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ABSTRACT The Type-2 fuzzy set (T2 FS) is widely used for efficient control uncertainties, such as noise
sensitivity in the fuzzy set. In addition, unsupervised machine learning requires a clustering parameter value
in advance, and may affect clustering performance according to prior information such as the number and
size of clusters. In this case, the fuzzifier value m to be applied is the most important factor in improving
the accuracy of data. Therefore, in this paper, we intend to perform clustering to automatically acquire the
determination of m and my values that depended on existing repeated experiments. To this end, in order to
increase efficiency on deriving appropriate fuzzifier value, we used the Interval type-2 possibilistic fuzzy
C-means (IT2PFCM), clustering method to classify a given pattern. In Efficient IT2PFCM method, used
for clustering, we propose an algorithm that derives suitable fuzzifier values for each data. These values
also extract information from each data point through the histogram approach and Gaussian Curve Fitting
method. Using the extracted information, two adaptive fuzzifier value m; and m, are determined. Obtained
values apply the new lowest and highest membership values. In addition, it is possible to form an appropriate
fuzzy area on each cluster by only taking advantage of the characteristics of IT2PFCM, which reduces
uncertainty. This doesn’t only improve the accuracy of clustering of measured sensor data, but can also
be used without additional procedures such as data labeling or the provision of prior information. It is also
efficient at monitoring numerous sensors, managing and verifying sensor data collected in real time such as
smart cities. Eventually, in this study, the proposed method is to improve IT2PFCM performance on accurate
and quick clustering of large amount of complex data such as Internet of Things (IoT).

INDEX TERMS Fuzzifier value determining, sensor data clustering, fuzzy C-means, histogram approach,

interval type-2 PFCM.

I. INTRODUCTION

Clustering is the process of grouping similar entities together,
taking specific predefined features or attributes into consider-
ation. In machine learning, one of clustering techniques using
unsupervised learning, inferences are drawn from datasets
consisting of input data without labelled responses. To estab-
lish the inaccurate and ambiguous of the fuzzy sets, con-
cept of membership values is introduced. The membership
values denote the degree with which an element x from
the universe of discourse belongs to a particular set, where
the membership value varies from 0 (not belonging to the
set) to 1 (complete membership in the set). In other words,
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clustering can be thought of as two types, hard clustering
and soft clustering. In hard clustering, the data points are
divided into distinct sets, that is, a single data point belongs
to only one cluster, whereas in soft clustering, data points
have a fuzzy membership in a cluster, that is, a particular data
point belongs to more than one cluster, containing different
membership value. While traditional hard clustering works
for physical systems, fuzzy clustering, a kind of soft cluster,
is preferred for realistic human-centered systems.

Various algorithms have been previously introduced to
solve unsupervised clustering problems of fuzzy sets. Many
studies have been conducted on fuzzy clustering to classify
patterns and fuzzy C-means (FCM) algorithm has been used
most frequently [1]. FCM uses the concept of a fuzzifier
m which is used to determine the membership value of a
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pattern Xj belonging to a particular cluster with cluster pro-
totype, here the cluster center, v; where k = 1,2...n and
i = 1,2...c, where n is the number of patterns and c is
the number of clusters. FCM requires the knowledge of the
initial number of desired clusters and the membership value
is decided by the relative distance between the pattern Xj
and the cluster center V;. However, one of the major draw-
backs of using FCM is its noise sensitivity and constrained
memberships. In order to solve problems of FCM method,
PCM uses a parameter given by whose value is estimated
from the dataset itself. PCM applies the possibilistic approach
which simply means that the membership value of a point
in a class represents the typicality of the point in the class,
or the possibility of the pattern X; belonging to the class with
cluster prototype V; wherek = 1,2..nandi = 1, 2...c. Since,
the noise points are comparatively less typical, while using
typicality in PCM algorithm, the noise sensitivity is consid-
erably reduced [2], [3]. However, the PCM algorithm also
has a problem that the clustering result is sensitively reacted
according to the initial parameter value [4]. To solve this
problem, PFCM algorithm generated both the memberships
and possibilities simultaneously and solved the problem of
noise sensitivity as seen in FCM and the coincident clusters
as experienced in PCM. FCM and PCM, where, the constraint
on typicality values (or the constraint of row-sum = 1) is
relaxed but the column constraints on membership values
is retained. PFCM uses the fuzzifier that is denoted by m,
which determines the membership values, and the bandwidth
parameter that is used to evaluate the typicality values [5].
PFCM further uses constants a and b that define the relative
importance of fuzzy membership and typicality values in
the objective function. Since PFCM utilizes more number of
parameters to decide on the optimal solution for clustering,
it provides an increased degree of freedom and hence renders
better results as compared to the research stated above. How-
ever, when we consider fuzzy sets and different parameters in
a particular algorithm, we come across the possibility of the
fuzziness of these parameters. In this paper, we account for
the fuzziness in the possible value of the fuzzifier value m and
the bandwidth parameter and generate a Footprint of uncer-
tainty (FOU) for both by taking an interval of fuzziness for m,
that is, considering the possibility of m lying in the interval
my and my, and an interval of fuzziness. The existing research
has been conducted to measure the optimum range according
to the upper and lower bounds of the fuzzifier value through
several repeated experiments [6]. Although these studies are
ongoing, the same fuzzy constant range cannot be applied to
every data [7]. As the needs on developing new method to
adaptively determining the fuzzifier value for different kinds
of data are growing, this paper proposes a method using a
histogram based on the Interval type-2 possibilistic Fuzzy
C-means (IT2 PFCM) clustering method.

Section 2 introduces the concept of recent research
trends, fuzzy values, and decisions, and section 3 describes
the IT2 PFCM algorithm as a formula. Section 4 uses
HISTOGRAM to determine the FUZZIFIER VALUE and
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presents the formula and FIGURE related to it. Section 5 actu-
ally performs test comparison to apply the sensor data to
the proposed algorithm. Finally, section 6, ‘“Conclusion,”
presents a contribution to improve accuracy.

Il. BACKGROUND THEORY

A. RESERCH TREND

It is known that the synthesis of FCM and T2FS gives more
room to handle the uncertainties of clustering caused by
noisy environment. These hybrid algorithms include the gen-
eral type-2 FCM [8], Interval Type-2 FCM (IT2-FCM) [9],
kernel IT2-FCM [10], interval type-2 fuzzy c-regression
clustering [11], interval type-2 possibilistic c-means cluster-
ing [12], [7], interval type-2 relative entropy FCM [13], parti-
cle swarm optimization based IT2-FCM [14], interval-valued
fuzzy set-based collaborative fuzzy clustering [15]. This
T2FS based algorithms have been successfully applied to
areas like image processing, time series prediction and others.

Interval Type-2 FCM (IT2-FCM): In fuzzy clustering algo-
rithms like FCM, the fuzzifier value m plays an important
role in determining the uncertainty of clustering. However,
the value of m is usually hard to be decided upon in advance.
IT2-FCM considers the fuzzifier value as an interval [m 1, m2],
and solves two optimization problems [16].

Another Type-2 fuzzy clustering Algorithm: Unlike
IT2-FCM generates type-2 memberships by solving two opti-
mization problems with two fuzzifier value, the another kind
of Type-2 FCM (T2-FCM), whose type-2 membership is
directly generated by extending a scalar membership degree
to a T1FS. When restricting the secondary fuzzy sets to
have triangular membership functions, T2-FCM extends a
scalar membership u;; to a triangular secondary membership
function [17], [18].

B. FUZZIFIER VALUE

When the density or volume of each given cluster is different,
the fuzzifier value plays a decisive role in finding the clus-
tering membership function. It is assumed that the relative
distances to the cluster center are all equal to 0.5, which
means that the m of fuzzifier value is *“1”’ and is considered
a decision boundary. There is no fuzzy area under the above

conditions.

C D

Relative di

FIGURE 1. Fuzzy area between clusters according to m.

Figure 1(a) shows the case where a small m value is set in
two clusters with different volumes. Since the section with
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a fuzzy membership value extends to a bulky C; cluster,
applying it to the C; cluster allocates a lot of relatively
unnecessary patterns. When a large m value is set as shown
in (b) of Figure 1, it seems to have good performance because
similar membership values are assigned, but the center value
of the C; cluster tends to move to the C, cluster.

Assuming the points located at the centers v1 and v2 of the
two clusters c1, and c2 and vertical lines.

Therefore, the membership function is calculated differ-
ently according to m and the membership value where the
pattern belongs maybe different according to the membership
function. Finally, when two fuzzifier value m, m; are used in
interval type-2 fuzzy set (IT2 FS), the pattern can be classified
more accurately than one fuzzifier value.

TABLE 1. Symbol for clustering method.

Symbol Explanation
C Bulky cluster
v Cluster center
v,V Cluster prototype
Fuzzifier value
u Membership function
U Partition matric
dy/d;; Euclidean distance value
1) Threshold of fuzzify constant
A Secondary membership degree
J PFCM objective function
X Input pattern
ti Represents typicality,the input pattern £ belongs to cluster i

[/ Scale defining point where typicality of the i-th cluster is 0.5
Xi Input space

q)( Xj) Kernel property space

K Input space for kernel

S Number of kernels

k Gaussian multiple kernels

Wil Resolution-specific weight

p Gradient descent method

C. DETERMINING THE RANGE OF FUZZIFIER VALUE

As stated above, several methods have been proposed to
determine the lowest and highest boundary range values of
the fuzzifier value from given data [19]. The PFCM mem-
bership function for determining the range of the fuzzifier
value is given as follows. The membership function at k-th
data point for cluster i is shown in equation (1). djx /d;; means
Euclidean distance value between cluster and data point.

1
Ui = ey

C
> (dix /dy)*/ =D
=1

To determine the range of the fuzzifier value, the neighbor
membership values are calculated, using the membership
value obtained in (1). Summarization with an expression
related to m is as equation (2) and the lowest and highest
boundary values of the fuzzy constant can be obtained as C is
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the number of clusters and m is the fuzzifier value.

c—-1 2 2logd
I+ —— < Al=m=s —————+1
c log(%5 - =7)
d; —df .
where A = and § isthreshold. (2)

dr
D. INTERVAL TYPE-2 FUZZY MEMBERSHIP FUNCTION
In general, the type-1 fuzzy set (T1 FS) has been widely
used to represent pattern uncertainty in the field of pattern
recognition. However, as previously shown, T1 FS cannot
produce good result and be extended to type-2 fuzzy set
(T2 FS) in order to control the uncertain fuzzifier value more
efficiently [20], [21]. T2 FS, A, is represented as follows.

A=£d%mﬂ=/ /ﬁ@ﬂ/x 3)

xeX |xejy

Expansion to T2 FS, which gives more control over uncer-
tainty, generally yields better results than T1 FS. However,
the calculation is complicated and requires a lot of compu-
tation [20]. To supplement excessive computation, IT2 FS
with a secondary membership degree; 1 is used. IT2 FS, A,is
expressed as equation (4). As seen from the equation, when
the secondary membership degree is same at every point,
it can be used as T1 FS.

A= Uuejx 1/4 /x 4)

IIl. INTERVAL TYPE-2 PFCM ALGORITHM

IT2 PFCM is expressed as the sum of the weights of FCM
method and PCM method and has both of above characteris-
tics. Therefore, it is clustered in the direction of minimizing
PFCM objective function as follow.

n C
2
Jnn(U, T,V : X)= Z Z (@l +bt)) x |lxe — vill
k=1 i=l1

Y vy (A=) G
1

i=1 k=

c
Zuik:1,0<uik,t,~k§l,m:>1,17>1,y>0 (6)
i=1
In equation (5), uj, represents a membership value where the
input pattern k belongs to cluster i. x; is the k-th input pattern,
and v; is the center value of the i-th cluster. m is a constant rep-
resenting the degree of fuzziness and satisfies the condition
of m € (1, 00). tj; represents typicality that the input pattern
k belongs to cluster i, which is a feature of PFCM method
using absolute distance. y; is a scale defining point where
typicality of the i-th cluster is 0.5 and the value is an arbitrary
number. To cluster with PFCM method, the objective function
in above equation (5) should be minimized with respect to the
membership function u;z. Membership for this is obtained
by equation (1). a and b are variables which determine the
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weight of FCM and PCM. In order to expand to IT2 FS,
the uncertainty of the fuzzifier value m must be expressed.
To draw m, you must create the lowest and highest member-
ship functions using the primary membership function. The
lowest and highest membership functions of PFCM according
to m are as follows.

Uiy = (%) @)
Z(d—k)’”‘ !
j=1
1
U = (ﬁ) (8)
> (GymT

where m| and m; are the highest and lowest fuzzifier value,
as shown in equation (5) representing objective function,
the value y; also changes according to the lowest and high-
est membership functions. Using y;, the lowest and highest
typicality is,

tik
1 " 1 1
_ i >
d3 2 i 2 T
1+<7f) 1+(”’ ) 1+<dy—k>
= 1
>—, oOtherwise
1+(7)
)
tik
1 1 1
AN l:]C S
d2 2 i 2 T
1+<*f) 1+(”’ ) 1+<dy—k>
= 1
>—, Otherwise
1+(7)

(10)

After obtaining membership as above, the central value of
each cluster must be updated. To update the center value,
the type reduction process of changing type-2 fuzzy set to
type-1 using the KM algorithm is performed and the updated
center value of each cluster is as shown in equation (11).

n
Z:] auy + bf,k)Xk

(I

v =

n
Z (auly + btgc)

A. MULTIPLE KERNELS PFCM ALGORITHM

In general, the kernel method is to convert the input data from
the input property space to the kernel property space through
the kernel function using a space conversion function [21].
This is to change the kernel property space into the kernel
property space making it easier to distinguish data that has
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or overlaps a non-linear boundary surface of input property
space through kernel property space conversion.

If the data in the input space is X;, i = 1, ..., N, the data
converted to the kernel property space through the function is
represented by @ (X;).j=1...N.

Alike as general PFCM in the case of Kernels-
PFCM, the goal is to minimize the following objective
function.

J?= Z Z (ady +btj) x d

+Z Z(l — )" (12)
k=1 i=1 i=1 k=1
In the input space for kernel K, the pattern x; and the distance
djj in the kernel attribute space of cluster prototype v; are

expressed as equation (13) by the kernel function.
2
dij = | @(5) — o)
= CD(XJ')CD(X]') + q)(\}j)q)(\/j) - 2<I>(xj)CI>(vj)

= K(xj, x;) + K(vj, vj) — 2k(x;, vj) (13)

In general, multiple kernels with the number of kernels § are
assumed so new Gaussian multiple kernels k using Gaussian
kernel are as follows [21].

=1
y e ()
K =g = %—s :
I=1 Z UK

From [22] method, normalized kernel is defined so
that e FCM-MK is to identify the resolution-specific
weight, the membership values and the cluster prototypes.
Using this optimization method, following PFCM objec-
tive function should be minimized. Resolution-specific
weight w;, membership value u; and cluster Prototype
v; are determined by minimizing the objective function
below.

Jm,n(Uv T,V;X)

n C
= 22 Z(au;;; +bt,

k=1 i=1

15)

B. MULTIPLE KERNELS INTERVAL

TYPE-2 PFCM ALGORITHM

In order to solve the uncertainty existing in the fuzzifier
value m in the general PFCM algorithm, Multiple Kernels
PFCM algorithm should be extended to the Interval Type-2
fuzzy set. If there are N data, C clusters, U partition matric,
V set of cluster prototype, W set pf resolution-specific
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weight and S kernels, the cluster prototype can be obtained
by minimizing the Gaussian kernel objective function as
follows.

2
Wld? (16)

C N
=1

JU.v.wy=2%"
i=1 j

where,

[l—vi 1
Sy 5P (—T
R S (17)

2 _
dij_

The cluster prototype is calculated by optimizing the objec-
tive function for the center v; of the cluster [22].

= 1
S ) eXp <— 752
U FEF) - S —(— (18)

where

. S ,exp(x-—vz)
T et

i=1 9 )

=1

Calculated the smallest membership value and the largest
membership value for each pattern using the Interval
Type-2 fuzzy set, optimized membership value, is used
for calculating the crisp value v;. To calculate vg and
vp, it is necessary to determine the upper or lower
bound of membership. It is organized as follows by given
formula [23].

(19)

Q|§

t

For v,
if (v(i < k)) then u;; = uy

else uj =

N _
> ug»lK(’)(xj’ ViX;
=1

Vi = N (20)
Xi ug’K(i)(xj, Vi)
]:
For vg,
if (Wi < k)) then uy; = w
else uj = ji
N _ .
Z:l uji K D(xjvi)x;
vig = @1)

N - .
‘ZI uff KO, vi)
]:

Using the final vg and vy, the crisp center value is obtained
from defuzzification as follows.
y = ViL 42-ViR (22)
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Using the cluster Prototype v;, obtained through the optimiza-
tion function and the membership value u;;, the resolution-
specific weight value w;; is updated as follows.

(new) __ (old) daJ
Wilnew — Wi;) — pm (23)
where
N m
aJ uy; _
=2 ) (Ko = KOy) @4
wil =1y w

Here, p is a gradient descent method as learning rate parame-
ter. Finally, clustering is performed through type-reduction
and hard patitioning as described in Interval Type-2
PFCM [24].

IV. DETERMINATION OF FUZZIFIER

VALUE USING HISTOGRAM

The proposed method in this paper extracts information from
data given through the histogram method, and then adaptively
calculates the fuzzifier value based on the obtained informa-
tion. First, the IT2 PFCM algorithm, defined in the previous
section, estimates roughly which cluster the data belongs to
and then obtains a histogram based on the data from the
classified clusters. The histogram obtained in IT2 PFCM
is made into a gentler and smoother histogram through the
triangular window and the membership function is obtained
by using a curve fitting on top of this histogram. To get
the IT2 FS, you need to determine the FOU, which is the
set of all major memberships of the T2 FS. Therefore,
the values of the histogram greater than the membership
value are assigned as the histogram of the highest mem-
bership and the values of the histogram with values less
than the membership value are stored as the histogram of
the lowest membership. The lowest and highest membership
functions can be obtained again using the curve-fitted his-
togram. Curve fitting is implemented separately on upper
and lower histograms giving us upper and lower membership
values. We propose an algorithm that estimates the fuzzifier
value m1, my using the membership function. Figure 2 shows
histograms and FOU examples determined by class and
dimension.

To find X that satisfies function f (X)= 0, it can be
expressed in the form of X = g(X) using fixed-point iteration,
and the following X is

Xiy1=g¢gX), i=0,1,...,N (25)
Equations (7) and (8) of the membership function u; are
expressed in the form of equation (25) as follows.

1

—Z (ﬂ) - (26)
dij

u; =
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FIGURE 2. FOU obtained for individual class and dimension class
1 dimension 1, and (b) class 2 dimension 1.

If you take the log on both sides in equation (26), equation
(27) can be summarized as follows:

lo i ——2 lo %
gm T om—1 gd”

c d %
+log [1+3° (d—k) “

27
=2~
Rearranging (27) and expressing it in terms of m, gives us
(28), (29).
C -\ 2/moia—1
e (4) e (14 £ ()
k=2 "
y = - (28)
log (i)
2
Mjnew = I+ ; (29)

As in the above process, the value of u; € {u;(Xy), u;(Xx)}
and my,,, is used as a function to get the memgership value.
When equation (10) is applied to all cluster data and calcu-
lated, new myjuen and myne, values can be obtained [25].
By taking the average value of the fuzzifier value obtained
through equation (29), the new fuzzifier value m; and m, are
finally determined, and the new fuzzifier value obtained for
clustering are as follows.

N N
my = (Z fmi) /N, my= (Z Vn2i> /N (30)
i=1 i=1
Figure 2 shows that histograms and FOU examples are
determined by class and dimension. Upper membership
function (UMF) histogram and lower membership func-
tion (LMF) histogram are obtained according to class and
dimension. A new membership function from the Gaussian
Curve Fitting (GF-F) method can be applied to calculate the
adaptive fuzzifier value.
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V. APPLICATION TO SENSOR DATA

In order to check the performance of the proposed algorithm,
supervised learning and unsupervised learning were com-
pared for sensor data of various characteristics. SVM method
for supervised learning, K-means for unsupervised learn-
ing and Interval Type-2 PFCM (IT2PFCM), the proposed
algorithm was tested and compared. Supervised learning is
different from the proposed algorithm but presented as the
need to apply a context-sensitive test method. m; and my
values were tested in the range of 1 to 5. The o value was
fixed to the most common Gaussian function value.

Acquired sensor data measured by indoor temperature /
humidity, VOCs, and miscellaneous dust (PM 10, 2.5) sen-
sors. This data is used as training data as labeling data com-
posed of outlier and spatial information, as well as continuous
data that has not been labeled. The volume of sensor training
and validating data is about 600,000 cases with various sensor
data for 2 weeks, and test data used for prediction is about
150,000 cases, consist of 80%: 20%.

It is performed by selecting the number of classes (K) to be
clustered and determining one cluster centroid per sensor in
principle. However, cluster expansion is possible according to
various event conditions. In this case, you can find outliers out
of the centroid (center point) and find the ratio by the number
of outliers. Finally, the accuracy of clustering is calculated
by which cluster the input data of the proposed algorithm
belongs to. It is useful to use this algorithm when expanding
to a smart city. This is because numerous sensors and sensor
big data cannot be managed individually, and numerous data
received in real time cannot be labeled individually.

Real-time data acquisition from multiple sensor devices is
displayed on a chart, and the proposed algorithm determines
the located cluster of each data, eventually, present the accu-
racy of clustering as a result. The training and validation data
is classified to 3 features, and each one consists of 10 or more
pattern data. It was clustered using the features of this sensor
data.

Instance of the fuzzy area according to the value of m; and
my using the characteristics of the Interval type-2 member-
ship set, uncertainty can be reduced and an appropriate fuzzy
area for the cluster volume can be formed, it is as shown in
the figure 3.

Relative distance = 0.5

FIGURE 3. Instance of appropriate fuzzy area using Interval type-2.

To expand to the Interval Type-2 fuzzy set and express
uncertainty for m, the input pattern, which is the primary
fuzzy set, is assigned to the Interval Type-2 fuzzy set.
To this end, the upper membership function and the lower
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FIGURE 4. Coordinates of raw sensor data and supervised learning, IT2 PFCM, the proposed algorithm.

membership function are created as primary membership
functions.

After obtaining the upper and lower membership for each
cluster, we need to update the center values for each clus-
ter. In this process, the membership is a Type-2 fuzzy set,
however the center value is a crisp value, the value cannot
be obtained using the above method. Therefore, in order
to update the center value, Type reduction is performed by
changing the Type-2 fuzzy set to the Type-1 fuzzy set. In addi-
tion, defuzzification should be accomplished to change the
value of Type-1 to a crisp value.

The Upper Membership Function (UMF) Histogram and
Lower Membership Function (LMF) Histogram are drawn.
A new membership function defined from the Gaussian
Curve Fitting (GF-F) method is obtained. Footprint of Uncer-
tainty (FOU), set of major memberships, is determined,
finally, new fuzzifier value m and m; are derived. mis a value
that determines the degree of final clustering fuzzifier as the
value of the fuzzy parameter.

When comparing and testing several existing Al algo-
rithms with the proposed algorithm, (a) in Figure 4 is the
raw data displaying the sensor data on the coordinate plane.
All presented data were converted to z-score. z-score is
a value that statistically creates a normal distribution and
shows where each data is located on the standard deviation.
The standard value indicates how far away the data is from
the mean, negative; below the average, positive; above the
average.

(b) is processed by SVM method in supervised learning
and (c) is shown in cross section. SVM is one of the classifi-
cation algorithms, and is a good classification rate algorithm.
Among the two types of linear and nonlinear algorithms,
this analysis classifies sensor data using a linear algorithm.
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In order to improve readability in 3D coordinates reflecting
3 characteristics, it was presented as a cross-section.

(d) is a comparison between raw data(red) and outlier
removed data (blue). As the outliers are removed, the original
data is relatively centered. The outlier removes 5.275% of
the total data with a standard score of 2.0 or higher. For
clustering accuracy, K-means performed better than PFCM.
There is no significant difference in performance, so picture
representation is excluded.

(e) is an enlarged comparison of the outlier removed
data (blue) and the result processed by the IT2 PFCM algo-
rithm (red). When compared with the data with outliers
removed, the IT2PFCM algorithm centralizes the sensor data
into clusters.

Finally, (f) is an enlarged comparison of the outlier
removed data (blue) and the result of processing with the
proposed algorithm (red). In the coordinate plane, (e) and
(f) do not seem to differ significantly, but it can be seen from
the numerical values that the proposed algorithm is improved
over the IT2 PFCM.

In Figure 4 (f), the values of m; and my are adaptively
found through the proposed algorithm that finds the most
suitable fuzzifier value by conventional learning. the m; and
my applied to the proposed algorithm to get new clusters and
the above process is repeated iteratively till the termination
criteria are satisfied. If there is negligible change in the result-
ing fuzzifier values or termination criteria is satisfied then end
the algorithm, otherwise, the algorithm is again repeated from
stepwise approach using these new m; and my. The stepwise
approach is setting initial values, applying to m; and my in
the proposed algorithm, calculating membership of each data
point, generating a histogram and curve fitting according to
this value of membership.
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TABLE 2. Comparison with proposed algorithms, such as accuracy.

The
Supervised | Unsupervised IT2 Proposed
Learning Learning PFCM PFCM | Algorithm
(SVM) (K-means) (m=1,2) (m=2.2,
2.8)
Total
Accuracy of
. 78.5 79.10 78.03 81.02 85.53
clustering
(%)
Temperature
Accuracy 70.1 82.55 81.23 83.67 87.58
(RMSE)
Humidity
Accuracy 83.8 80.47 78.05 81.87 86.21
(RMSE)
Gas
Accuracy 423 74.27 74.80 77.51 82.76
(RMSE)
Hyper
parameter 1.000 100 100 100 100
(Iteration) ’ (247451) (245400) | (239301) | (233228)
(Batch size)
(Input neurons : 30), (Output neurons : 1), (Hidden neurons : 15),
(Epoch : 13), (Hidden layers : 11)

In order to perform the test in a consistent situation, some
hyper parameters were set identically. As shown in Table 2,
it shows the clustering accuracy for temperature / humidity
/ gas / total sensor data, and was improved in the order of
SVM [26] — PFCM [27] — K-means [28] — IT2PFCM — The
proposed algorithm. The accuracy of the gas data was pre-
dicted to be lower than that of the other data, which is because
it reflects the characteristics of gas sensors based semicon-
ductor that have various environmental effects. Finally, it
was tested that the proposed algorithm performance improved
over the IT2PFCM algorithm.

VI. CONCLUSION

Dealing complex data with noise, the membership value is
subdivided into the upper / lower membership value and
introduced into histogram and Gaussian Kernel method to
improve the accuracy of the Interval type-2 Possibilistic
Fuzzy C-means Multiple. It plays an important role in deriv-
ing the better fuzzifier value m. This theoretical proof is
verified by practical data. In practical situation, IT2 PFCM
with new method compared to existing algorithms shows 95.6
~ 5.6% improvement in accuracy. In further study, deriving
parameters such as various weight values using the above
method should be carried out to stabilize accuracy of clus-
tering and improve performance.
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