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ABSTRACT Mechanical properties are important indexes to evaluate the quality of hot rolling strips. It is
a research hotspot in the field of hot rolling that realizing timely and accurate soft sensing of mechanical
properties. Traditional soft sensing methods have poor performance in the application of strong nonlinearity
and multiple working conditions. Moreover, the utilization rate of data is relatively low, which limit the
improvement of prediction accuracy. To solve the problems above, a just-in-time learning (JITL) basedmulti-
block weighted semisupervised Gaussian mixture regression (JMWSSGMR) soft sensor is proposed in the
paper. There are two stages in the soft sensor: off-line variable blocking and on-line local modeling. In the
off-line phase, process variables are divided into different sub-blocks by partial least square (PLS) according
to distinct principal component directions. In each sub-block, original variables with high contribution rate
are retained. In the on-line phase, optimized Mahalanobis distance is constructed to select the most similar
historical samples to the query sample. Next, various real-time semisupervised sub-models are built to
estimate the output of the query sample. Finally, predicted values of sub-models are fused and ultimate
prediction of mechanical properties is obtained. Case studies are carried out on a numerical example and a
hot rolling process. The feasibility and effectiveness of proposed soft sensor are verified by the predicted
results.

INDEX TERMS Soft sensor, just-in-time learning (JITL), semi-supervised learning, hot-rolling process.

I. INTRODUCTION
Mechanical properties refer to the mechanical character-
istics of materials under various external loads (tension,
compression, bending etc.) in different environments, which
are important indexes to evaluate the quality of materials.
Mechanical properties of hot rolled strips mainly include ten-
sile strength (TS), yield strength (YS) and elongation (EL).
Accurate measuring and monitoring of mechanical properties
is critical to realizing optimal control of hot rolling. It is also
the key to ensuring safety of the process, assuring production
efficiency and improving quality of products. However, due
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to the characteristics of high nonlinearity, complex interac-
tions among variables and multiple working conditions in
hot rolling process, the estimation of mechanical properties
is difficult and unstable, which restricts the optimization and
development of hot rolling equipment and controlling system.
At present, there are three main ways to measure mechan-
ical properties of strips: sampling analysis, online analysis
instruments and soft sensors [1]. In the first method, pieces
of samples need to be cut from strips and transferred to the
laboratory for destructive testing. The results are meaningless
because of its long time delay. For the second method, we
obtain parameter information of strips through the devices
installed on the production lines, which can detectmechanical
properties of strips in time and greatly shortens measuring
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time. Nevertheless, on-line measuring devices are expensive
and the maintenance of them is difficult, which increases
running costs of steel plants. Different from the methods
above, soft sensors do not rely on any professional testing
equipment, but build virtual models to predict mechanical
properties. There are two kinds of models in the soft sensor:
metallurgical mechanism models and data-driven models [2].
The former establish theoretical formulas for the evolution of
strip structure and process parameters, and predict mechani-
cal properties by revealing microstructure evolution of steel.
The structure of the mechanism model is generally complex
including many critical dependencies. Moreover, we often
need to update model parameters and structures based on the
type of steel, resulting in limited application of metallurgical
mechanism models. By contrast, data-driven soft sensors no
longer focus on process mechanism, but attempt to extract
useful information from process data to accomplish predic-
tion tasks. Compared with complex mechanismmodels, data-
driven ones have simpler structure, wider applicability and
stronger learning ability. These models can extract effective
parts from numerous process information and provide precise
prediction of mechanical properties. In recent years, how to
build responsive and accurate data-driven soft sensors is a
research hotspot in the field of steel quality prediction and
process control.

Due to the improvement of computing capability, some
common data-drivenmodels, such as artificial neural network
(ANN) [3], [4], support vector machine (SVM) [5] and partial
least square (PLS) [6], have been successfully applied in
various industrial processes. Among them, ANN is the most
widely used model for its strong nonlinear approximation
and learning ability. As early as the 1990s, Liu et al. [7]
have applied ANN to predict the mechanical properties of
hot rolled C-Mn steel, showing great learning and genera-
tion ability compared with traditional regression models. In
the early 2000s, there were more and more applications of
ANN. Kim et al. [8] proposed a new integrated BP neural
network, which screened variables by correlation analysis
and integratedmultiple neural networks to predict mechanical
properties of hot rolled strips. Lalam et al. [9] combined
principal component analysis (PCA) with BP neural network,
which reduced the influence of redundant variables and vari-
able collinearity. Wu et al. [10] constructed Bayesian neural
network (BNN) to establish a reliable prediction model for
mechanical properties of C-Mn steel. Combined with multi-
objective optimization algorithm and expert knowledge, it
was also successfully applied in the prediction of mechanical
properties of Q235B steel. Except for ANN, other data-driven
models were rarely used in the monitoring of mechanical
properties. Due to the multiple working conditions in hot
rolling process, Wang et al. [11] established a multi support
vector regression model to distinguish data from different
working conditions, and used grey correlation degree for
weighted fusion. In recent years, because of its excellent
feature extraction ability, deep learning is widely concerned
in regression and classification problems. Yan et al. [12]

FIGURE 1. Process of hot strip rolling.

combined stacked denoising autoencoders with neural net-
works. The proposed model is able to capture the essential
information of input data through deep architecture. The
model has better prediction performance than traditional soft
sensors. Xu et al. [13] transformed process data into a two-
dimensional data matrix, and used convolutional neural net-
work (CNN) to predict mechanical properties.

At present, most soft sensors applied in the prediction of
mechanical properties of steel are single networks. Although
ANN showed great performance in dealing with nonlinearity,
its way of handling data is relatively simple. In addition, ANN
models had poor interpretability and the results were unsta-
ble. In addition to inherent characteristics of neural networks,
they also ignored the characteristics of industrial process
in practical applications. Still, traditional ANN discarded a
large number of unlabeled samples, which resulted in the
lack of process information and limited the improvement of
accuracy.

Aiming at the problems above, taking the mechani-
cal properties of steel as targets, this paper presents a
JITL-based multi-block weighted semisupervised Gaussian
mixture regression soft sensing method. On the premise of
analyzing various characteristics of hot rolling process, we
achieve real-time and accurate soft sensing of mechanical
properties of steel strips pertinently.

The rest of this paper is organized as follows. Section 2
introduces hot rolling process. Section 3 proposed the theory
of variable blocking based on PLS, just-in-time learning,
semisupervised GMR and basic modeling strategy. Next,
each part of the soft sensor is proposed in detail in section 4.
Then, case studies on a numerical example and an actual hot
rolling process are given in section 5 to verify the effective-
ness of soft sensor. Finally, section 6 gives some conclusions
about this research.

II. DESCRIPTION OF HOT ROLLING PROCESS
Steel is widely used in many industrial fields, such as
construction industry, bridges, mechanical manufacturing,
aerospace, etc. The quality of steel is directly related to the
hot rolling process. Hot rolling process is mainly divided into
reheating, rough rolling, finish rolling, laminar cooling and
coiling [13]. The layout of hot rolling process equipment is
shown in Figure. 1.

First of all, cast slab is sent to the reheating furnace
for heating to around 1200◦C. Hot rolling process is a
heat treatment process with two main purpose. First, at
room temperature, the deformation resistance of steel is
high. As temperature rises, steel gradually softens. Its defor-
mation resistance also becomes lower, making it easy to
be rolled. Second, morphology and distribution of internal
microstructure of the steel changes gradually, and single-
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phase austenite with high plasticity and workability is
obtained. Insufficient reheating will lead to insufficient dis-
solution of carbides and nitrates, resulting in series of cumu-
lative effects in the subsequent rolling process, thus affecting
mechanical properties of steel.

Before the strip is transferred to the roughing mill, some
oxide impurities are generated from the reaction between
strip steel surface and oxygen under high temperature. In
order to avoid these impurities being rolled into steel and
affecting surface quality of the steel, dephosphorization with
high-pressure water is required before rolling. Rough rolling
is the first stage of rolling, where the strip is rolled several
times. Thickness is significantly reduced while the width is
controlled by the vertical roll here. Austenite recrystalization
mainly occurs in rough rolling. The size of austenite grain
is greatly reduced. As a result, the mechanical properties of
steel are significantly improved.

After rough rolling, the strip is sent to hot coil box through
conveying roller for coiling temporarily. The main purpose
of coiling here is to save space. In addition, when the strip is
coiled together, temperature difference between the head and
the tail of the strip is reduced, so as to achieve overall tem-
perature balance and facilitate the control of the mechanical
properties. Overall temperature of the strip is about 1050◦C
when uncoiling. Then, the head and the tail of the strip are
cut by flying shear at the end of conveying roller to ensure
flatness, and dephosphorization with high-pressure water is
carried out again.

Finish rolling is a fine rolling stage for significantly im.
Finishing mill usually consists of several rolling mills, which
jointly control the tension, speed and other parameters of the
strip to ensure that it meets specified requirements. At this
stage, austenite is further refined to improve the strength and
plasticity of the steel.

The stage after finish rolling is called laminar cooling.
It is an on-line cooling process after rolling with laminar
water flow. According to different steel grades, the strategy of
cooling is also different, which is an important technological
system to determine the performance of strip steel. In the
laminar cooling process, when the temperature of the strip
decreases to a certain extent, austenite transforms into other
carbide structures with different mechanical properties, such
as ferrite, pearlite, martensite, etc. Through the combination
of various structures, mechanical properties of the strip meet
final requirements.

Coiling is the last stage of hot rolling process, and there is
still some phase transformation during coiling. After coiling
and subsequent cooling, the qualified strip can be sold as
mature product or further processed as raw material. Main
works of each stage of hot rolling and the changes of strip
structure are shown in Table 1.

III. PRELIMINARIES AND MODELING STRATEGY
A. PARTIAL LEAST SQUARE (PLS)
PLS is described as bilinear decomposition of both input
space X ∈ RN×a and output space Y ∈ RN×b, which are

TABLE 1. Main works and microstructure evolution in each stage of hot
rolling.

presented as follows [14]:

X = TPT + E (1)

Y = UQT + F (2)

where N is the number of samples. T = [t1, t2, · · · , tk ] ∈
RN×k and U = [u1, u2, · · · , uk ] ∈ RN×k are matrices
composed of score vectors of input space and output space,
respectively. P = [p1, p2, · · · , pk ] ∈ Ra×k and Q =

[q1, q2, · · · , qk ] ∈ Rb×k are loading matrices of input space
and output space, respectively. E(N × a) and F(N × b) are
residual matrices of input space and output space, respec-
tively. Appropriate number of latent variables k is important
for prediction accuracy. If there are too many latent variables,
the model residual is small, but at the same time, the noise
will be introduced, which leads to poor generalization perfor-
mance. If too few, the relationship between X and Y cannot
be exactly described, and the residual is large.

PLS algorithm is accomplished by nonlinear iteration. Its
purpose is to find the main eigenvector of the following
problem [15].

XT yyTXw = λw (3)

The matrix formed by its eigenvector W =

[ω1,w2, · · · ,wk ] ∈ Ra×k is weighted matrix of PLS. In
order to get relationship between latent variables and original
variables, it is derived as:

XW = TPTW ⇒ T = XW ∗ (4)

where W ∗ = W (PTW )−1 ∈ Ra×k is the mapping matrix
from input space to potential space, in which each column is
a mapping vector from original space to potential space. We
presentU by T , which isU = TV+H , where V is a diagonal
matrix, and H is residual matrix. Eq.(2) can be expressed as:

Y = UQT + F = TVQT + HQT + F = TQ∗T + F∗ (5)

Therefore, the score matrix of X is also the predictor of Y .
Eq.(5) can be further expressed as:

Y = XW ∗Q∗T + F∗ = XB+ F∗ (6)

where B is the regression coefficient of PLS algorithm.
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FIGURE 2. Just-in-time learning framework.

B. JUST-IN-TIME LEARNING (JITL)
When monitoring the industrial process with obvious batch
properties such as hot rolling one, it is necessary for the
soft sensor to adjust model structure and parameters adap-
tively due to the type of products. As a result, it is chal-
lenging to build an appropriate global model suitable for
products under diverse working conditions. As an alterna-
tive, an adaptive on-line local modeling strategy, just-in-
time learning, is proposed [16]. JITL based models are
built on-line. According to different characteristics of query
samples, local models are built by searching samples with
similar characteristics in the database, which reduces the
interference of redundant samples. Such local models can
well adapt to the nonlinearity and multiple working condi-
tions in the industrial process. JITL is generally divided into
four steps [17], [18], and the overall framework is shown
in Figure.2.

1) Establish the historical dataset by collecting data from
an industrial process.

2) Calculate the distance or similarity between historical
samples and the query sample by some means, and
the historical samples with the closest distance or the
highest similarity are selected as modeling samples.

3) A local model is trained with modeling samples and
used to give an estimation of the query sample.

4) The local model is discarded immediately after the
predicted value is obtained.

There are two concerns when implementing JITL, which
are ‘‘relevance’’ and ‘‘accuracy’’. The first means that the
selected samples should be relevant to the query sample.
The second refers that the local models should be accurate
enough [19]. In the industrial process, different batches of
products are usually produced under different working con-
ditions, which results in the difference of data characteris-
tics. If the distance or similarity metrics are not appropriate,
it will be likely to select unsuitable samples as modeling
samples and reduce prediction accuracy of the model. As a

result, the core issue of JITL is how to build an appropri-
ate distance or similarity metric to select the most relevant
samples.

C. SEMISUPERVISED GAUSSIAN MIXTURE REGRESSION
(SSGMR)
It is generally difficult for single global model to estimate
the output of samples under multiple working conditions.
Moreover, because of the inevitable noises and measuring
errors in industrial applications, there are inherent random-
ness and uncertainty in samples. In this case, probabilistic
models are more suitable than non-probabilistic ones [20].
Gaussian mixture regression is an extended form of Gaussian
mixture model, which can be used in regression problems.
The regression is based on the Gaussian conditioning and
linear combination properties of Gaussian distributions. By
dividing samples into input and output part, the joint proba-
bility distribution of input and output is obtained in GMM.
Then, the conditional probability distribution of output to
input is estimated by parameters in GMM. After training,
GMR model can offer estimations of the query samples
[21]. In addition, in order to avoid the waste of unla-
beled samples, this paper adopts SSGMR as the prediction
model.

Let X = [x1, x2, · · · , xN ]T ∈ RN×d and Y =

[y1, y2, · · · , yN ]T ∈ RN×1 be d − dimension input matrix
and 1− dimension output matrix of N samples, respectively.
Labeled samples are presented as {Xl,Yl} = {xi, yi}

nl
i=1 and

unlabeled ones are denoted as {Xu} = {xj}
nu
j=1. Assuming

the marginal distribution of x follows Gaussian distribution,
and the relationship between x and y of the k − th Gaussian
component is linear.

pk (x) = N (x|µxk , 6
x
k ) (7)

pk (y|x) = N (y|xTωk + ψk , σ 2
k ) (8)

where ωk andψk are regression coefficient, σk is the variance
of predictions.

In order to get the parameters of SSGMR, which are
denoted as 2 = {αk , µxk , 6

x
k , ωk , ψk , σ

2
k }, we use expecta-

tion maximization algorithm (EM) to solve the problem itera-
tively. EM algorithm is divided into expectation (E-step) and
maximization (M-step). In E-step, the posteriori probability
density functions of labeled and unlabeled samples belonging
to the k − th component are:

p(zi = k|xi, yi) =
αkN (xi, yi|µ

xy
k , 6

xy
k )∑K

k=1 αkN (xi, yi|µ
xy
k , 6

xy
k )

(9)

p(zj = k|xj) =
αkN (xj|µxk , 6

x
k )∑K

k=1 αkN (xj|µxk , 6
x
k )

(10)

where the probability that the sample belongs to the k − th
component is expressed as p(zi = k) = p(zj = k) =
αk . To reduce the complexity of subsequent derivation, we
denote p(zi = k|xi, yi) and p(zj = k|xj) as γ ik and γ jk ,
respectively.
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TABLE 2. Flow diagrams of the algorithm.

In M-step, it is assumed that samples are independent from
each other. The log-likelihood function is defined as [22]:

L(2) =
nl∑
i=1

K∑
k=1

γ ik ln pk (yi|xi)+
nl∑
i=1

K∑
k=1

γ ik ln pk (xi)

+

nl∑
i=1

K∑
k=1

γ ik lnαk +
nl+nu∑
j=nl+1

K∑
k=1

γ
j
k ln pk (xj)

+

nl+nu∑
j=nl+1

K∑
k=1

γ
j
k lnαk )+ β(

K∑
k=1

αk − 1) (11)

2 can be obtained by setting derivatives of L(2) with
respect to each parameter to 0, which can be found in [22].

After several iterations, the convergence can be diagnosed
by comparing log-likelihood function defined as:

ln p(D|2) =
nl∑
i=1

ln(p(xi, yi))+
nl+nu∑
j=nl+1

ln(p(xj)) (12)

where D is the dataset, and the convergence criterion can be:∣∣∣∣ ln p(D|2(t+1))− ln p(D|2(t))
ln p(D|2(t))

∣∣∣∣ < ε (13)

where 2(t) denote the parameters set obtained in the t − th
iteration, and ε represents the pre-defined threshold. The
learning algorithm above are summarized in Table 2.

Then the probability density function of yq conditioned on
xq is presented as:

p(yq|xq) =
K∑
k=1

p(zq = k|xq)p(yq|xq, zq = k)

=

K∑
k=1

γ
q
k N (yq|xTq ωk + ψk , σ

2
k ) (14)

Finally, the predicted value of query sample is computed as:

ŷq = E
[
yq|xq

]
=

K∑
k=1

γ
q
k (x

T
q ωk + ψk ) (15)

There is an advantage of SSGMR that it can provide the
uncertainty of prediction, which is in the form of variance of
predicted values [22].

σ 2
q =

∫
p(yq|xq)y2qdyq − (E

[
yq|xq

]
)2

=

K∑
k=1

γ
q
k (σ

2
k + (xTq ωk + ψk )

2)− ŷ2q (16)

The quality of each estimation can be evaluated by the
uncertainty, which offers the reference for model fusion.

D. MODELING STRATEGY
In order to adapt to strong nonlinearity, multiple working con-
ditions and low utilization of samples, this paper proposed a
JITL based multi-block weighted SSGMR soft sensor, which
is briefly shown in Figure.3. First, the available dataset is
obtained by preprocessing original data from the hot rolling
process. Then, PLS algorithm is used to divide the original
variable set into sub-blocks, which contain different process
variables, and variables with high contribution rate in each
sub-block are selected to form the auxiliary dataset. Next,
under JITL framework, several local SSGMRmodels are built
in each sub-block. Finally, predicted values of sub-blocks
are fused according to their uncertainty and the accurate
predictions of mechanical properties are obtained.

IV. JITL BASED REAL TIME SEMISUPERVISED SOFT
SENSOR
A. VARIABLE BLOCKING AND ALLOCATION BASED ON PLS
Hot rolling process is a complex industrial process with
various variables, which include temperature, specification
and element composition etc. Their effects on mechanical
properties of hot strip steel are generally different, and there
are often complicated correlations among them. Ordinarily,
two principles should be satisfied for a blocking method [23]:
diversity and accuracy. First of all, it is necessary to dis-
tinguish variables with different influence on mechanical
properties. These variables are divided into different sub-
blocks, reducing correlations among sub-blocks. Meanwhile,
we also make full use of process variables, which reflects
the principle of diversity. For the principle of accuracy, we
establish auxiliary variable set in each sub-block by selecting
important variables. By removing trivial variables according
to specific rules, we not only reduce the overlapping parts of
sub-blocks and the interference of redundant variables, but
also reduce the dimension of variables and improve training
speed and model performance.
PLS is able to decompose original variables into low

dimensional variables with different principal component
directions, and ensure a maximum correlation between them
and output. Therefore, it is a proper algorithm for variables
blocking in our task. The implementation of PLS is described
as follows.
Input space of samples is presented as X ∈ RN×a, output

space of samples is Y ∈ RN×b. With Eq.(1), (4) and (5),
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FIGURE 3. Semisupervised soft sensing strategy based on JITL.

FIGURE 4. Diagram of blocking based on PLS.

score matrix T is a latent matrix for mapping, which is also
the predictor of both input and output. Before calculating,
each column of X is standardized to reflect the influence of
original variables on respective sub-block. For the purpose
of removing redundant variables, variable evaluation index
(VEI ) is constructed based onW ∗:

VEI (i, j) =
w2
ij

w2
1j + w

2
2j + · · · + w

2
ij + · · · + w

2
aj

(17)

where i = 1, 2, · · · , a, j = 1, 2, · · · , k . w2
ij indicates the

importance of the i − th original variables to the j − th sub-
block. The variables with higher VEI are more important in
sub-blocks.We predefine a threshold value ς ∈ (0, 1). Gener-
ally, it is bigger than 0.85 for sufficient process information.
The number of variables retained in each sub-block is:

numj = argmin
i
{

a∑
i=1

w2
ij > ς} (18)

After blocking through PLS, several variable sets with low
correlations construct the auxiliary variable set. The overall
structure of PLS blocking is shown in Figure.4.

B. JITL BASED REAL TIME SEMISUPERVISED MODELING
METHOD
When the query sample is available, N1 labeled samples and
N2 unlabeled samples with the most similar characteristics
to the query sample are selected to construct dataset Lq =
{xl, yl}l=1,2,··· ,N1 and Uq = {xu}u=1,2,··· ,N2 , respectively.
The core issue of JITL is how to construct an appropriate
distance or similarity metric. Generally, Euclidean distance
(ED) is the most widely used distance metric, which regards
the importance of all variables as the same, and do not con-
sider the scale of variables. When using ED as the distance
metric, some variables with large value such as width of
slabs and temperatures play a significant role in modeling.
Meanwhile, variables with small value such as elements con-
tent are neglected. It obviously disagrees with the facts that
the content of elements in steel have great influence on the
mechanical properties. As a result, ED is not acceptable in our
task. In contrast, Mahalanobis distance (MD) is not affected
by the dimension of variables, which is better than ED. Based
on MD, we construct variable-related Mahalanobis distance
(VRMD) between the query sample and labeled ones, unla-
beled ones, respectively, which is defined as:

dq,l,j =
√
(xq,j − xl,j)T6j(xq,j − xl,j),

l = 1, 2, · · · ,N1 (19)

dq,u,j =
√
(xq,j − xu,j)T6j(xq,j − xu,j),

u = 1, 2, · · · ,N2 (20)

where j represents the j − th sub-block, 6j is the weighting
matrix for variables, which is:

6j = diag(
VEI (1, j)

σ 2
1

,
VEI (2, j)

σ 2
2

, · · · ,
VEI (n, j)
σ 2
n

) (21)
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FIGURE 5. Overall procedure of proposed soft sensor.

where σ 2
n is the variance of the n − th variable in the j − th

sub-block. Different from traditional MD, newly constructed
VRMD is not only independent with the scale of variables,
but also more suitable for the data from industrial process by
introducing variable evaluation index. In addition, because
the historical samples closer to the query sample are more
important, more attention should be paid to these samples
during training. Thus, these samples should be given corre-
sponding weights, which are defined as follows:

ω
j
l = exp(−d2q,l,j/τ

2), l = 1, 2, · · · ,N1 (22)

ωju = exp(−d2q,u,j/τ
2), u = 1, 2, · · · ,N2 (23)

where τ represents weight attenuation coefficient. The
samples with smaller VRMD are more similar to the query
sample. In practice, input of samples are weighted when
updating parameters. After locally weighted, a new log-
likelihood function is defined by adding weights of samples
to SSGMR:

L(2) =
nl∑
i=1

K∑
k=1

γ ikωi(ln pk (yi|xi)+ ln pk (xi)+ lnαk )

+

nl+nu∑
j=nl+1

K∑
k=1

γ
j
kωj(ln pk (xj)+ lnαk )

+β(
K∑
k=1

αk − 1) (24)

Correspondingly, parameters of the model are calculated
as:

αk = (ηlk + η
u
k )/(

∑nl

i=1
ωi +

∑nl+nu

j=nl+1
ωj) (25)

µxk = (
nl∑
i=1

γ ikωixi +
nl+nu∑
j=nl+1

γ
j
kωjxj)/(η

l
k + η

u
k ) (26)

6x
k = (

nl∑
i=1

γ ikωix̄
i
k (x̄

i
k )
T
+

nl+nu∑
j=nl+1

γ
j
kωjx̄

j
k (x̄

j
k )
T )/(ηlk+η

u
k ) (27)

ω̃k = (X̃Tl 0k X̃l)
T X̃Tl 0kYl (28)

σ 2
k =

nl∑
i=1

γ ikωi(yi − x̃
T
i ω̃k )

2/ηlk (29)

where 0k = diag[γ 1
k ω1, · · · , γ

nl
k ωnl ], η

l
k =

nl∑
i=1
γ ikωi, η

u
k =

nl+nu∑
j=nl+1

γ
j
kωj, while others are the same as those in SSGMR.

By analyzing the equations above, input-related param-
eters such as αk , µxk and 6x

k are updated by all samples.
Output-related ones such as ω̂k and σ̂ 2

k are updated by labeled
samples only. Thus, in semisupervised models, unlabeled
samples affect the model by providing prior information of
data distribution. Predicted values are available depending on
labeled samples.

Finally, the results of sub-blocks are fused by the uncer-
tainty {σ 2

q,n|n = 1, 2, · · · , j}, the weight λn of each part is
calculated as:

λn =
(σ 2
q,n)
−1∑j

n=1 σ
2
q,n)−1

(30)

The final predicted value of the query sample is
ŷq = ŷq,1λ1 + ŷq,2λ2 + · · · + ŷq,jλj. The overall procedure of
the soft sensor is shown in Figure.5.

V. CASE STUDY
In order to verify the feasibility and effectiveness of proposed
soft sensor, a numerical example is carried out for comparison
with other algorithms. Then we apply the soft sensor in the
real hot rolling process. The configuration of the machine
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FIGURE 6. Distribution of virtual dataset.

used in this paper is: CPU: core i7-6567u (3.3GHz, 3.2GHz);
RAM: 8.00GB; MATLAB (r2018a).

A. NUMERICAL EXAMPLE
The numerical example follows the idea in reference [24]. It
is assumed that there are five virtual signal sources. Through
the linear combination of these five signal sources, 10 virtual
input variables and 1 output variable are constructed. The
function expression of the signal source is as follows:

s1(k) = sin((k + 15)/10)− cos((k + 15)/10)
s2(k) = sin(k)+ cos(0.5k)
s3(k) = ln(k + 1)
s4(k) = numbers of Gaussian distribution

in (0, 1)
s5(k) = (exp(k)− 1)/e

(31)

For the simulation of the characteristics of multiple work-
ing conditions, 3 different kinds of samples are obtained by
linear combination of different signal sources.

1000 samples of mode 1 are:{
x1 = As+ e1
y1 = 0.55s1 + 1.6s2 + 2.5s3 + e2

(32)

1000 samples of mode 2 are:{
x2 = ABs+ e1
y2 = 2.4s1 + 0.84s2 + 1.3s3 + e2

(33)

1000 samples of mode 3 are:{
x3 = AB2s+ e1
y3 = 1.8s1 + 2.1s2 + 0.45s3 + e2

(34)

where A and B are the mapping matrices. e1 ∼ N (0, 0.01)
and e2 ∼ N (0, 0.1) are Gaussian noises. After dimen-
sionality reduction, the dataset constructed is visualized as
3-dimensional graphical representation in Figure 6.

TABLE 3. Description of variables in hot rolling process.

950 samples of each mode are selected to join the training
set, and the remaining samples are added to the testing set.
Superiority of the proposed soft sensor will be proved from
two aspects: the effective use of unlabeled samples and the
applicability under multiple working conditions.

It is first compared with PLS, GPR, GMR to verify the
effectiveness of unlabeled samples. The number of com-
ponents in PLS is 10. Matern kernel is used in GPR. In
JMWSSGMR, because the dataset is not complicated, the
number of sub-block is not as important as one in industrial
process. In order to reduce prediction time, the number of
sub-blocks is set to 3. The detailed influence of the number
of sub-blocks is shown in next part. We select 70 neighbors
of the query sample as modeling samples. The number of
samples in labeled and unlabeled set is the same. The results
of prediction are shown in Figure.7.

In addition, the comparison between proposed soft sensor
and SSGMR is shown in Figure.8. The number of Gaus-
sian components in SSGMR is 3. After JITL framework is
introduced, performance of the model is higher than that of
SSGMR. At the same time, we can see that SSGMR performs
better than GMR.

The numerical example verified the effectiveness of pro-
posed soft sensor. It also proved that JMWSSGMR is appli-
cability to the data with varieties of characteristics.

B. SIMULATION IN HOT ROLLING PROCESS
1) DESCRIPTION OF HOT ROLLING VARIABLES
Hot rolling is an important heat treatment in the process
of steel rolling. Mechanical properties are critical quality
indicators. During hot rolling process, they are affected by
many factors, which lead to the difficulty of monitoring.
Therefore, it is important to realize the real time soft sensing
of mechanical properties. In this paper, from 17 February
2019 to 7March 2019, a total of 1095 samples were collected
from the hot rolling process in Anling iron and steel Ltd,
Liaoning, China. Each sample contains 27 input variables and
3 mechanical properties which are TS, YS and EL as output.
Input variables are mainly divided into process temperature,
product specification and element mass fraction. The kind
and range of process variables are shown in Table 3.
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FIGURE 7. Comparison with supervised models.

FIGURE 8. Comparison between proposed soft sensor and SSGMR.

TABLE 4. Distributions of mechanical properties of the steel.

There are three kinds of steel in our dataset, namely, SPHC
(quality carbon structural steel), Q235B (plain carbon con-
structional steel) and SPA-H (Climate resistance low-alloy
structural steel). The distributions of mechanical properties
of the steel are listed in Table 4.

Due to the high content of Si, Mn, Cu, Ni, Cr and other
alloy elements, the strength of SPA-H is higher than that
of carbon steel, but it has worse plasticity. Among carbon
steel, SPHC has lower carbon content, which brings it lower
strength and higher plasticity.

After the dataset is available, outliers in dataset are
removed first according to prior knowledge. Then, normal
samples are divided into training set and testing one, includ-
ing 1006 and 85 samples, respectively. The training set is
divided into labeled set and unlabeled set with equal number
of samples.

FIGURE 9. RMSE of predictions under diverse numbers of sub-blocks.

2) OFF-LINE VARIABLE BLOCKING
There are two stages in the soft sensor: off-line variable
blocking and on-line modeling. In the off-line phase, the
relationship between the number of sub-blocks and prediction
accuracy is explored first, as shown in Figure.9. For the
balance of diversity and prediction time, we build 8 sub-
blocks in practical operation.
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TABLE 5. Auxiliary variables in sub-blocks.

Taking TS as example, after determining the number of
sub-blocks, we retain variables whose cumulative contribu-
tion rate is more than 90% in each sub-block. The variables
kept in sub-blocks are listed in Table 5.

From Table 5, it can be seen that C (10) and Si (11) as
the main components of steel have a major influence on TS.
Appropriate amount of C and Si can improve the strength
of steel and have little impact on plasticity. Therefore, the
variables that have greatest impact on almost all sub-blocks
are C and Si. B (23) only exists in the steel with high carbon
content, which can indirectly reflect the carbon content and
play an important role in some variable blocks. Mn (12), as
the most important metal element in steel, can effectively
improve the strength of steel without affecting plasticity,
which also eliminate the adverse effects of S (14) and oxygen
in steel. The simulation results agree with the facts, which
indicates that the variable evaluation index used in the paper
is appropriate. Themost favorable variables in each sub-block
are retained and establish the auxiliary dataset.

3) ON-LINE LOCAL MODELING
On-line prediction is under the framework of JITL. There are
two key indicators to be determined in JITL, which are the
number of modeling samples and similarity metric for sam-
ples. The number of modeling samples has a certain influence
on prediction accuracy. If it is too small, the model cannot
fully learn the characteristics of data. If it is too large, the
model might be misled by some redundant samples. In either
case, performance of the model will be reduced. Different
distance metrics may select different historical samples for
modeling. If the characteristics of the selected samples and
the query sample differ greatly, structure and parameters of
the model will also be different. Therefore, the proposed
VRMD is compared with ED andMD under different number
of samples. The result is shown in Figure.10.

In Figure.10, no matter which distance metric it is, with
increasing of the number of modeling samples, prediction

FIGURE 10. Model performance of three similarity metrics under
different sampling numbers.

performance of the soft sensor increases first and decreases
gradually. The main reason for the condition is that when
the number of historical samples is small, the model cannot
extract enough process information from those samples to
predict mechanical properties. The learning ability of the
model is restricted by the number of samples. As more and
more samples are provided, although the information avail-
able for learning becomes sufficient, some redundant sam-
ples participate in the prediction, bringing some disturbing
information, which result in slow or even sharp degradation
of model performance. For example, the second peak of ED
curve in Figure. 10 is the result of redundant information.
When ED is used as the similarity metric, the model error is
always bigger than those when using other similarity metrics.
This is mainly because ED neglects variables with smaller
values, and always tends to pay more attention to variables
with larger values, even they have little to do with mechanical
properties. VRMD considers the scale of variables and cor-
relation between variables and output. Therefore, it is more
stable than ED and MD when selecting samples. With the
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FIGURE 11. Predictions of mechanical properties using different models.

increasing of neighbors, the downward trend of performance
is not obvious, which is better than other two similarity
metrics.

In JITL framework, referring to Figure.10, we select 15
samples forming labeled set and unlabeled set as neighbors of
the query sample, respectively. In order to verify the superi-
ority of the proposed soft sensor in the prediction of mechan-
ical properties of hot rolled strip, it is compared with GPR,
SSGMR and ELM, and the comparison of different models
are shown in Figure.11. The detailed numerical comparison
is showed in Table 6. The regression evaluation indexes we
use are:

RMSE =

√√√√ 1
m

m∑
i=1

(
yi − ŷi

)2 (35)

MAE =
1
m

m∑
i=1

∣∣(yi − ŷi)∣∣ (36)

R2 = 1−

∑
i
(
yi − ŷi

)2∑
i (yi − ȳi)

2 (37)

GPR and ELM are supervised models, and they discard
unlabeled samples when training, which do not make use
of process information existing in unlabeled samples. By
contrast, SSGMR adds unlabeled samples in the training
stage by introducing semisupervised learning, which improve
utilization rate of sampling. However, it is a kind of global
modeling method, and does not fully consider the charac-
teristics of variables in hot rolling process. Moreover, the
number of Gaussian components is hard to be determined,
which may lead to the introduction of polluted samples with
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TABLE 6. Prediction performance of different models.

unexpected characteristics. Compared with models above,
the proposed JMWSSGMR adopts variable blocking strategy
based on correlation, and constructs the auxiliary set based
on improved VRMD distance metric under JITL framework,
which effectively solves the problem that the modeling sam-
ple set is easy to be polluted. Then, we improve sampling
utilization rate by introducing semisupervised learning in
training stage. Finally, prediction stability is increased by
fusing predicted values in each sub-blocks with uncertainty.
It can be seen from Table 6 that proposed soft sensor has
better performance than other soft sensors. Especially, at the
tolerance level of 15 MPa with TS, YS and 3% with EL, the
prediction accuracy of JMWSSGMR is higher, which verifies
its superiority. These results clearly show that the proposed
soft sensor can effectively deal with various problems in hot
rolling, and it can be successfully applied in the prediction of
mechanical properties of strips.

VI. CONCLUSIONS
To monitoring the mechanical properties of hot rolled strips
accurately, a JITL based multi-block weighted semisuper-
vised soft sensor is proposed in this paper. The characteristics
of the soft sensor are:

1) In view of the complex correlations among variables
in hot rolling process, we construct diverse multiple
sub-blocks with low correlation by PLS, and fuse sub-
blocks with a specific rule.

2) In order to distinguish samples from different working
conditions, overall procedure is under the JITL frame-
work. More concretely, an improved Mahalanobis dis-
tance metric (VRMD) is proposed. The most similar
historical samples to the query sample are selected as
modeling samples, so as to avoid redundant samples
polluting dataset.

3) Semisupervised learning is introduced into modeling,
which greatly improves the model performance when
labeled samples are insufficient.

Similar to semisupervised learning, transfer learning is
another hotspot in the field of soft sensing. In hot rolling
process, we sometimes do not have enough samples in face
of new kinds of steel. At this time, it is expected to learn
process information from other kinds of steel and transfer

the knowledge to the new condition. Transfer learning is
especially applicable in this case, and it is also the research
direction of us.
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