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ABSTRACT The relationship between face and disease has been discussed from thousands years ago, which
leads to the occurrence of facial diagnosis. The objective here is to explore the possibility of identifying
diseases from uncontrolled 2D face images by deep learning techniques. In this paper, we propose using
deep transfer learning from face recognition to perform the computer-aided facial diagnosis on various
diseases. In the experiments, we perform the computer-aided facial diagnosis on single (beta-thalassemia)
and multiple diseases (beta-thalassemia, hyperthyroidism, Down syndrome, and leprosy) with a relatively
small dataset. The overall top-1 accuracy by deep transfer learning from face recognition can reach over
90% which outperforms the performance of both traditional machine learning methods and clinicians in the
experiments. In practical, collecting disease-specific face images is complex, expensive and time consuming,
and imposes ethical limitations due to personal data treatment. Therefore, the datasets of facial diagnosis
related researches are private and generally small comparing with the ones of other machine learning
application areas. The success of deep transfer learning applications in the facial diagnosis with a small
dataset could provide a low-cost and noninvasive way for disease screening and detection.

INDEX TERMS Facial diagnosis, deep transfer learning (DTL), face recognition, beta-thalassemia,
hyperthyroidism, down syndrome, leprosy.

I. INTRODUCTION
Thousands years ago, Huangdi Neijing [1], the fundamental
doctrinal source for Chinese medicine, recorded ‘‘Qi and
blood in the twelve Channels and three hundred and
sixty-five Collaterals all flow to the face and infuse into the
Kongqiao (the seven orifices on the face).’’ It indicates the
pathological changes of the internal organs can be reflected
in the face of the relevant areas. In China, one experienced
doctor can observe the patient’s facial features to know the
patient’s whole and local lesions, which is called ‘‘facial
diagnosis’’. Similar theories also existed in ancient India
and ancient Greece. Nowadays, facial diagnosis refers to
that practitioners perform disease diagnosis by observing
facial features. The shortcoming of facial diagnosis is that
for getting a high accuracy facial diagnosis requires doctors
to have a large amount of practical experience. Modern
medical researches [11], [12], [30] indicate that, indeed,
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many diseases will express corresponding specific features
on human faces.

Nowadays, it is still difficult for people to take a medical
examination in many rural and underdeveloped areas because
of the limited medical resources, which leads to delays in
treatment in many cases. Even in metropolises, limitations
including the high cost, long queuing time in hospital and the
doctor-patient contradiction which leads to medical disputes
still exist. Computer-aided facial diagnosis enables us to
carry out non-invasive screening and detection of diseases
quickly and easily. Therefore, if facial diagnosis can be
proved effective with an acceptable error rate, it will be
with great potential. With the help of artificial intelligence,
we could explore the relationship between face and disease
with a quantitative approach.

In recent years, deep learning technology improves the
state of the art in many areas for its good performances
especially in computer vision. Deep learning inspired by
the structure of human brains is to use a multiple-layer
structure to perform nonlinear information processing and
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abstraction for feature learning. It has shown its best
performance in ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [42] from 2012. As the challenge
progresses, several classic deep neural network mod-
els [2]–[6], [36] appeared such as AlexNet, VGGNet, ResNet,
Inception-ResNet and SENet. The results of ILSVRCs have
fully shown that learning features by deep learning methods
can express the inherent information of the data more
effectively than the artificial features. Up to now, deep
learning has become one of the newest trends in artificial
intelligence researches.

Face recognition refers to the technology of verifying or
identifying the identity of subjects from faces in images or
videos. It is a hot topic in the field of computer vision.
Face verification is the task of comparing a candidate face
to another, and verifying whether it is a match or not.
It is a one-to-one mapping. Face identification is the task
of matching a given face image to one in a database of
faces. It is a one-to-many mapping. These two can be
implemented by separate algorithm frameworks, or they can
be unified into one framework by metric learning. With the
development of deep learning in recent years, traditional face
recognition technology has gradually been replaced by deep
learning methods. Convolutional Neural Network (CNN)
is the most commonly used deep learning method in face
recognition. The CNN architectures [7], [8], [27] for face
recognition including FaceNet, VGG-Face, DeepFace and
ResNet get inspired from those architectures that perform
well in ILSVRCs. With the help of a large amount
of face images with labels from public face recognition
datasets [27], [43], [44], these CNN models are trained for
learning most suitable face representations automatically for
computer understanding and discrimination [57], and they get
a high accuracy when testing on some specific datasets.

The success of deep learning in the face recognition
area motivates this project. However, the labelled data in
the area of facial diagnosis is insufficient seriously. If we
train a deep neural network from scratch, it will inevitably
lead to overfitting. Apparently face recognition and facial
diagnosis are related. Since the labelled data in the area of
face recognition is much more, transfer learning technology
comes into our view. In traditional learning, we train separate
isolated models on specific datasets for different tasks.
Transfer learning is to apply the knowledge gained while
solving one problem to a different but related problem.
According to whether the feature spaces of two domains are
same or not, it can be divided into homogeneous transfer
learning and heterogeneous transfer learning [38]. In our
task, it belongs to homogeneous transfer learning. Deep
transfer learning refers to transfer knowledge by deep neural
networks. Thus, transfer learning makes it possible that
identifying diseases from 2D face images by deep learning
technique to provide a non-invasive and convenient way to
realize early diagnosis and disease screening. In this paper,
the next four diseases introduced and the corresponding
health controls are selected to perform the validation.

FIGURE 1. Disease-specific faces.

Thalassemia is a genetic disorder of blood caused by
abnormal hemoglobin production, and it is one of the
most common inherited blood disorders in the world. It is
particularly common in people of Mediterranean, the Middle
East, South Asian, Southeast Asian and Latin America.
Since thalassemia can be fatal in early childhood without
ongoing treatment, early diagnosis is vital for thalassemia.
There are two different types of thalassemia: alpha (α)
and beta (β). Beta-thalassemia is caused by mutations in
the HBB gene which provides instructions for making
a protein named beta-globin on chromosome 11, and is
inherited in an autosomal recessive fashion. It is estimated
that the annual incidence of symptomatic beta-thalassemia
individuals worldwide is 1 in 100,000 [35]. According to
medical research [13], beta-thalassemia can result in bone
deformities, especially in the face. The typical characteristics
of beta-thalassemia on the face include small eye openings,
epicanthal folds, low nasal bridge, flat midface, short nose,
smooth philtrum, thin upper lip and underdeveloped jaw
(see Figure 1(a)).

Hyperthyroidism is a common endocrine disease caused
by excessive amounts of the thyroid hormones T3 and
T4 which can regulate the body’s metabolism by various
causes. The estimated average prevalence rate is 0.75%
and the incidence rate is 51 per 100,000 persons per
year by the meta-analysis [14]. If it is not treated early,
hyperthyroidism will cause a series of serious complications
and even threaten the patient’s life. The typical characteristics
of hyperthyroidism on the face include thinning hair,
shining and protruding or staring eyes, increased ocular
fissure, less blinking, nervousness, consternation and fatigue.
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The characteristic hyperthyroidism-specific face is shown
as Figure 1(b).

Down syndrome (DS) is a genetic disorder caused by the
trisomy of chromosome 21. DS occurs in about one per one
thousand the newborns each year. The common symptoms
include physical growth delays, mild to moderate intellectual
disability, and the special face. The typical characteristics
of DS [15] on the face include larger head compared
to the face, upward-slant of palpebral fissures, epicanthal
folds, Brushfield spots, low-set small folded ears, flattened
nasal bridge, short broad nose with depressed root and full
tip, small oral cavity with broadened alveolar ridges and
narrow palate, small chin and short neck. The characteristic
DS-specific face is shown as Figure 1(c).

Leprosy (also known Hansen’s disease) caused by a
slow-growing type of bacteria named Mycobacterium leprae
is an infectious disease. If the leper doesn’t accept timely
treatment, leprosy will cause losing feelings of pain, weak-
ness and poor eyesight. According to the World Health
Organization, there are about 180,000 people infected with
leprosy most of which are in Africa and Asia until 2017.
The typical characteristics of leprosy [16] on the face include
granulomas, hair loss, eye damage, pale areas of skin and
facial disfigurement (e.g. loss of nose). The characteristic
leprosy-specific face is shown as Figure 1(d).

Identifying above diseases from uncontrolled 2D face
images by deep learning technique has provided a good
start for a non-invasive and convenient way to realize
early diagnosis and disease screening. In this paper, our
contributions are as follows:

(1) We definitely propose using deep transfer learning
from face recognition to perform the computer-aided facial
diagnosis on various diseases.

(2) We validate deep transfer learning methods for single
and multiple diseases identification on a small dataset.

(3) Through comparison, we find some rules for deep
transfer learning from face recognition to facial diagnosis.

The rest of this paper is organized as follows: Chap-
ter 2 reviews the related work of computer-aided facial
diagnosis. Chapter 3 describes our proposed methods and
their implementations. Our experimental results are analyzed
and discussed in Chapter 4. Chapter 5 makes a conclusion.

II. RELATED WORK
Pan and Yang categorize transfer learning approaches into
instance based transfer learning, feature based transfer
learning, parameter based transfer learning, and relation
based transfer learning [38]. Here we list some classical
researches of each category.

Instance based transfer learning is to reuse the source
domain data by reweighting. Dai et al. presented TrAdaBoost
to increase the instance weights that are beneficial to the
target classification task and reduce the instance weights
that are not conducive to the target classification task [45].
Tan et al. proposed a Selective Learning Algorithm (SLA)
to solve the Distant Domain Transfer Learning (DDTL)

problem with the supervised autoencoder as a base model for
knowledge sharing among different domains [46].

As for feature based transfer learning, it is to encode the
knowledge to be transferred into the learned feature repre-
sentation to reduce the gap between the source domain and
the target domain. Pan et al. presented transfer component
analysis (TCA) using Maximum Mean Discrepancy (MMD)
as themeasurement criterion tominimize the data distribution
difference in different domains [47]. Long et al. presented
Joint Adaptation Networks (JAN) to align the joint distribu-
tions based on a joint maximum mean discrepancy (JMMD)
criterion [48].

Regarding Parameter based transfer learning is to encode
the transferred knowledge into the shared parameters. It is
widely used in the medical application. Razavian et al.
found that CNNs trained on large-scale datasets (e.g.
ImageNet) are also pretty good feature extractors [49].
Esteva et al. used Google Inception v3 CNN architecture
pretrained on the ImageNet dataset (1.28 million images over
1,000 generic object classes) and fine-tuned on their own
dataset of 129,450 skin lesions comprising 2,032 different
diseases [50]. The high accuracy demonstrates an artificial
intelligence capable of classifying skin cancer with a level of
competence comparable to dermatologists. Yu et al. used a
voting system based on the output of three CNNs for medical
images modality classification [51]. They fixed earlier
layers of CNNs for reserving generic features of natural
images, and trained high-level portion for medical image
features. Shi et al. used a deep CNN based transfer learning
method for pulmonary nodule detection in CT slices [52].
Raghu et al. demonstrated feature-independent benefits of
transfer learning for better weight scaling and convergence
speedups in medical imaging [53]. Shin et al. evaluated CNN
architectures, dataset characteristics and transfer learning
for thoraco-abdominal lymph node (LN) detection and
interstitial lung disease (ILD) classification [54].

Besides, relation based transfer learning is to transfer the
relationship among the data in the source and target domains.
Davis and Domingos utilized Markov logic to discover
properties of predicates including symmetry and transitivity,
and relations among predicates [55].

In the following part, we review the previous researches
on computer-aided facial diagnosis which are not many.
Zhao et al. [15], [17], [18] used traditional machine
learning methods for Down syndrome (DS) diagnosis with
face images. Schneider et al. [19] performed detection of
acromegaly by face classification which applied texture and
geometry two principles to compare graphs for similarity.
Kong et al. [20] performed detection of acromegaly from
facial photographs by using the voting method to combine
the predictions of basic estimators including Generalized
Linear Models (GLM) [31], K-Nearest Neighbors (KNN),
Support Vector Machines (SVM), CNN, and Random
Forests (RF). Shu et al. [21] used eight extractors to
extract texture features from face images and applied KNN
and SVM classifiers to detect Diabetes Mellitus (DM).
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TABLE 1. A summary of existing researches of facial diagnosis.

Hadj-Rabia et al. [22] detected the X-linked hypohidrotic
ectodermal dysplasia (XLHED) phenotype from facial
images with the Facial Dysmorphology Novel Analy-
sis (FDNA) Software. Kruszka et al. [23] extracted 126 facial
features including both geometric and texture biomarkers
and used SVM classifiers to make 22q11.2 DS diagnoses.
All the researches above [15], [17]–[23] performed binary
classification with good results on the detection of one
specific disease. But datasets of patients for testing are
small comparing with ones of other applications. And most
of them used handcraft features and traditional machine
learning techniques. Boehringer et al. [24] achieved an over
75.7% classification accuracy for a computer-based diagnosis
among the 10 syndromes by linear discriminant analysis
(LDA) [32]. Gurovich et al. [25] developed a facial analysis
framework named DeepGestalt which is trained with over
26,000 patient cases by fine-tuning a deep convolutional
neural network (DCNN) to quantify similarities to different
genetic syndromes. However, the multiclass classification
tasks [24], [25] in facial diagnosis are with low top-1
accuracies, which are 75.7% and 60% correspondingly.
Table 1 gives a brief summary of previous studies.

III. MATERIALS AND METHODS
In this section, we describe the technology used in the
method. For getting a better performance on the disease
detection, sometimes we need a pre-processing procedure
to remove interference factors to generate frontalized face

TABLE 2. The statistics of the races in the dataset.

images with a fixed size for the CNN input so that the
performance of facial diagnosis can be improved. After
getting the pre-processed inputs, we apply two strategies of
deep transfer learning methods.

A. DATASET
The Disease-Specific Face (DSF) dataset [9] used includes
disease-specific face images which are collected from
professional medical publications, medical forums, medical
websites and hospitals with definite diagnostic results.
In the task, there are totally 350 face images (JPG files)
in the dataset, and there are 70 images in each type of
disease-specific faces described in Chapter 1. Generally the
ratio of training data and testing data is from 2:1 to 4:1.
In our experiments with the small dataset, the ratio is set as
4:3 for the efficient evaluation. Table 2 shows the statistics
of the races distinguished by eyes of face images in the
experiments.
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B. PRE-PROCESSING
In the generally pre-processing procedure, we perform face
detection on the original 2D face images by a face detector
in OpenCV [26] which is based on Histogram of Oriented
Gradients (HOG) features and a linear SVM classifier. The
result of face detection is a bounding box containing the face
located. Then, with the help of the Dlib library, we extract
68 facial landmarks [58] which are located on eyebrows,
eyes, jaw lines, bridge and bottom of nose, edges of lips and
chin to get the coordinate information. Next, with the help
of 68 facial landmarks extracted we perform face alignment
by using the affine transformation containing a series of
transformations such as translation, rotation and scaling.
Finally, the frontalized face image is cropped and resized
according to the CNN used.

C. DEEP TRANSFER LEARNING
Training a CNNwhich is end to end learning from scratchwill
inevitably lead to over-fitting since that the training data is
generally insufficient for the task of facial diagnosis. Transfer
learning is applying the knowledge gained while solving one
problem to a different but related problem. In the transfer
learning problem [33], generally we letDs indicate the source
domain, Dt indicate the target domain and X be the feature
space domain. H is assumed to be a hypothesis class on X ,
and I (h) is the set for characteristic function h ∈ H. The
definition ofH-divergence between Ds and Dt which is used
to estimate divergence of unlabeled data is:

dH(Ds,Dt ) = 2 sup
h∈H

∣∣∣∣ Prx∈Ds
[I (h)]− Pr

x∈Dt
[I (h)]

∣∣∣∣ (1)

where Pr indicates the probability distribution. Furthermore,
the relationship between errors of target domain and source
domain can be calculated as:

et (h) ≤ es (h)+
1
2
d̂H1H (us, ut)

+ 4

√
2d log (2m′)+

log 2
δ

m′
+ λ (2)

where us and ut are unlabeled samples from Ds and Dt
respectively. For briefly, the difference in error between
source domain and task domain is bounded as:

|et − es| ≈
1
2
dH1H (Ds,Dt) (3)

where dH1H indicates the distance of symmetric difference
hypothesis space H1H. The equations above have proved
that transfer learning from different domains is mathemati-
cally effective [34]. Deep transfer learning (DTL) [38], [39]
is to transfer knowledge by pretrained deep neural network
which originally aims to perform facial verification and
recognition in this paper. Thus the source task is face
recognition and verification, and the target task is facial
diagnosis. In this case, the feature spaces of the source
domain and target domain are same while the source task
and the target task are different but related. The similarity

of two tasks motivates us to use deep transfer learning
from face recognition to solve facial diagnosis problem
with a small dataset. If divided according to transfer
learning scenarios, it belongs to inductive transfer learning.
If divided according to transfer learning methods, it belongs
to parameter based transfer learning. In this section, two
main deep transfer learning strategies [40], [41] are applied
to perform comparison. In the main experiment, DCNN
models pretrained by VGG-Face dataset [27] and ImageNet
dataset [42] are compared with traditional machine learning
methods. VGG-Face dataset contains 2.6M images over 2.6K
people for face recognition and verification, and ImageNet
dataset contains more than 14M images of 20K categories for
visual object recognition.

The pretrained CNN is for end-to-end learning so that it can
extract high-level features automatically. Since deep transfer
learning is based on the fact that CNN features are more
generic in early layers and more original dataset-specific in
later layers, operation should be performed on the last layers
of DCNN models. The diagram of facial diagnosis by deep
transfer learning is shown in Figure 2. The implementation is
based on Matlab (version: 2017b) with its CNNs toolbox for
computer vision applications named MatConvNet (version:
1.0-beta25). NVIDIA CUDA toolkit (version: 9.0.176) and
its library CuDNN (version: 7.4.1) are applied for GPU
(model: Nvidia GeForce GTX 1060) accelerating.

1) DTL1: FINE-TUNING THE PRETRAINED CNN MODEL
In this section, we replace the final fully connected layer
of the pretrained CNN by initializing the weight. When
fine-tuning the CNN (see Pseudocode 1), we calculate activa-
tion value through forward propagation of the convolutional
layer as:

clu,v =
+∞∑
i=−∞

+∞∑
j=−∞

σ (i, j) · al−1i+u,j+vk
l
ri,j + b

l (4)

where a indicates input feature map of some layer, and k
indicates its corresponding kernel. σ is defined as:

σ (i, j) =

{
1 if 0 6 i, j 6 1
0 if others

(5)

Therefore, the output value of convolution operation is
calculated as f (clu,v) in which f is the activation function.
When updating the weights, we calculate error term through
back propagation of the convolutional layer as:

E lg,h =
∂J (W , b; x, y)

∂clg,h
=

r−1∑
i=0

r−1∑
j=0

∂J (W , b; x, y)

∂clg,h

·
∂β l+1

∑(i+1)r−1
u=ir

∑(j+1)r−1
u=jr f

(
clu,v

)
+ bl+1

∂clg,h

= β l+1E l+1i+pr,j+qr f
′

(
clg,h

)
(6)

where f , same with above, represents the activation function,
J represents the cost function, (W , b) are the parameters and
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FIGURE 2. The schematic diagram of facial diagnosis by deep transfer learning.

(x, y) are the training data and label pairs. Since the pretrained
model has already converged on the original training data,
a small learning rate of 5 × 10−5 is utilized. Weight Decay
for avoiding overfitting to a certain extent is set as 5× 10−4,
and momentum for accelerating convergence in mini-batch
gradient descent (SGD) is set as 0.9. Here we take VGG-16
model also namedVGG-Face as an example, which is the best
case in the main experiment. A softmax loss layer is added
for retraining by 100 epochs initially. Figure 3 containing
three indicators Objective, Top-1 error and Top-3 error shows
the process of fine-tuning the pretrained VGG-Face for the
multiclass classification task. Objective is the sum loss of all
samples in a batch. The loss can be calculated as:

L = −
∑
i

yi ln pi = −
∑
i

yi ln
ezi∑
k e

zk
(7)

where yi refers to the i th true classification result, pi
represents the i th output of the softmax function, and zi
represents the i th output of the convolutional neural network.
The Top-1 error refers to the percentage of the time that the
classifier did not correctly predict the class with the highest
score. The Top-3 error refers to the percentage of the time
that the classifier did not include the correct class among
its top 3 guesses. As it can be seen from Figure 3, all three
indicators converge after retraining about 11 epochs, which
indicates fine-tuning is successful and effective. However,
the validation error is higher than the training error, which
is because of the limitation of the fine-tuning strategy on
the small dataset. As shown in Figure 3, after 24 epochs the
validation top-1 error rises while the training error doesn’t,

which indicates over-fitting may occur. So we saved the
fine-tuned CNN model after retraining 24 epochs for testing.
The early stopping technique is used here. The softmax
layer is used for classification, which is consistent with the
pretrained model.

Time complexity is the number of calculations of
one model/algorithm, which can be measured with
floating point operations (FLOPs). In our estimations,
the Multiply-Accumulate Operation (MAC) is used as the
unit of FLOPs. In CNNs, time complexity of a single
convolutional layer can be estimated as:

O
(
M2
· K 2
· Cin · Cout

)
(8)

whereM is the side length of the feature map output by each
kernel, K is the side length of each kernel, and C represents
the number of corresponding channels [59]. Thus, the overall
time complexity of convolutional neural networks can be
estimated as:

O

(
D∑
l=1

M2
l · K

2
l · Cl−1 · Cl

)
(9)

The FLOPs of the fully connected layers can be estimated
by I · O where I indicates input neuron numbers and O
indicates output neuron numbers. I corresponds to Cl−1 and
O corresponds toCl in the above formula. Because pretrained
models for object and face recognition have a larger number
of categories, the time complexity of adapted models by
DTL1 in our task is smaller than the original corresponding
pretrained model.
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FIGURE 3. The process of fine-tuning the pretrained VGG-Face model.

PSEUDOCODE 1

2) DTL2: CNN AS FIXED FEATURE EXTRACTOR
In this section, the CNN is used as a feature extractor
directly for the smaller dataset (see Pseudocode 2). During
training process for facial diagnosis, we only want to utilize
the partial weighted layers of the pretrained CNN model
to extract features, but not to update the weights of it.
As the architect Ludwig Mies van der Rohe said, ‘‘Less
is more’’. We select the linear kernel for the SVM [37]
model to do classification in this strategy, because the
dimension of the input feature vectors is much larger than
the number of samples. For the reason that CNN features are
more original dataset specific in the last layers, we directly
extract features of the layer which is located before the
final fully connected layer of pretrained DCNN models, and
then train a linear SVM classifier leveraging the features

extracted as:

min
w

{
C
∑
i

max
(
1− yiwT xi, 0

)
+

1
2
‖w‖2

}
(10)

where C which is a hyper-parameter indicates a penalty
factor, and (xi, yi) represents the training data. After the
training process, we could obtain the linear SVM model
trained to perform testing.

During the training phase, the time complexity of SVM is
different in different situations, namely whether most support
vectors are at the upper bound or not, and depending on the
ratio of the number of vectors and the number of training
points. During the testing phase, the time complexity of
SVM is O(M · Ns) where M is the number of operations
required by the corresponding kernel, and Ns is the number
of support vectors. For a linear SVM classifier, the algorithm
complexity is O(dl · Ns) where dl is the dimension of input
vectors [56]. In our tasks, Ns is larger than the number of
output neurons of CNN final fully connected layers in DTL1,
while generally smaller than it in the original corresponding
pretrained models.

IV. RESULTS AND DISCUSSIONS
In this section, we perform the experiments on two tasks
of facial diagnosis by two strategies of deep transfer
learning including fine-tuning abbreviated as DTL1 and
using CNN as a feature extractor abbreviated as DTL2. The
deep learning models pretrained for object detection and
face recognition are selected for comparison. In addition,
we compare the results with traditional machine learning
methods using the hand-crafted feature that is Dense Scale
Invariant Feature Transform (DSIFT) [28]. DSIFT, which is
often used in object recognition, performs Scale Invariant
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FIGURE 4. The confusion matrix for beta-thalassemia detection (a binary classification task).
(a) DTL1: VGG-Face (Fine-tuning). (b) DTL2: VGG-Face (Feature Extractor) + SVM Linear.
D1 represents the beta-thalassemia-specific face, N0 represents the healthy control.

PSEUDOCODE 2

Feature Transform (SIFT) on a dense gird of locations of the
image at a certain scale and orientation. The SVM algorithm
for its good performance in few-shot learning is used as the
classifier for Bag of Features (BOF) models with DSIFT
descriptors.

Two cases of facial diagnosis are designed in this paper.
One is the detection of beta-thalassemia, which is a binary
classification task. The other one is the detection of four
diseases which are beta-thalassemia, hyperthyroidism, Down
syndrome and leprosy with the healthy control, which is a
multiclass classification task and more challenging.

A. SINGLE DISEASE DETECTION (BETA-THALASSEMIA):
A BINARY CLASSIFICATION TASK
In practical, we usually need to perform detection or
screening on one specific disease. In this case, we only
use 140 images of the dataset which are 70 beta-
thalassemia-specific face images and 70 images for healthy
control. 40 of each type images are for training, and 30 of
each type images are for testing. It is a binary classification
task. By comparing all selected machine learning methods
(see Table 3), we find that the best overall top-1 accuracies

FIGURE 5. The receiver operating characteristic (ROC) curves of the
VGG-Face model. The blue dotted line indicates the performance of DTL1,
and the red solid line indicates the performance of DTL2.

can be achieved by using the strategies of deep transfer
learning on the VGG-Face model (VGG-16 pretrained on the
VGG-Face dataset). Furthermore, applying DTL2: CNN as
a feature extractor can get a better accuracy of 95.0% than
using DTL1: fine-tuning in this task, which is indicated by
Figure 4. Figure 4 shows the confusion matrices of DTL1 and
DTL2 on the VGG-Face model in this task. D1 represents
the beta-thalassemia-specific face, and N0 represents the
healthy control. The row in the confusion matrix indicates
the predicted classes, and the column in the confusion
matrix indicates the actual classes. In detail, two of thirty
testing images for each type, false positives and false
negatives, are misclassified by DTL1, which leads to an
accuracy of 93.3%. For DTL2, thirty images belonging to
the type of beta-thalassemia in actual, true positives, are
all classified correctly. On the other hand, three of thirty
images, false positives, are belonging to the healthy control
in actual, but classified as the beta-thalassemia-specific face.
Figure 5 shows the receiver operating characteristic (ROC)
curves of the VGG-Face model by DTL1 and DTL2. The
blue dotted line indicates the performance of DTL1, and
the red solid line indicates the performance of DTL2. The
Areas Under ROC curves (AUC) calculated are 0.969 and
0.978 correspondingly.
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TABLE 3. Binary classification results on the detection of beta-thalassemia (Traditional: Row 2&3 and DTL1: Row 4-9).

TABLE 4. Binary classification results on the detection of beta-thalassemia (DTL2).

For comparison, deep learning models pretrained such
as AlexNet, VGG16 and ResNet are used. In addition,
traditional machine learning methods extracting DSIFT
features on the face image and predicting with a linear or
nonlinear SVM classifier [29] are selected. Five indicators
that are accuracy, precision, sensitivity, specificity and
F1-score which is a weighted average of the precision
and sensitivity are selected to evaluate the performance of
models. The indicator of FLOPs spent for forward pass
is estimated to evaluate the time complexity of models.
Table 3 lists the results of both traditional machine learning
methods and fine-tuning deep learning models pretrained
on the ImageNet and VGG-Face dataset in this task. From
the results, we find that the performance by traditional
machine learning methods is close to the performance of
fine-tuning (DTL1) deep learning models pretrained on
ImageNet. However, the performance of fine-tuning (DTL1)
the deep learning models pretrained on VGG-Face is overall
better than ones pretrained on ImageNet, which is reasonable.
Because the source domain of VGG-Face is nearer to DSF

dataset than ImageNet. Table 4 lists the results of CNN as
a feature extractor on the pretrained deep learning models
(DTL2). Applying DTL2: CNN as a feature extractor can
get an overall better performance than traditional machine
learning methods and DTL1. However, deep learning models
pretrained on VGG-Face seem to behave not necessarily
better than deep learning models pretrained on ImageNet
in this strategy. It will be investigated further in the next
experiment.

B. VARIOUS DISEASES DETECTION: A MULTICLASS
CLASSIFICATION TASK
In practical, that we perform various diseases detection or
screening at one time could greatly increase efficiency. For
evaluating the algorithm further, in this case there are totally
350 images in the task dataset, and there are 70 images
for each type of faces. For the training process, totally
200 images (40 images of each type) are used. For the testing
process, totally 150 images (30 images of each type) are
used. It is a multiclass classification task. By comparing
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FIGURE 6. The confusion matrix for various diseases detection (a multiclass classification task). (a) DTL1: VGG-Face
(Fine-tuning). (b) DTL2: VGG-Face (Feature Extractor) + SVM Linear. D1 represents the beta-thalassemia-specific
face, D2 represents the hyperthyroidism-specific face, D3 represents the DS-specific face, D4 represents the
leprosy-specific face and N0 represents the healthy control.

TABLE 5. Multiclass classification results on the detection of four diseases.

all selected machine learning methods, we find that the
best overall top-1 accuracies can be achieved by using
the strategies of deep transfer learning on the VGG-Face
model again. Furthermore, applying DTL2: VGG-Face as a
feature extractor can get a better accuracy of 93.3% than
using DTL1: fine-tuning in this task, which is indicated
by Figure 6. Figure 6 shows the confusion matrices of
DTL1 and DTL2 on the VGG-Face model in this task.
D1 represents the beta-thalassemia-specific face, D2 repre-
sents the hyperthyroidism-specific face, D3 represents the
DS-specific face, D4 represents the leprosy-specific face and
N0 represents the healthy control. The row in the confusion
matrix indicates the predicted classes, and the column in
the confusion matrix indicates the actual classes. From the
Figure 6(b), four of thirty images are belonging to the
hyperthyroidism-specific face in actual, but classified as
other types, which indicates it is relatively difficult for the

classifier to recognize hyperthyroidism from face images.
For recognizing beta-thalassemia, Down syndrome and
leprosy, the classifier has a very good accuracy. Figure 6(a)
of DTL1 also shows a low accuracy on recognizing
hyperthyroidism.

Table 5 lists the results of traditional machine learning
methods and deep learning methods in the multiclass
classification task as described before. Since the multiclass
classification task is more difficult than the binary classifica-
tion task before, the accuracies of machine learning models
decrease generally. The results by deep transfer learning
methods are much better than the results by traditional
machine learning methods in this task, which is as expected.
And deep learning models pretrained on VGG-Face behave
generally better than deep learning models pretrained on
ImageNet in both strategies. The performance of DTL2: CNN
as a feature extractor is overall better than that of DTL1:
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TABLE 6. Multiclass classification advanced results on the detection of
four diseases.

Fine-tuning again, which probably is due to the relatively
small dataset.

On the basis of applying DTL2, for exploring a better
performance by deep transfer learning, we investigate the
performance of ResNet50 and SE-ResNet50 [36] models
pretrained on MS-Celeb-1M [43] and VGGFace2 [44].
MS-Celeb-1M is a widely used dataset of roughly 10 million
photos from 100,000 individuals for face recognition.
VGGFace2 is a large-scale dataset containing more than
3.3 million face images over 9K identities for face
recognition. Table 6 lists the results of ResNet50 and
SE-ResNet50 models pretrained on the different datasets.
SE-ResNet50 has more complex structure but does not
get better results than ResNet50 here, which accords with
the fact that ‘‘VGG-Face’’ model achieves the best results
in our experiments. The results indicate pretraining on
more task-related datasets can improve the performance in
this task. The ResNet50 pretrained on MS-Celeb-1M and
finetuned on VGGFace2 improves its accuracy from 86.7%
(ImageNet) to 92.7% which is closest to the best result.
In addition, clinicians from Jiangsu Province Hospital and
Zhongda Hospital Affiliated To Southeast University are
invited to perform the detection on the same task to get
an average accuracy of 84.5%, which is similar with the
accuracy of the specialists published before [23]. DTL2:
CNN as a feature extractor still outperforms clinicians, which
is promising.

Regarding the time complexity (see Table 3-6), as men-
tioned in the theoretical part, the time complexity of
DTL1 and DTL2 are both smaller than that of the correspond-
ing pretrained model, and the time complexity of DTL2 is
a bit larger than that of DTL1. Since the FLOPs of CNN
models are almost more than a few hundred millions now,
the difference in FLOPs values of the adapted model and
its corresponding pretrained model shown in tables is not
obvious.

From these experiments, we can conclude that the
performance by deep learning methods are overall better
than the results by traditional machine learning methods
as expected. The difference is more expressive for the
multiclass classification task. In the case of the small dataset

of facial diagnosis, DTL2: CNN as a feature extractor is
more appropriate than DTL1: Fine-tuning. Furthermore, it is
because of the similarity between the target domain and
the source domain of deep learning models pretrained for
face recognition that the better performance can be reached
by deep transfer learning methods. Deep learning models
pretrained on more datasets for face recognition can achieve
a better performance on facial diagnosis by deep transfer
learning.

V. CONCLUSION
More and more studies have shown that computer-aided
facial diagnosis is a promising way for disease screening and
detection. In this paper, we propose deep transfer learning
from face recognition methods to realize computer-aided
facial diagnosis definitely and validate them on single
disease and various diseases with the healthy control. The
experimental results of above 90% accuracy have proven
that CNN as a feature extractor is the most appropriate deep
transfer learning method in the case of the small dataset
of facial diagnosis. It can solve the general problem of
insufficient data in the facial diagnosis area to a certain extent.
In future, we will continue to discover deep learning models
to perform facial diagnosis effectively with the help of data
augmentation methods.We hope that more and more diseases
can be detected efficiently by face photographs.

ACKNOWLEDGMENT
The Visual Information Security (VIS) Team supports us
theoretically and technically. The authors would like to thank
all the members of VIS team. They also would like to
thank Professors Urbano José Carreira Nunes, Helder Jesus
Araújo and Rui Alexandre Matos Araújo for their valuable
suggestions.

REFERENCES
[1] P. U. Unschuld, Huang Di Nei Jing Su Wen: Nature, Knowledge, Imagery

in an Ancient Chinese Medical Text: With an Appendix: The Doctrine of
the Five Periods and Six Qi in the Huang Di Nei Jing Su Wen. Univ of
California Press, 2003.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[4] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks
for large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

[5] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[6] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, ‘‘Inception-v4,
inception-resnet and the impact of residual connections on learning,’’ in
Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 1–12.

[7] F. Schroff, D. Kalenichenko, and J. Philbin, ‘‘FaceNet: A unified
embedding for face recognition and clustering,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 815–823.

[8] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, ‘‘DeepFace: Closing the
gap to human-level performance in face verification,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2014, pp. 1701–1708.

VOLUME 8, 2020 123659



B. Jin et al.: Deep Facial Diagnosis: Deep Transfer Learning From Face Recognition to Facial Diagnosis

[9] B. Jin, ‘‘Disease-specific faces,’’ IEEE Dataport, 2020.
Accessed: Jun. 29, 2020. [Online]. Available: http://dx.doi.org/10.21227/
rk2v-ka85

[10] J. Liu, Y. Deng, T. Bai, Z. Wei, and C. Huang, ‘‘Targeting ultimate accu-
racy: Face recognition via deep embedding,’’ 2015, arXiv:1506.07310.
[Online]. Available: http://arxiv.org/abs/1506.07310

[11] J. Fanghänel, T. Gedrange, and P. Proff, ‘‘The face-physiognomic expres-
siveness and human identity,’’ Ann. Anatomy-Anatomischer Anzeiger,
vol. 188, no. 3, pp. 261–266, May 2006.

[12] B. Zhang, X. Wang, F. Karray, Z. Yang, and D. Zhang, ‘‘Computerized
facial diagnosis using both color and texture features,’’ Inf. Sci., vol. 221,
pp. 49–59, Feb. 2013.

[13] E. S. J. A. Alhaija and F. N. Hattab, ‘‘Cephalometric measurements
and facial deformities in subjects with -thalassaemia major,’’ Eur. J.
Orthodontics, vol. 24, no. 1, pp. 9–19, Feb. 2002.

[14] P. N. Taylor, D. Albrecht, A. Scholz, G. Gutierrez-Buey, J. H. Lazarus,
C. M. Dayan, and O. E. Okosieme, ‘‘Global epidemiology of hyperthy-
roidism and hypothyroidism,’’ Nature Rev. Endocrinol., vol. 14, no. 5,
pp. 301–316, 2018.

[15] Q. Zhao, K. Rosenbaum, R. Sze, D. Zand, M. Summar, and
M. G. Linguraru, ‘‘Down syndrome detection from facial photographs
using machine learning techniques,’’ Proc. SPIE, vol. 8670, Feb. 2013,
Art. no. 867003.

[16] E. Turkof, B. Khatri, S. Lucas, O. Assadian, B. Richard, and E. Knolle,
‘‘Leprosy affects facial nerves in a scattered distribution from the main
trunk to all peripheral branches and neurolysis improves muscle function
of the face,’’ Amer. J. Tropical Med. Hygiene, vol. 68, no. 1, pp. 81–88,
Jan. 2003.

[17] Q. Zhao, K. Okada, K. Rosenbaum, D. J. Zand, R. Sze, M. Summar, and
M. G. Linguraru, ‘‘Hierarchical constrained local model using ICA and
its application to Down syndrome detection,’’ in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent. Berlin, Germany: Springer,
2013, pp. 222–229.

[18] Q. Zhao, K. Okada, K. Rosenbaum, L. Kehoe, D. J. Zand, R. Sze,
M. Summar, and M. G. Linguraru, ‘‘Digital facial dysmorphology for
genetic screening: Hierarchical constrained local model using ICA,’’Med.
Image Anal., vol. 18, no. 5, pp. 699–710, Jul. 2014.

[19] H. J. Schneider, R. P. Kosilek, M. Günther, J. Roemmler, G. K. Stalla,
C. Sievers, M. Reincke, J. Schopohl, and R. P. Würtz, ‘‘A novel approach
to the detection of acromegaly: Accuracy of diagnosis by automatic
face classification,’’ J. Clin. Endocrinol. Metabolism, vol. 96, no. 7,
pp. 2074–2080, Jul. 2011.

[20] X. Kong, S. Gong, L. Su, N. Howard, and Y. Kong, ‘‘Automatic detection
of acromegaly from facial photographs using machine learning methods,’’
EBioMedicine, vol. 27, pp. 94–102, Jan. 2018.

[21] T. Shu, B. Zhang, and Y. Y. Tang, ‘‘An extensive analysis of various texture
feature extractors to detect diabetes mellitus using facial specific regions,’’
Comput. Biol. Med., vol. 83, pp. 69–83, Apr. 2017.

[22] S. Hadj-Rabia, H. Schneider, E. Navarro, O. Klein, N. Kirby, K. Huttner,
L. Wolf, M. Orin, S. Wohlfart, C. Bodemer, and D. K. Grange, ‘‘Automatic
recognition of the XLHED phenotype from facial images,’’ Amer. J. Med.
Genet. Part A, vol. 173, no. 9, pp. 2408–2414, Sep. 2017.

[23] P. Kruszka, Y. A. Addissie, D. E. McGinn, A. R. Porras, E. Biggs,
M. Share, and T. B. Crowley, ‘‘22q11. 2 deletion syndrome in diverse
populations,’’ Amer. J. Med. Genetics A, vol. 173, no. 4, pp. 879–888,
2017.

[24] S. Boehringer, T. Vollmar, C. Tasse, R. P. Wurtz, G. Gillessen-Kaesbach,
B. Horsthemke, and D. Wieczorek, ‘‘Syndrome identification based on 2D
analysis software,’’ Eur. J. Hum. Genet., vol. 14, no. 10, pp. 1082–1089,
Oct. 2006.

[25] Y. Gurovich, Y. Hanani, O. Bar, G. Nadav, N. Fleischer, D. Gelbman,
L. Basel-Salmon, P. M. Krawitz, S. B. Kamphausen, M. Zenker,
L. M. Bird, and K. W. Gripp, ‘‘Identifying facial phenotypes of genetic
disorders using deep learning,’’ Nature Med., vol. 25, no. 1, pp. 60–64,
Jan. 2019.

[26] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision
With the OpenCV Library. Newton, MA, USA: O’Reilly Media,
2008.

[27] O. M. Parkhi, A. Vedaldi, and A. Zisserman, ‘‘Deep face recognition,’’ in
Proc. Brit. Mach. Vis. Conf., 2015, pp. 1–12.

[28] J.-G. Wang, J. Li, C. Y. Lee, and W.-Y. Yau, ‘‘Dense SIFT and
Gabor descriptors-based face representation with applications to gender
recognition,’’ in Proc. 11th Int. Conf. Control Autom. Robot. Vis.,
Dec. 2010, pp. 1860–1864.

[29] C. Shan, S. Gong, and P. W. McOwan, ‘‘Robust facial expression
recognition using local binary patterns,’’ in Proc. IEEE Int. Conf. Image
Process., Sep. 2005. pp. II–370.

[30] D. Wu, Y. Chen, C. Xu, K. Wang, H. Wang, F. Zheng, D. Ma, and
G. Wang, ‘‘Characteristic face: A key indicator for direct diagnosis of
22q11. 2 deletions in Chinese velocardiofacial syndrome patients,’’ PLoS
ONE, vol. 8, no. 1, 2013, Art. no. e54404.

[31] J. Wen, Y. Xu, Z. Li, Z. Ma, and Y. Xu, ‘‘Inter-class sparsity based
discriminative least square regression,’’ Neural Netw., vol. 102, pp. 36–47,
Jun. 2018.

[32] J. Wen, X. Fang, J. Cui, L. Fei, K. Yan, Y. Chen, and Y. Xu,
‘‘Robust sparse linear discriminant analysis,’’ IEEE Trans. Circuits
Syst. Video Technol., vol. 29, no. 2, pp. 390–403, Feb. 2019,
doi: 10.1109/TCSVT.2018.2799214.

[33] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. W. Vaughan, ‘‘A theory of learning from different domains,’’ Mach.
Learn., vol. 79, nos. 1–2, pp. 151–175, May 2010.

[34] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, ‘‘Analysis of
representations for domain adaptation,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2007, pp. 137–144.

[35] R. Galanello and R. Origa, ‘‘Beta-thalassemia,’’ Orphanet J. Rare
Diseases, vol. 5, no. 1, p. 11, 2010.

[36] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-Excitation networks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[37] J. A. K. Suykens and J. Vandewalle, ‘‘Least squares support vector machine
classifiers,’’ Neural Process. Lett., vol. 9, no. 3, pp. 293–300, Jun. 1999.

[38] S. J. Pan andQ. Yang, ‘‘A survey on transfer learning,’’ IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[39] L. Shao, F. Zhu, and X. Li, ‘‘Transfer learning for visual categorization:
A survey,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 5,
pp. 1019–1034, May 2015.

[40] D. Sarkar, A Comprehensive Hands-on Guide to Transfer Learning With
Real-World Applications in Deep Learning. Medium, 2018.

[41] S. Ruder. Transfer Learning-Machine Learning’s Next Frontier. Accessed:
2017. [Online]. Available: https://ruder.io/transfer-learning/

[42] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[43] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, ‘‘MS-Celeb-1M: A dataset and
benchmark for large-scale face recognition,’’ in Proc. Eur. Conf. Comput.
Vis. Cham, Switzerland: Springer, 2016, pp. 87–102.

[44] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, ‘‘VGGFace2:
A dataset for recognising faces across pose and age,’’ in Proc. 13th IEEE
Int. Conf. Autom. Face Gesture Recognit. (FG), May 2018, pp. 67–74.

[45] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, ‘‘Boosting for transfer learning,’’
in Proc. 24th Int. Conf. Mach. Learn. (ICML), 2007, pp. 193–200.

[46] B. Tan, Y. Zhang, S. J. Pan, and Q. Yang, ‘‘Distant domain transfer
learning,’’ in Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 2604–2610.

[47] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, ‘‘Domain adaptation via
transfer component analysis,’’ IEEE Trans. Neural Netw., vol. 22, no. 2,
pp. 199–210, Feb. 2011.

[48] M. Long, H. Zhu, J. Wang, and M. I. Jordan, ‘‘Deep transfer learning with
joint adaptation networks,’’ in Proc. 34th Int. Conf. Mach. Learn., Vol. 70,
2017, pp. 2208–2217.

[49] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, ‘‘CNN features
Off-the-shelf: An astounding baseline for recognition,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2014, pp. 806–813.

[50] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S.
Thrun, ‘‘Dermatologist-level classification of skin cancer with deep neural
networks,’’ Nature, vol. 542, no. 7639, pp. 115–118, Feb. 2017.

[51] Y. Yu, H. Lin, J. Meng, X. Wei, H. Guo, and Z. Zhao, ‘‘Deep transfer
learning for modality classification of medical images,’’ Information,
vol. 8, no. 3, p. 91, Jul. 2017.

[52] Z. Shi, H. Hao, M. Zhao, Y. Feng, L. He, Y. Wang, and K. Suzuki, ‘‘A
deep CNN based transfer learning method for false positive reduction,’’
Multimedia Tools Appl., vol. 78, no. 1, pp. 1017–1033, Jan. 2019.

[53] M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio, ‘‘Transfusion:
Understanding transfer learning for medical imaging,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2019, pp. 3342–3352.

[54] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao,
D. Mollura, and R. M. Summers, ‘‘Deep convolutional neural networks for
computer-aided detection: CNN architectures, dataset characteristics and
transfer learning,’’ IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1285–1298,
May 2016.

123660 VOLUME 8, 2020

http://dx.doi.org/10.1109/TCSVT.2018.2799214


B. Jin et al.: Deep Facial Diagnosis: Deep Transfer Learning From Face Recognition to Facial Diagnosis

[55] J. Davis and P. Domingos, ‘‘Deep transfer via second-orderMarkov logic,’’
in Proc. 26th Annu. Int. Conf. Mach. Learn. (ICML), 2009, pp. 217–224.

[56] C. J. C. Burges, ‘‘A tutorial on support vector machines for pat-
tern recognition,’’ Data Mining Knowl. Discovery, vol. 2, no. 2,
pp. 121–167, 1998.

[57] A. F. Abate, P. Barra, S. Barra, C. Molinari, M. Nappi, and F. Narducci,
‘‘Clustering facial attributes: Narrowing the path from soft to hard
biometrics,’’ IEEE Access, vol. 8, pp. 9037–9045, 2020.

[58] V. Kazemi and J. Sullivan, ‘‘One millisecond face alignment with an
ensemble of regression trees,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2014, pp. 1867–1874.

[59] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, ‘‘Pruning
convolutional neural networks for resource efficient inference,’’ 2016,
arXiv:1611.06440. [Online]. Available: http://arxiv.org/abs/1611.06440

BO JIN received the B.Sc. and M.Sc. degrees
from the Department of Electrical and Computer
Engineering, University of Macau, China. He is
currently pursuing the Ph.D. degree with the
Visual Information Security Team, Institute of
Systems and Robotics, Portugal.

His research interests include computer meth-
ods and programs in biomedicine and biometrics.

LEANDRO CRUZ received the Licentiate degree
in mathematics from the Universidade Estadual
do Norte Fluminense Darcy Ribeiro, in 2006,
the B.Sc. degree from Universidade Cândido
Mendes, in 2009, and the master’s degree in
mathematics (option computer graphics) and the
Ph.D. degree in Mathematics from the Instituto
Nacional de Matemática Pura e Aplicada (IMPA),
in 2011 and 2015, respectively.

During his Ph.D. study, he visited the Labora-
toire d’InfoRmatique en Image et Systèmes d’information (LIRIS), Lyon,
France, for one year. From 2015 to 2016, he held a postdoctoral position
at IMPA, where he researched about creating a visual representation for
textures and pieces of music. In February 2017, he joined the VIS Team,
University of Coimbra. He worked at the TrustStamp project, participating
in the development of UniQode. He is currently the Manager of the
VIS Team, collaborating on three current projects: TrustStamp/TrustFaces,
UniqueMark, and Card3dFaces.

NUNO GONÇALVES received the Ph.D. degree in
computer vision from the University of Coimbra,
Portugal, in 2008.

Since 2008, he has been a tenured Assistant
Professor with the Department of Electrical and
Computers Engineering, Faculty of Sciences and
Technologies, University of Coimbra. He is cur-
rently a Senior Researcher with the Institute of
Systems and Robotics, University of Coimbra.
He has been recently coordinating several projects

centered on the technology transfer to the industry. In 2018, he joined the
Portuguese Mint and Official Printing Office (INCM), where he coordinates
innovation projects in areas, such as facial recognition, graphical security,
information systems, and robotics. He has been working in the design and
introduction of new products as result of the innovation projects. He is the
author of several articles and communications in high-impact journals and
international conferences. His scientific career has been mainly developed
in the fields of computer vision, visual information security, and robotics,
but also in computer graphics.

VOLUME 8, 2020 123661


