)-(c) shows
the filtering process on the data set of Triangle while Fig. 3
(e)-(f) show the filtering process on the data set of Banana.
Fig. 3 (a) and Fig. 3 (d) show the original data of Triangle
and Banana. In Fig. 3 (b) and Fig. 3 (e), noisy instances
are detected and surrounded by red circles. As can be seen
from Fig. 3 (c) and Fig. 3 (f), noisy instances and several
outliers are removed. After that, the decision boundaries are
reasonably expanded and made clearer.

V. COMPARISON EXPERIMENTS
We carry out experiments on a server with an Inter (R)
Xeon (R) Silver 4100 CPU of 2.10 GHz, a 64GB memory
and a 64-bit Windows 10 operating system. The code for all
algorithms is written with MATLAB2015.

A. EXPERIMENTAL SETTINGS
We select 22 real data sets from the University of Califor-
nia Irvine (UCI) repositories (http://archive.ics.uci.edu/ml/
datasets.html). The description of data sets is listed in Table 1.
Specifically, challenging computer vision data sets (e.g. LAS,
OPT, PEN, GPS, etc.) are used. Note that for data sets with
categorical attributions, we need to convert categorical attri-
butions into integer attributions.

The strategy of 10-fold cross-validation is used to
determine the final experimental results in terms of accu-
racy (ACC) and reduction (R) in all experiments. The for-
mulas of ACC and R are described as follows:

ACC =
|Tcorrect |
|T |

∗ 100% (11)

R =
|S|
|X |
∗ 100% (12)

In formula (11), T is the test set and Tcorrect is the set of
the correctly classified instances from T. In formula (12), S is
the reduced set while X is the original set. The KNN (k = 3)
is used to measure the final result in all experiments and is
usually used in existing work [21], [27]. In total, we carry out
3 experiments to verify our algorithm and brief introductions
are listed as follows:

(a) Experiment One: we compare our algorithmwith 5 rep-
resentative edition methods.

(b) Experiment Two: our algorithm is used as an effective
noise filter in a condensation method and a hybrid method of
IR.

(c) Experiment Three: we carry out a comparison experi-
ment to compare the average running time.

B. EXPERIMENT ONE: THE COMPARISON BETWEEN OUR
ALGORITHM AND REPRESENTATIVE WORK
In Experiment One, we compare our algorithm with some
representative work explained as follows:

• The ENN [7] is a classical and representative NN-based
edition method. However, the ENN heavily depends on
the parameter k . In this experiment, we choose ENN
with different k (1, 3 and 5) as the comparison algorithm.

• The HMN [29], a classical and representative
graph-based edition method, is adopted, where k = 1
and ε = 0.1.

• The LSSm [31] is the earliest edition method based
on local sets. We also use the LSSm as a comparison
algorithm because of the relatively high performance,
the parameter-free advantage and relatively low compu-
tational time.

• The ENaN [27] is a parameter-free edition method based
on natural neighbors. At the same time, it is relatively
fast and relatively new work. So, we choose it as a
comparison algorithm.

• Similar to previous work [21], [27], the KNN with
k = 3 (denoted as 3NN) is also selected as a comparison
algorithm.

In terms of ACC, Table 2 shows experimental results on
22 data sets to demonstrate that our algorithm can outperform
some representative work in improving 3NN by effectively
removing noisy instances. At the same time, Fig. 4 is the
Boxplot of ACC and reflects the degree of dispersion of ACC.
Especially note that we do not use the R criterion here because
the objective of the edition method is to improve ACC.

To assess whether the difference in ACC is significant, a
non-parametric two-sided Wilcoxon signed ranks test with
0.05 significance level is used. The symbols+, - and∼, in the
row labeled ‘‘Wilcoxon signed ranks test’’, show that ELS is
significantly better, worse or equivalent compared with the
comparison method, respectively.

As shown in Table 2, ELS achieves the highest ACC for
14 of 22 data sets. Note that ELS does not have a considerable
ACC on WAF, YEA, PID, WDBC, IRIS, etc. The possi-
ble reason is that comparison methods may better describe
the characteristics of noisy instances on some specific
distribution.

These average results of ACC for all edition algorithms are
higher than that of 3NN. Table 2 also shows that if we set
different k in ENN, ENN will have different performances.
Compared to ENN, ELS has a more stable performance
because it is parameter-free. Moreover, the average results of
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TABLE 1. The description of data sets.

TABLE 2. Comparing ELS with representative editions methods in terms of ACC (%).

ELS are higher than those of ENNwith different k . Compared
with other 3 parameter-free edition methods (i.e., HMN-E,
LSSm and ENaN), ELS also has a higher average result of
ACC. We believe the reason is that the local sets in our ELS
can better describe the local characteristics of data sets and
the strategy in ELS for removing noises can better describe
characteristics of noisy instances.

Observing the row labeled ‘‘Wilcoxon signed ranks test’’,
ELS is shown to be significantly better than others. In Fig. 4,
the dispersion degree (i.e., the size of the box implied in 25%-
75%) of ELS is relatively lower. This result shows that ELS
is more robust to different data sets.

C. EXPERIMENT TWO: THE COMPARISON OF A
CONDENSATION METHOD AND A HYBRID METHOD
In this section, we use our algorithm as a step of the noise
filter in a condensation method (TRKNN, a novel template
reduction approach for the K nearest neighbor method) [17]
and a hybrid method (ATISA1, an adaptive threshold-based
instance selection algorithm) [18]. We use ELS to replace
ENN (k = 3) in ATISA1_ELS. By contrast, we combine
TRKNNwith ELS in TRKNN_ELS. Experimental results are
shown in Tables 3-4 and Fig 5. Likewise, the non-parametric
two-sided Wilcoxon signed ranks test with 0.05 significant
level is used to analyze results.
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TABLE 3. Comparison between TRKNN with TRKNN_ELS (%).

TABLE 4. Comparison between ATISA1 with ATISA1_ELS (%).

Table 3 shows an experimental result of the com-
parison between TRKNN and TRKNN_ELS. In general,
TRKNN_ELS has higher average results of ACC and
R than TRKNN. In detail, TRKNN only has higher ACC than
TRKNN_ELS for 1 of 22 data sets. In terms of R, TRKNN
only has a higher R than TRKNN_ELS for 4 of 22 data
sets.

Table 4 shows an experimental result of the com-
parison between ATISA1 and ATISA1_ELS. Likewise,
ATISA1_ELS have higher average results of ACC and R than
ATISA1. By taking a closer look, ATISA1_ELS has higher
ACC than ATISA1 for 15 of 22 data sets. By contrast,
ATISA1_ELS has a higher R than ATISA1 for 17 of 22 data
sets.
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TABLE 5. The comparison about running time for algorithms (seconds).

FIGURE 4. Boxplot of average accuracy.

In addition, Observing the row labeled ‘‘Wilcoxon signed
ranks test’’, TRKNN_ELS and ATISA1_ELS is shown to be
significantly better than TRKNN and ATISA1 in terms of
ACC and R.

Also, Fig. 5 shows average results in terms of ACC and
R for TRKNN, TRKNN_ELS, ATISA1 and ATISA1_ELS.
The top right corner is the best possible solution. In Fig. 5.
the ATISA1_ELS is better than others. TRKNN_ELS and
ATISA1 have a similar performance. Most important of all,
compared to TRKNN and ATISA1, performances (i.e., ACC
and R) of TRKNN_ELS and ATISA1_ELS are significantly
improved by using ELS.

D. EXPERIMENT THREE: REQUIRED RUNNING TIME
We discuss the time complexity and carry out an experiment
on real data sets to compare the average running time between

FIGURE 5. The average result of ACC and R for 4 algorithms.

ELS and 4 representative work listed in Experiment One,
where all algorithms run 10 times. According to our knowl-
edge, the time complexity of ENN, HMN-E, LSSm, ENaN
and ELS is O(n3), O(n2), O(n2), O(nlogn) and O(nlogn)
respectively. Theoretically, ELS and ENaN are very fast.
Table 5 shows a result to verify and analyze the conclusion
in more detail.

We can find from Table 5 that ELS is significantly fast than
ENN, HMN-E and LSSm. In addition, ELS is slightly faster
than ENaN. Although the difference in terms of running time
between ENaN and ELS is very small, ELS is actually better
than ENaN by weighing computational time and prediction
accuracy.

VI. CONCLUSIONS
Most of existing edition methods still have some drawbacks,
such as the parameter dependency, high computational time
and relatively low accuracy. To solve these problems, we pro-
pose a new fast parameter-free edition method based on local
sets (ELS). In ELS, we introduce natural neighbors to define
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the new local set. Compared to the existing local set [30], our
local set has faster computational time and better describes
the local characteristics. Through ELS, we can keep more
reasonable class boundaries, while effectively filtering out
noisy instances and global outliers. The main advantages of
ELS are that (a) it is parameter-free; (b) it can remove global
outliers and noisy instances; (d) it is relatively fast.

In our experiments, 22 data sets are used and 4 repre-
sentative algorithms are compared with the proposed one.
Through experiments, we verify that our algorithm, compared
to representative edition methods, can better remove harmful
instances and improve the KNN. Moreover, our algorithm
is also relatively fast. In addition, we have found that our
algorithm can be effectively used as a step of the noise filter
in condensation methods and hybrid methods.

We will apply our local set and ELS in more fields,
such as more condensation methods [37], more hybrid meth-
ods [38], SMOTE algorithms [39], [40] and semi-supervised
self-labeled methods [41]–[43]. Also, we have planned to
improve ELS to deal with big data sets.
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