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ABSTRACT Hybrid active power filter (HAPF) is a novel technique of harmonic filter which combines
superiorities of both active and passive filters. However, extracting appropriate parameters of the HAPF,
including active filter gain, passive inductive, and capacitive reactance within a constraint space is still a
challenging task. To obtain more accurate parameters of HAPF, this paper proposed a new population-based
algorithm named ASC-MFO. In ASC-MFO, the swarm is divided into two sub-swarms, i.e., exploitation
group and the exploration group. The exploitation group adopts the SFM in the MFO algorithm to enhance
the exploitation ability, while the exploration group utilizes the SCM in the SCA algorithm to emphasize
exploration. Besides, a personal best flame generation (PFG) strategy and a hybrid exemplar generation
(HEG) strategy are developed for the exploitation group and the exploration group to further enhance the
exploitation ability and the exploration ability of the two subgroups, respectively. Moreover, an adaptive
strategy is proposed to automatically resize the population number of two sub-swarms during the iterative
process, which can precisely balance the exploration and exploitation ability between groups in every single
generation. The proposed ASC-MFO is applied to design the two most commonly used topologies of the
HAPF, where each topology contains four actual cases. Comprehensive experimental results demonstrate
that ASC-MFO obtains an excellent performance among those well-established algorithms, especially in the
aspect of accuracy and reliability.

INDEX TERMS Sine cosine algorithm (SCA), moth flame optimization (MFO), swarmGlobal optimization,
hybrid active power filter (HAPF).

I. INTRODUCTION
With the advancement of science and the development of
technology, an increasing number of nonlinear loads are
being connected to the power system, which leads to an
exponential increase of harmonic pollution (HP). Obviously,
a high degree of HP responsible for the low quality of power.
This problem affects the operation of the electric power sector
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to varying degrees. In the worst situation, this problem shuts
the whole factories down [1]– [3].

Passive power filters PPF is the first adopted technique for
reducing or eliminating HP. It is a combination of capacitive
and inductive pairs, and the different sizes of capacitors and
inductors result in different frequency response characteris-
tics of PPF. Thus, it is simple to use with a relatively low
economical cost, which enables PPF to become themost com-
monly used technology for harmonic suppression [4]–[6].
However, the static frequency response of PPF cannot catch
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up with the dynamic changes of nonlinear loads. Moreover,
an accurate PPF requires an accurate · and specific capacitive
and inductive pair, while the capacitors and inductors pro-
vided by current manufacturers all have errors, and the values
are determined.

On the other hand, active power filters (APF) are more reli-
able and acquire better performance than PPF [7]. The active
shunt filter acts as a harmonic compensator and injects the
current in anti-phase with the distortion components present
in the line current. In contrast, the series active filter acts as
a harmonic isolator [8]. However, APF has not been widely
used because of its high cost and delicate operation compared
with traditional PPF. The hybrid active power filter (HAPF)
is proposed, which combines passive and active power filters
with several topologies. Compared with pure APF, HAPF has
a much smaller size and rating. While compared with pure
PPF, it can overcomemost of the problems in PPF and remove
the resonance which may occur. Nevertheless, the design of
the HAPF is considered a complex problem, which makes
HAPF not widely available. To be more specific, the param-
eter gain value of HAPF is usually determined based on
experiments [9], and the values of capacitance and inductance
values are still hard to choose due to the nonlinearity of the
load.

The meta-heuristic methods have been widely used in
recent years to solve all kinds of practical engineering
problems. For example, parameter extracting problems of
PV system [10] and Trajectory planning problem [11].
Natural phenomena inspire most of these algorithms, and
these methods aim at finding an optimal of an objec-
tive function within a predefined search space. Compared
with the traditional gradient-based approaches, these meth-
ods are considered insensitive to solution space and easy
to apply [12]–[14]. Some scholars use these meta-heuristic
methods to designed the filters in the power system. For
example, predator-prey based firefly optimization [15], ant
colony optimization [16], particle swarm optimization [17],
ant direction hybrid DE [18], genetic algorithms [19], bac-
terial foraging optimization [20], etc. However, most of
these methods are applied to design PPF; a small num-
ber of meta-heuristic methods are used to design HAPF.
When designing HAPF with these methods, most of the
objective functions are formulated with multiple optimization
objectives [9], [21], which increase the search difficulty and
computational burden of these algorithms. Reference [22]
proposed an optimal design of two popular topologies of
HAPF, which formulated the objective function with a single
objective, and adopted an L-SHADE algorithm to designed
the HAPF. The objective function formulated in [22] reducing
the difficulty of designing HAPF. In consideration of the
objective function is multimodal with several local optimal,
developing a newmeta-heuristic algorithm to optimize HAPF
is necessary to obtain a better performance.

The Moth-flame optimization (MFO) algorithm was first
proposed by Seyedali Mirjalili in 2015 [23]. It is one of
the recently proposed meta-heuristic methods inspired by the

navigation mechanism of moths in nature. MFO begins with
a determined quantity of artificial moths and artificial flame;
then, each moth flies to its corresponding flame with a spiral
trajectory. After a certain number of iterations, MFO can
find the best flame, which represents the best solution in the
search space. MFO adopts a competition mechanism to select
the promising flames and retain the flame with low fitness
value, resulting in the fast convergence of moth around the
flame with the best solution. Meanwhile, the spiral trajectory
allows moths to adequately explore the space around the
best solution, which guarantees MFO a good exploitation
ability. Because of the above advantages, MFO was widely
applied in practical engineering problems, such as multilevel
thresholding image segmentation [24], accurate simulation of
a non-uniform electric field [25], Parameter Identification of
Single-Phase Inverter [13]. However, as a newly developed
meta-heuristic algorithm, some problems existed inMFO that
still need to be addressed, such as accuracy and exploration
ability. More specifically, the flames abandoned during the
earlier search process may guide the moths to a more promis-
ing solution region while the flames reserved during the later
search process suffer a diversity loss problem. In other words,
once the flames are concentrated in the optimum local area,
MFO has difficulty using an existing strategy to escape from
this space. Thus, the accuracy of the MFO algorithm is not
guaranteed once flames are locked in an optimum local area,
and the exploitation ability of theMFO algorithm is weak due
to the flames suffer a diversity loss problem in the iterative
process.

To solve the above problems, some MFO variants are
proposed to overcome the deficiency of MFO. Li C et al.
proposed a double evolutionary moth-flame optimiza-
tion (DELMFO) algorithm, which adopted an evolution-
ary flame generation strategy [14]. Soliman et al. proposed
two improved MFO algorithms, with two newly designed
spiral trajectories for moths around flames [26]. In [27],
a Lévy-fight moth-fame algorithm was developed, where
Lévy-fight strategy is adopted to increase the diversity of
moths during the search process. Nevertheless, according to
no free lunch theory [28], no algorithm can resolve all the
optimization problems. Especially in the problem of obtain-
ing accurate parameters of HAPF, most of the state-of-art
meta-heuristic algorithms fall into a local optimal. Thus,
designing a newMFO variant to accurate abstract parameters
of HAPF is of great significance.

The Sine-Cosine Algorithm (SCA) is involved in the MFO
algorithm to improve the performance of the MFO algorithm
in this work. SCA is also a recently developed meta-heuristic
algorithm proposed by Seyedali Mirjalili in 2016, which
can resolve a variety of practical engineering problems [29].
The SCA algorithm adopts a sine-cosine mechanism (SCM)
which can randomly choose a sine or cosine trajectory for
the exemplar to follow. These two trajectories allow individ-
uals to search towards or away from the exemplar, which
makes the SCA algorithm features a high exploration ability
when compared with the MFO algorithm. However, the SCM
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FIGURE 1. The framework of our proposed ASC-MFO algorithm.

slows down the convergence speed, which contributes to a
low exploration ability of the SCA algorithm. This paper
proposed an Adaptive Sine-cosine Moth-Flame Optimization
(SCA-MFO) algorithm. MFO features high exploitation abil-
ity while the SCA features high exploitation ability. Thus,
the ASC-MFO algorithm aims to integrate the advantages
of both MFO and SCA algorithms. In the ASC-MFO algo-
rithm, the swarm is divided into two parallel working sub-
swarm, i.e., exploitation group and the exploration group.
The exploitation group adopts the SFM in the MFO algo-
rithm to emphasize on exploitation. In contrast, the explo-
ration group adopts the SCM in the SCA algorithm to
obtain the ability of exploration. The swarm division can
preserve the diversity of ASC-MFO during the whole itera-
tive process. To generate high-quality flames in the exploita-
tion group, a personal best flame generation (PFG) strategy
is proposed. The PFG strategy generates flames from the
personal best pool. Compared with the SFUM strategy in
the MFO algorithm, The PFG strategy can select flames
from the exploration group which is considered with high
exploitation ability. Thus, The PFG strategy can enhance the
exploitation ability of the exploitation group. Meanwhile,
a hybrid exemplar generation (HEG) scheme is adopted
for the exploration group. HEG will generate an exemplar
from the hybrid population. Thus, individuals in the explo-
ration group have a large probability to explore around
an exemplar generated from the exploitation group, which
ensures the high exploration ability of the exploration group.

Moreover, instead of predefined sizes of subpopulation
groups, we developed an adaptive method to regulate the
population size of both the MFO group and the SCA group
automatically. Our swarm adaptive mechanism (SAM) will
be executed in every single generation. Meanwhile, a set of
rules for rewards and punishments are designed to adjust
the subswarm size of our proposed ASC-MFO automatically.
Then a subpopulation size limitation is offered to ensure
the two subswarms co-work in a reasonable swarm size.
Fig.1 illustrates the swarm adaptive mechanism. The pro-
posed ASC-MFO is utilized to designed HAPF and com-
pared with other well-established algorithms. Comprehensive
experimental results demonstrate that ASC-MFO obtained
an outstanding performance when compared with its com-
petitors. Note that DELMFO is the most recently proposed
competitive MFO variants [14], L-SHADE is a competi-
tive algorithm which obtains an excellent performance on
designing HAPF [22].

The main contributions of this paper are as follows:
1) This paper proposed an Adaptive Sine-cosine Moth-

Flame Optimization Algorithm (ASC-MFO) algorithm,
which firstly integrates the advantages of both MFO and
SCA. In the proposed ASC-MFO algorithm, the swarm is
divided into two subswarm, i.e., exploitation group and explo-
ration group, which focus on exploitation and exploration,
respectively. The exploitation group adopts the spiral flight
mechanism in the MFO algorithm, and the exploration group
utilizes the sine-cosine mechanism in the SCA algorithm.
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FIGURE 2. Circuit model of two popular HAPF topologies.

The swarm division can preserve the diversity of ASC-MFO
during the whole iterative process.

2) A personal best flame generation (PFG) strategy and
a hybrid exemplar generation (HEG) strategy are developed
for the exploitation group and the exploration group, respec-
tively. PFG aims to provide high-quality flames, which ensure
the high exploitation ability of the exploitation group; the
HEG strategy aims to generate a promising exemplar from
the hybrid population, which ensures the high exploration
ability of the exploration group. The implement of both PFG
and HEG strategy balance the exploitation ability and the
exploration ability of the proposed ASC-MFO algorithm.

3) A swarm size adaptive mechanism (SAM) with a new
set of reward and punishment rules is proposed to adjust the
subswarm size of our proposed ASC-MFO, which performs
in each iterative generation with a population size limitation.
This mechanism can precisely adjust the exploitation abil-
ity and the exploration ability of the proposed ASC-MFO
algorithm, and the population size limitation can preclude the
diversity loss of population in case of the overuse of SAM.

4) The proposed ASC-MFO is firstly applied to develop
two popular conditions of the HAPF in the power system,
i.e., series topology and parallel topology. Then, ASC-MFO
is compared with other well-established algorithms on these
HAPF topologies. Comprehensive experimental results indi-
cate that the proposed ASC-MFO can obtain accurate param-
eters and outperform its competitors.

The following article is organized as follows. Section II
gives two popular HAPF model and formulates the single
objective function; Section III briefly introduces the original
MFO algorithm and SCA algorithm; Section IV proposed an
ASC-MFO algorithm; Section V analyzes the overall experi-
mental results; Section VI makes a brief conclusion.

II. PROBLEM FORMULATION
A. TWO POPULAR TOPOLOGIES OF HAPF
Fig.2 gives two popular topologies of HAPF. Fig.2(a) rep-
resents the ‘APF in series with passive shunt filter’ while

Fig.2(b) denotes the ‘combined series APF and shunt passive
filter’, respectively. Both of them are widely used for com-
pensation in industrial power systems. In Fig.2, Rsh and Xsh
represents the transmission system resistance and inductive
reactance in ohms at harmonic ‘h’, respectively; Rlh and Xlh
denotes load resistance and inductive reactance in ohms at
harmonic ‘h’ respectively; ‘K ’ means controllable feedback
gain of HAPF on ohms; XL and XC indicates fundamental
inductive and capacitive reactance in ohms of the passive
filter; Is and Il represents the Root mean square (RMS) value
of supply current and load current in amperes, respectively;
Vs and VL denotes the RMS value of supply voltage and load
voltage (line-to-neutral), respectively. In the power system,
the point of common coupling (PCC) is usually taken as
the point closest to the user where the system owner or
operator could offer service to another user [30]. In Fig.2(a),
the active filter eliminates load harmonics by injecting har-
monic currents, improving the performance of passive filters.
In Fig.2(b), series APF provides high-impedance power sup-
ply harmonics and forces the currents of harmonic to flow to
the passive filter; thus, low current rating is allowed in APF.

FIGURE 3. Single-phase equivalent circuit at fundamental frequency
(h = 1).

Fig.3 is the single-phase equivalent circuit applicable for
both HAPF topologies at the fundamental frequency [31].
Subject 1 means the circuit model works at the fundamental
frequency. The single-phase equivalent circuits of the two
topologies at harmonic frequencies are different. They can
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FIGURE 4. Single-phase equivalent circuit at harmonic ‘h’.

be formulated in Fig.4(a) and Fig.4(b), which denotes the
‘APF in series with shunt passive filter’ and ‘combined series
APF and shunt passive filter’ at harmonic ‘h’, respectively.
In Fig.4, APF serves as a controlled voltage source, which
is proportional to the supply current, i.e., VAPF = KIsh.
The filter gain K is designed to provide zero impedance at
the fundamental frequency [32], which means APF acts as a
harmonic resistor.

The utility supply voltage and the nonlinear load can be
represented by Thevenin voltage source and the harmonic
current source, respectively [32]:

Vs (t) =
∑

h
Vsh (t) (1)

IL (t) =
∑

h
Ilh (t) (2)

The h-th harmonic source and load impedance can be
formulated as:

Zlh = Rsh + jXsh (3)

Zlh = Rlh + jXlh (4)

Thus, the load admittance is

Ylh = Glh + jBlh (5)

where Glh and Blh represent the load resistance and inductive
reactance in ohms and loads conductance and susceptance in
mho at harmonic ‘h’. The compensated utility supply current
and load voltage at harmonic ‘h > 2’ in Fig.4(a) can be
expressed as fractions, respectively:

Ish =
A+ jB
C + jD

(6)

Vlh =
E + jF
C + jD

(7)

Similarly, the compensated utility supply current and load
voltage at harmonic ‘h>2’ in Fig.4(b) can be expressed as:

Ish =
A+ jB
C + jD′

(8)

Vlh =
E + jF
C + jD′

(9)

where,

A = VshRlh − IlhXlh(hXl −
Xc
h
) (10)

B = Vsh

(
Xlh + hXl −

Xc
h

)
+ IlhRlh(hXL −

Xc
h
) (11)

RTLh = RshRlh − XshXlh (12)

D = XTLh + KXlh + (Rsh + Rlh)(hXL −
Xc
h
) (13)

XTLh = RlhXsh + RshXlh (14)

E = Vsh

[
KRL−Xlh

(
HXL−

Xc
h

)]
+IlhXTLh(hXL −

Xc
h
)

(15)

F = Vsh

[
KXlh−Rlh

(
HXL−

Xc
h

)]
+IlhRTLh(hXL−

Xc
h
)

(16)

D′ = XTLh + KXlh + (K + Rsh + Rlh)(hXL −
Xc
h
) (17)

F ′ = Vsh

[
KXlh + (K + Rlh)

(
hXL −

Xc
h

)]
− IlhRTLh(hXL −

Xc
h
) (18)

Eq (6) and eq (8) reveal that the active filter serves as a
damping resistance [32], which means no amplification of
the current occurs at different harmonic level h. Meanwhile,
the power filter gain K is inverse proportional to the com-
pensated utility supply current Ish, which means the increase
of the gain K results in a decreasing of source harmonic
current. On the other hand, a high gain K may result in a high
compensated PCC voltage VLh according to eq (7) and eq (9).
Thus, our objective is to find a gain K which keeps both VLh
and Ish at a low level.

Other system parameters are given as follow:

DPF =
Pl1
Vl1Is1

=
Gl1Vl1
Is1

(19)

where DPF represents the compensated load-displacement
power factor, ad ‘1’ means the fundamental component.

PF =
Pl
VlIs
=

Gl1V 2
l1 +

∑
h≥2GlhV

2
lh(

I2s1 +
∑

h≥2 I
2
sh

) (
V 2
l1 +

∑
h≥2 V

2
lh

) (20)

where PF represents the compensated load power factor.

PLOSS = I2s1Rs1 +
∑

h≥2
I2shRsh (21)

where PLOSS denotes Transmission Loss.

η =
Pl

Pl + PLOSS
(22)
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where η denotes transmission efficiency.

VTHD =

√∑
h≥2 V

2
lh

Vl1
(23)

ITHD =

√∑
h≥2 I

2
sh

Vs1
(24)

where VTHD and ITHD indicate compensated voltage and
compensated utility supply current.

Then the harmonic pollution (HP) can be mathematically
modeled as:

HP =
√
VTHD2

+ ITHD2 (25)

B. OBJECTIVE FUNCTION FORMULATION
To ensure VTHD and ITHD within the harmonic limits,
the objective function for optimization is formulated as:

HPAPP = abs (VTHDlim − VTHD)

+ abs (ITHDlim − ITHD) (26)

where,
VTHDlim = limitation on VTHD prescribed by IEEE

519-2014 [31] based on system voltage level,
ITHDlim = limitation on ITHD prescribed by IEEE

519-2014 [31] based on system short circuit ratio.
While meeting individual harmonics within IEEE standard

limitation, the function of objective optimization is obtained:

Maximize ‘HPAPP’ subject to PF = PFgoal ± ε (27)

where PFgoal is the desired power factor, and ε denotes an
error value to promote the iterative process. In this work,
‘−HPAPP’ is input as an objective function that is to be
minimized by optimizing K ,Xc and, XL . Then, an OBJtemp
is set to replace the fitness value of a determined K ,Xc, and
XL value.

III. RELATED WORK
A. MFO ALGORITHM
Moth-flame optimization (MFO) algorithm was proposed by
Seyedali Mirjalili in 2015 [22], which models the navigation
behavior of moths. In the MFO algorithm, each candidate
solutions are represented by moths, and these moths can be
initialized as:

M = [m1,m2, . . . ,mn, . . . ,mN ] (28)

mn = [mn1,mn2, . . . ,mnd , . . . ,mnD] (29)

mnd = mld + rd · (mud − mld ) (30)

OM =
[
fun(m1), fun(m2), . . . , fun(mn), . . . , fun(MN )

]
(31)

where M is a matrix that consists of moths; mn denotes
the number nth moths and N is the population size of the
hole swarm; D is the maximum number of dimensions, and
mnd denotes the dth dimension of the nth moth; mud and
mld represents the upper and lower bound of candidate solu-
tions, respectively; rd is randomly generated within [0,1],

and fun(∗) is an operator which can acquire a fitness value
corresponding to its operand moth.

Flames play an essential role in the search process of
MFO. Similar to the initialization of moths, the flames can
be formulated as:

F = [f1, f2, . . . , fn, . . . , fN ] (32)

fn = [fn1, fn2, . . . , fnd , . . . , fnD] (33)

OF =
[
fun(f 1), fun(f2), . . . , fun(f n), . . . , fun(f N )

]
(34)

whereF containsN flames, fn denotes the nth flame, and each
flame is regarded as a candidate solution with D components.
fun(F) represents the fitness value of the flames. Each flame
can find its corresponding fitness value in fun(F).

In every single generation, moths fly to its correspond-
ing flame with a spiral trajectory. The Spiral flight mecha-
nism (SFM) is formulated as follows:

S
(
mi, fj

)
=
∣∣mi − fj∣∣ · ebt · cos2π t + fj (35)

where Mi and Fj indicate the ith moth and its corresponding
jth flame, b is a constant that defines the shape of the spiral
trajectory as a logarithmic spiral, and t is a random number
within [−1, 1].
Then, the flames will be updated by the SFUM:

OFk+1 = sort(Pk )n (36)

Pk =
(
OM k
OFk

)
(37)

where k denotes the current iteration number, and k + 1
means the next iteration, sort(Pk )n is an operator that sort the
elements of the vector Pk from small to large and retains the
first n elements, Pk indicates a vector that splicing the vector
OM and OF in the kth iteration in a column. OF and F are
one-to-one correspondences. In other words.F is determined
once the OF vector is obtained.
The number of flames steps downwith the iteration number

increase, and the flame numbers can be calculated as:

fn = RO
[
maxfn−

k · (maxfn− 1)
maxit

]
(38)

wheremaxit indicates themax iteration number,maxfnmeans
the max or the initialized number of flames, RO(∗) is an
operation to make the operand round to its nearest integer.

B. SCA ALGORITHM
Sine Cosine algorithm(SCA) [29] is also proposed by
Seyedali Mirjalili in 2016. Without loss of generality, the
candidate solutions in SCA are formulated as a matrix:

X =


x1,1 x1,2 · · · x1,d
x2,1 x2,2 · · · x2,d
...

...
. . .

...

xn,1 xn,2 · · · xn,d

 (39)

where such row vector Xn = [xn,1, xn,2, . . . , xn,d ] represents
the n-th candidate solution or individual, and n is lower than
the population size N; d denotes the dimensional number,
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FIGURE 5. The framework of the proposed ASC-MFO algorithm.

and d is lower than the max dimensional number D. Then,
each updates its position vector by following a trajectory
with sine and cosine function. The sine-cosine mechanism is
formulated as:

X k+1n =

{
X kn+r1 ∗ sin (r2) ∗

∣∣r3Pkn−X kn ∣∣, r4 < 0.5
X kn+r1 ∗ cos (r2) ∗

∣∣r3Pkn−X knn∣∣, r4 ≥ 0.5
(40)

where Pkn denotes the personal best solution obtained so far,
r2ε [0, 2π ] determine the search direction towards or escape
from the global best position, r3 is randomly distributed in
[0, 2], r4ε [0, 1] is a switch for sine or cosine function, r1 is
linear decreasing with the iterative number increasing, r1 is
formulated as:

r1 = a− t ∗
a
T

(41)

where a is a constant, t is the current iteration number, and T
is the max iteration number. r1 balances the exploration and
exploitation ability of the SCA in the different stages of the
iterative process.

IV. PROPOSED ASC-MFO ALGORITHM
MFO features good exploitation ability because individuals
in the MFO algorithm follows its flames by a spiral trajec-
tory according to eq (35). MFO updates its flames with a
‘survival of the fittest’ mechanism, which means the flames
with better fitness value will survive from the flame selection.
This mechanism makes the MFO algorithm features a fast
convergence speed but also raises a problem of diversity
loss of moths. To preserve the diversity of moths and take
advantage of the exploitation ability of the MFO algorithm.
We try to introduce some methods with strong exploration
ability into the MFO algorithm. The sine cosine trajectory
in the SCA algorithm is what we expected. According to
eq (40), individuals have a chance to search opposite from
the vector Pkn. Once a part of moths flies with sine cosine
trajectory, moths have a chance to jump out of the optimal
local region, and the diversity of moths is increased. Then,
we need to find a particular algorithm structure to combine
the MFO algorithm and SCA algorithm to avoid conflicts
between these two methods. In HCLPSO [34], the swarm

is divided into two sub-swarms. One of the sub-swarms
focuses on exploitation, and the other aims at exploration.
This swarm partition operator allows two conflicting tasks to
exist in one algorithm and co-work together effectively. In this
work, swarm partition technology is adopted to balance the
strategies in the MFO algorithm and the strategies in the SCA
algorithm.

The new proposed algorithm is named as ASC-MFO, and
the framework of our new proposed ASC-MFO algorithm is
illustrated in Fig.5. To allow SCA and MFO algorithm co-
work simultaneously, the swarm in the ASC-MFO algorithm
is divided into two parallel working subgroups. The group
updated by the SCM in the SCA algorithm is named as the
exploration group. Similar to the SCA algorithm, the explo-
ration group follows the SCM, and the exemplar in every
single generation will generate from the hybrid population:

sk+1i =

{
ski + r1 ∗ sin (r2) ∗

∣∣r3 ∗ gbestk − ski ∣∣, r4 < 0.5
ski + r1 ∗ cos (r2) ∗

∣∣r3 ∗ gbestk − skii∣∣, r4 ≥ 0.5

(42)

where skn represents the i-th individual in exploration group at
the k-th generation; r2 ∈ [0, 2π ], r3 ∈ [0, 1] and r4 ∈ [0, 1]
are all randomly generated variables; r1 is updated by eq (41);
gbestn denotes the global best position generated from the
hybrid population after the population recombination in every
single generation (HEG). From eq (42), we can see that
individuals in the exploration group only explores or exploits
around gbestn; this mechanism helps the exploration group
complete its exploration task within a reasonable explore
region.

The group updated by the MFO algorithm is called
the exploitation group, which means moths in the MFO
group focus on exploitation tasks. Different from the flames
decreasing methods of eq (38) in the MFO algorithm, flames
will not decrease in this subgroup to ensure moths focus on
exploitation tasks. Each individual in the exploitation group
are called as a moth:

Fk+1
n = sort

(
pbestkn

)
N2

(43)
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mk+1n =

∣∣∣mkn − f kn ∣∣∣ · ebt · cos2π t + f kn (44)

where eq (43) denotes the new developed PFG strategy;
eq (44) represents the SFM in the MFO algorithm; n denotes
the n-th flames or moths; Pbestkn denotes the personal best
solution obtained so far; N2 denotes the group size of
exploitation group; since flames in the exploitation group will
not decrease with the generation number increase, the n-th
moth corresponds with its n-th flame.
Swarm adaptive mechanism (SAM) in the proposed

ASC-MFO algorithm varies with time. SAMwill be executed
in every single generation, and change one individual when
this mechanism is implemented. Meanwhile, a set of rules
are devised for rewards and punishments. Each sub-swarm
obtained a score after the personal best pool is updated. The
sub-swarm with a high updated rate earns a high score, and
the sub-swarm with a high score will enlarge its population
numbers. The swarm size of the subswarm with a more sub-
stantial adaptive value will be increased in the next iteration.
Moreover, to prevent population overflows or subpopulations
from becoming too large, a subpopulation size limitation
N_lb is set to ensure the two sub-swarm co-work in a reason-
able swarm size. This subswarm size adaptive mechanism is
illustrated in Algorithm 1:

Algorithm 1 Subswarm Size Adaptive Mechanism
1: A1 = cnt1/N1;
2: A2 = cnt2/N2;
3: if A1 > A2
4: N1 = N1 + N_step;
5: else
6: N1 = N1 − N_step;
7: end if
8: N2 = N − N1;
9: if N1 > N_ub

10: N1 = N_ub;
11: end if
12: if N1 < N_lb
13: N1 = N_lb;
14: end if
15: A1 = 0; A2 = 0; cnt1 = 0; cnt2 = 0;

where N denotes swarm size; N_step determines the change
step of subswarm size in every single generation; A1 and A2
are adaptive values of exploration subswarm and exploita-
tion subswarm, respectively; cnt1 and cnt2 are two counters
that count the updating frequency of pbest value; In other
words, the subswarm with better performance in this partic-
ular generation can obtain a higher adaptive value; thus, this
subswarm will expand its population size. On the contrary,
the swarm size of subswarm with lower adaptive values will
decrease due to its bad performance in a particular generation.
Nevertheless, there is a limit for both expansion and contrac-
tion operator, N_lb and N_ub define lower bound and upper
bound of the size of one subswarm. In this work,N_step is set
to 1 and 100 in case 4 and other cases, respectively; N_lb is

Algorithm 2 ‘‘ASC-MFO Algorithm’’
1: /∗Initialization∗/
2: Randomly initialize N individuals into a matrix with N

row and D line;
3: Evaluate the fitness value of each individual;
4: Initialize pbest, gbest pool and subswarm size N1(N2 =
N − N1);

5: Clear A1 and A2 to zero;
6: while (end condition is not satisfied) do
7: iteration = iteration + 1;
8: /∗Update individuals in exploration group∗/
9: Update r1 according to eq (41);

10: Randomly generate variables r2, r3 and r4 within its
corresponding limit range;

11: for i = 1 to N1 do
12: Update position vector ski according to eq (42);
13: Evaluate the fitness value f (ski );
14: Update pbestki and gbest

k ;
15: if pbestki is updated do
16: cnt1 = cnt1 + 1;
17: end if
18: end for
19: /∗Update moths in exploitation group∗/
20: Renew flames according to eq (43);
21: for n = 1 to N2 do
22: Update moths mkn according to eq (44);
23: Evaluate the fitness value f (mkn);
24: Update pbestknand gbest

k ;
25: if pbestkn is updated do
26: cnt2 = cnt2 + 1;
27: end if
28: end for
29: /∗Perform subswarm size adaptive mechanism∗/
30: A1 = cnt1/N1;
31: A2 = cnt2/N2;
32: if A1 > A2
33: N1 = N1 + N_step;
34: else
35: N1 = N1 − N_step;
36: end if
37: N2 = N − N1;
38: if N1 > N_ub
39: N1 = N_ub;
40: end if
41: if N1 < N_lb
42: N1 = N_lb;
43: end if
44: A1 = 0; A2 = 0;
45: end while

set to 10%N; N_ub is set to 90%N; Initial swarm size of both
subswarm is set to 50%N;
Finally, the ASC-MFO algorithm is fully established. The

pseudo-code of the proposed ASC-MFO algorithm is dis-
played in Algorithm 2, and the flow chart is shown in Fig.6.
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FIGURE 6. Flow chart of the proposed ASC-MFO algorithm.

V. ANALYSIS OF THE EXPERIMENTAL RESULTS
The proposed ASC-MFO algorithm is used to identify three
parameters from two popular HAPF topologies, i.e., APF in
series with passive shunt filter (series topology) and Com-
bined series APF and shunt passive filter (parallel topol-
ogy). Our research is based on four case studies. The first
three cases are derived from reference [32], where these
cases are obtained from an industrial plant, and they are
simulated by using the FFSQP optimization method. The
numerical data were taken from an example in the IEEE

publication [30], where the inductive three-phase loads are
5100KW and 4965 KVAR with a displacement load power
factor of 71.65%, and the short-circuit capacity is 80MVA.
The fourth case is derived from the reference [22]. All four
cases are listed in Table 1. The source and load harmonics
are assumed to be time-invariant quantities load, and source
resistances are independent of frequency, i.e., Rsh = Rs and
RLh = RL . Similar to the reference [22], The PFgoal is set
to 95%. Meanwhile, both VTHDlim and ITHDlim are set to
5% based on experimental data. The OBJ temp is set to 1 in
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TABLE 1. Four case studies of an industrial plant [22], [32].

this work, and a highOBJ temp value indicates a low tolerance
of bad results that obtained by a single run time of these
algorithms.

To prove the effectiveness of the proposed ASC-MFO
algorithm, the same experiments are conducted to some
well-established algorithms, i.e., SHADE using a lin-
ear population size reduction method (L-SHADE) [33],
Moth-Flame Optimization Algorithm (MFO) [23], Sine
Cosine Algorithm (SCA) [29], Double Evolutionary Learn-
ing Moth-Flame Optimization (DELMFO) [14], Heteroge-
neous comprehensive learning particle swarm optimization
with enhanced exploration and exploitation (HCLPSO) [34]
and Differential Evolution (DE) algorithm [35]. Note that
DELMFO is the most recently proposed competitive MFO
variants, L-SHADE is a competitive algorithm which obtains
an outstanding performance on designing HAPF. To ensure
the fairness of this experiment, the FES of these algorithms
are all set to 50000 with 30 times run. The parameter set
in this study is shown in Table 2. We try to minimize the
objective function value to obtain the best parameters, i.e.,
power gain K , XL , and XC ; these variables are limited within
the following range in terms of Ohmic values [22]:
• 0 ≤ K ≤ 20
• 0 ≤ XC ≤ 10
• 0 ≤ XL ≤ 1

TABLE 2. Parameter settings for well-established algorithms.

A. EXPERIMENTAL RESULT OF SERIES TOPOLOGY
Table 3 gives the experimental results of all listed algo-
rithms in 30 independent runs. Note that Harmonic pollu-
tion (HP) is directly linked to the objective function of this
optimization problem. The objective function values (min)

represent the accuracy. While the mean objective function
values (mean) reflects the average accuracy, and SD is the
standard deviation of objective function values and reflects
the reliability of the estimated parameters. Total time repre-
sents the total time of 30 independent runs in a specific case.
Note that this experiment is conducted on a computer with
AMD Ryzen 5 2600X Six-core @3.6GHz and 16G RAM.

From Table 3, we can observe that in terms of accuracy,
all algorithms get the same minimum value in all four cases
except SCA (did not reach the minimum value in all four
cases) and HCLPSO (did not reach the minimum value in
case 3 and case 4). In terms of average accuracy, the proposed
ASC-MFO algorithm ranked first in all cases. HCLPSO algo-
rithm ranked second in case 1 and case 2. SCA algorithm
ranked 2 in case3, and DELMFO ranked 2 in case 4. In terms
of reliability, the proposed ASC-MFO algorithm ranked first
in case 1 and case 2, while LSHADE and DE rank first in
case 3 and case 4, respectively. In total CPU times, L-SHADE
ranked first in all four cases, and the proposed ASC-MFO
algorithm obtained an acceptable rank between the MFO
algorithm and the SCA algorithm.

Fig.7 gives boxplots to show the distribution of objec-
tive function value results obtained by different algorithms.
Note that the symbols ‘‘+’’ in Fig.7 indicate the outlier;
The red line in the middle of the blue rectangle represents
a median number; The top and bottom of the blue rectangle
indicates the lower quartile number and upper quartile num-
ber, respectively; Solid lines on both sides of the rectangle
means the lower limit and upper limit. Apparently, the lower
limit number, upper limit number, lower quartile number,
upper quartile number, and median number of the proposed
ASC-MFO algorithm are overlapped in the lowest position,
which demonstrates the accuracy and average accuracy of
ASC-MFO algorithm. Also, there are no outliers of the pro-
posed ASC-MFO algorithm in case 1, case 2, and cas4.
In case 3, there are only a few outliers, which indicates the
reliability of the proposed ASC-MFO algorithm.

Fig.8 gives the convergence curves of different algorithms
by using the average objective function values of the 30 inde-
pendent runs. It can be derived from Fig.8 that the proposed
ASC-MFO achieves a considerable convergence speed and
an accurate convergency value.

These above comprehensive comparisons between well-
established algorithms and the proposed ASC-MFO algo-
rithms indicate that the proposed ASC-MFO algorithm
features effective performance in abstract parameters of series
topology, especially in terms of accuracy, average accuracy,
and reliability.

Table 4 gives the optimized results and the calculated value
of the series topology by using the proposed ASC-MFO
algorithm. Note that these calculated results are calculated by
equations in section 2. Through further observation, we can
observe that with the increase of the harmonic level in the
applied voltage, the harmonic pollution is on a rising trend.
Actually, the increase of harmonic pollution is closely related
to the increase of ITHD and VTHD. Moreover, a higher level
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TABLE 3. Comparisons on the statistical results of different algorithms in four cases of series topology.

FIGURE 7. Boxplot in 30 runs of different algorithms for four cases of series topology.

FIGURE 8. Convergence graphs of different algorithms for four cases of series topology.

of harmonic in the applied voltage contributes to a lower gain
value K and XL is almost decreased to zero, which indicates
that an active power filter with a low-rated voltage source in
series with a passive filter and does not require additional
switching filters to eliminate current fluctuations. Besides,
all harmonics are found to be within limits as per standard
IEEE 519 [30]. The bar chart of ISh and VLh is shown in Fig.9.

B. EXPERIMENTAL RESULT OF PARALLEL TOPOLOGY
Table 5 gives the experimental results of all listed algo-
rithms in 30 independent runs of parallel topology. We can
see from the table that the proposed ASC-MFO obtained
the best min, mean, and SD value, which indicates that
the proposed ASCA-algorithm is the most accurate, aver-
age accurate, and reliable algorithm. The CPU time cost
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TABLE 4. Results for case studies with series topology.

FIGURE 9. Individual harmonic of compensated system for various cased with series topology.

FIGURE 10. Boxplot in 30 runs of different algorithms for four cases of parallel topology.

FIGURE 11. Convergence graphs of different algorithms for four cases of parallel topology.

of the proposed ASC-MFO algorithm features unstable;
maybe it caused by the proposed subswarm size adaptive
mechanism.

Fig.10 and Fig.11 give the boxplot and convergence graphs
of different algorithms for four cases of parallel topology,
respectively. The same to the results of series topology,
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TABLE 5. Comparisons on the statistical results of different algorithms in four cases of parallel topology.

TABLE 6. Results for case studies with parallel topology.

the lower limit number, upper limit number, lower quartile
number, upper quartile number, and the median number of
the proposed ASC-MFO algorithm are overlapped in the low-
est position, which demonstrates the accuracy and average
accuracy of ASC-MFO algorithm. In Fig.11, we can see the
proposed ASC-MFO achieves a fast convergence speed and
the best convergency value compared to its competitors.

Table 6 gives the optimized results and the calculated value
of the series topology by using the proposed ASC-MFO algo-
rithm, and the bar chart of ISh and VLh are shown in Fig.12.
Compared with the optimization results of the series topol-
ogy, the results are nearly the same. This is attributed to such

the fact that the supply current ISh in eq (6) and eq (8) and the
compensation voltage VLh in eq (7) and eq (9) are dominant
parameters in both two topologies, and other parameters have
little effect on them. However, this conclusion is only derived
from the medium system and not suitable for all systems.
Thus, a specific case study is necessary to determine the
parameters character in other systems.

C. EFFECTIVENESS OF INTRODUCED MECHANISMS
In this subsection, some experiments are conducted to
verify the effectiveness of our proposed mechanism. N1
and N2 represent the exploration group and exploitation
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FIGURE 12. Individual harmonic of the compensated system for various cased with parral topology.

TABLE 7. Effectiveness test of variable static subswarm size and the proposed adaptive mechanism.

group size, respectively. The number of subpopulations is 5 in
step, changing from 0 to 50. Note the condition N1 = 0,

N2 = 50, and N1 = 50, N2 = 0 represents the SCA algo-
rithm and MFO algorithm, respectively. Hybrid conditions
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only change the subswarm size without using our proposed
adaptive mechanism. Condition ASC-MFO is our complete
proposed algorithm. It can be derived from Table 7 that all
hybrid conditions with static swarm size ranked better than
both the SCA algorithm (ranked 12) and the MFO algorithm
(ranked 11), which demonstrates that the SCA algorithm
introduced into MFO algorithm improves the performance
in this optimization task. Besides, subswarm size N1 = 20,
N2= 30 (ranked 2) ranked first among the hybrid conditions.
Moreover, the proposed ASC-MFO algorithm with SAM
ranked first in this test and obtained four first rank and a
second-first rank in 8 specific case studies, which proves
proposed SAM can significantly improve the performance of
ASC-MFOwithout SAM strategy, and the SAM strategy is an
irreplaceable strategy in the proposed ASC-MFO algorthm.

VI. CONCLUSION AND FUTURE WORK
The objective function of HAPF is considered multimodal
with local optima. Thus, it is tricky for a large number
of state-of-art algorithms to obtain accurate parameters of
the HAPF. This paper proposed a new MFO variant named
adaptive sine-cosine moth-flame algorithm (ASC-MFO) to
design the two topologies of HAPF, i.e., series topology and
parallel topology. Experimental results indicate that when
compared with other state-of-art meta-heuristic algorithms,
the proposed ASC-MFO algorithm can obtain better perfor-
mance in the problem of designing HAPF, especially in terms
of accuracy, average accuracy, and reliability. This can be
attributed to the following facts: the swarm division into two
subswarms i.e., exploitation group and the exploration group
successfully preserve the diversity of the population, which
balance the exploitation ability and the exploration ability of
the ASC-MFO algorithm; the PFG strategy and The HEG
strategy successfully enhance the exploitation and the explo-
ration ability of the exploitation group and exploration group,
respectively. The implement of these two strategies can fur-
ther balance the exploitation ability and the exploration abil-
ity of the proposed ASC-MFO algorithm; our proposed SAM
can precisely adjust the swarm size in every single generation,
which ensures that the exploitation ability and the exploration
ability of the ASC-MFO in each generation are well balanced.

However, since the parameters of the ASC-MFO algo-
rithm are set according to experience, the ASC-MFO algo-
rithm proposed is still worthy of further improvement in
terms of parameter adjustment. In the future, some adaptive
parameter mechanisms will be developed to address this
problem. Moreover, the proposed ASC-MFO will be used
to analyze other cases of HAPF in the power system or
settle some other multi-objective and constrained problems.
Furthermore, some other meta-heuristic algorithms will be
proposed to solve optimization problems in the power system.
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