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ABSTRACT Plantar fasciitis (PFis) is a common cause of heel pain. This study aims to assess the plantar
fascia (PF) quantitatively by using feature descriptors and seek valuable imaging biomarkers that can reliably
diagnose PFis. A total of 63 participants underwent B-mode and longitudinal shear wave elastography (SWE)
on unilateral plantar fasciae. To characterize the statistical and spatial texture features of the PF, ten statistical
descriptors of the shear modulus in the standardized region of interest in PF and twenty texture descriptors
in the SWE measurement window (in both horizontal and vertical directions) are proposed. Four statistical
quantities (mode, avg, med, qG) and four texture descriptors (autoc, sosvh, savgh svarh) showed potential
for diagnosing PFis, based on significant differences between the PFis and the healthy groups. Receiver
operating characteristic (ROC) curve analysis revealed that the statistical descriptors have area under the
curve (AUC) of approximately 0.9 (likelihood ratio > 6.798) and the texture descriptors have AUC of
approximately 0.85 (likelihood ratio> 3.195). Combinations of statistical and texture descriptors can achieve
higher AUCs∼0.968. In addition, these descriptors were related to the clinical indices (body mass index and
visual analogue scale) with Spearman’s correlation coefficient of r = −0.5∼ −0.4(p < 0.05). The proposed
statistical and texture descriptors showed valuable potential if applied to clinical shear wave elastography
for the diagnosis of PFis. This work lays the foundation of using ultrasound shear wave image features for
describing symptomatic PFis.

INDEX TERMS Plantar fascia, shear modulus, statistical and texture descriptors, ultrasonography.

I. INTRODUCTION
The plantar fascia (PF) is mostly composed of type I col-
lagen fibers forming bundles arranged in a proximal-distal
direction, and the large fibrous bundles are embedded within
a matrix of loose connective tissue containing type III col-
lagen [1]. Healthy PF can bear greater loads by modify-
ing its thickness and stiffness. Plantar fasciitis (PFis) is
a musculoskeletal disorder primarily affecting the fascial
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enthesis, resulting from fiber microtears, collagen degenera-
tion, chronic inflammation, and calcification caused by repet-
itive overstrain [2]. These microscopic changes within the PF
may lead to reduction of elasticity. PFis can cause consider-
able heel pain and disability, seriously affecting activities of
daily living [3].

PFis is primarily a clinical diagnosis, as determined by the
orthopedist through an examination with tapping and touch-
ing combined with the visual analogue scale (VAS) score [4].
Plain radiography, magnetic resonance imaging (MRI) and
ultrasound are common imaging modalities for evaluating
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PFis [5].MRI is sensitive for identifying PF disorders, but it is
expensive and time-consuming. Ultrasound (US) imaging is
an effective non-invasive method offering a better real-time
assessment of PF echogenicity, thickness, ruptures, as well
as intrafascial calcification, perifascial fluid collection, and
fascial biconvexity [3].

Most US findings of plantar fasciitis include thickening
of the plantar fascia, a diffuse hypoechoic area within the
fascia band, and perifascial fluid [6]. Meta-analyses have
revealed that the plantar fascia of those with chronic plantar
heel pain (CPHP) were more likely to have a PF thickness
of greater than 4.0 mm [7]. The combination of thickened
PF and fat pad abnormalities on lateral plain radiography
had a sensitivity of 85% and specificity of 95% for PFis [8].
Systematic reviews found that plantar fascia thickening
and hypoechoic fascia are sonographic manifestations of
PFis [3], [5], [9]–[11]. The hypoechogenic area in the plantar
fascia usually represents a loss of normal fibrillar pattern
where focal inflammation and diffuse tissue changes are
present [3], [6].

However, not all patients with PFis exhibit these changes
in tissue morphology and hypoechogenicity [6], [12], partic-
ularly for those with early-stage and preclinical disease [13].
Several reports have identified patients who had typical clin-
ical manifestations of PFis but with normal plantar fascia
morphology on B-mode sonography [10], [14]–[16]. Healthy
PF can also display hypoechoic areas without thickening of
the PF [10].

The development of PFis is thought to have a mechanical
origin [2]. Early PFis is associated with the softening of the
plantar fascia due to loss of fibrillar pattern. Sonoelastogra-
phy or strain imaging, is a promising method to character-
ize the early changes in PFis, where a significant amount
of force is required to externally compress the heel pad to
induce a deformation for measuring the PF stiffness. Several
studies reported sonoelastography results of PFis showing a
softening of the PF on the affected side, whereas conventional
ultrasound reported normal PF echogenicity and thickness.
Others reported that the plantar fascia was softer in patients
with PFis compared to healthy controls [14]–[18].

However, sonoelastography is a user-dependent method.
Due to the highly nonlinear deformation behavior of the
heel pad, the measured stiffness is dependent on the mag-
nitude of the applied force and loading rate. Consequently,
studies using different instruments and loading conditions
yield inconsistent results, which results in uncertainty of the
diagnosis.

Ultrasound shear wave elastography (SWE) is a novel non-
invasive technology to characterize the mechanical property
of tissues.When compared to compression sonoelastography,
SWE is more objective, quantitative, and reproducible [13].
In SWE, the acoustic radiation force is generated by the ultra-
sound probe to perturb the tissue in the focal area, inducing
shear waves that propagate transversely within the tissue. The
shear wave propagation speed v is captured by the ultrasound
transducer at an ultrafast frame rate and the velocity can be

tracked by a correlation algorithm. The tissue shear modulus
can be estimated by G = ρv2 where ρ is the density of the
tissue [19]. The elastic image of the tissue can be formed by
queue emission and successive tracking of the shear waves
at different locations. As SWE exhibits excellent retest reli-
ability, it can quantitatively characterize soft tissue stiffness.
Recently, SWE has been used to map the elastic distribution
of the heel pad and PF near the calcaneus [11], [19]–[24].

Current elastography methods (either strain or SWE imag-
ing) use color channel image information to assess the
PF, where stiffness has been quantized into several color
grades [14], [15], [17], [18]. However, these methods depend
on the musculoskeletal radiologist’s visual diagnosis and are
not sufficient to characterize PFis. Quantized color histogram
analyses of sonoelastography showed that 72.7% of fasciae
were of intermediate elasticity and no significant association
with fasciitis [17]. Another study reported that the PF softens
with age in subjects with PFis [18].

Due to the complex stiffness distribution, characteriz-
ing PF is also highly site-dependent [20], [21], [24], [25].
The proximal sites of PF around the calcaneal attachment
were reported to be significantly thicker and stiffer than
the middle and distal sites [21]. The analysis of PF was
conducted at continuous locations which were trivial [20].
PF elasticity was also evaluated at different locations of
the calcaneus and averaged in a relatively small standard-
ized region [24]. Quantitative indices such as the maximum,
minimum, and median or spatially averaged elastic modulus
value over the whole PF have been proposed, but they are
not sufficient to describe the features of the PF [17], [24].
Therefore, valuable feature descriptors to quantitatively char-
acterize the complex site-dependent elastic distribution and
to extract echovariation texture features by SWE imaging are
needed.

Statistical and texture features are useful descriptors for
characterizing complex biological tissue [26]–[29]. Widely
used statistical quantities include maximum, minimum,
median or mean values of the data set, but the statistical
distribution features are rarely reported. In our previous work,
statistical descriptors of the peak and distribution moments
(coefficient of variation, skewness and kurtosis) of VonMises
strain images were proposed and used to identify vulnera-
ble carotid plaques [26]. Others used statistical descriptors,
such as quantiles and distribution moments for the identi-
fication of cervical cancer in MRI images [27]. Textures
are important features that depict image echovariance. Using
texture features for analyzing PF has not been previously
reported. Texture features has been used for identifying other
diseased tissues. For example, texture extracted from strain
rate images were proposed for vulnerable plaque identifi-
cation [28]. Recent studies using machine learning (ML)
approach is another promising branch in the diagnosis of
early disease [30], [31]. Textures can also be combined
with machine learning method to select valuable features.
Identification of liver tumors from ultrasonography was pro-
posed based on texture features and fuzzy support vector
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machine (SVM) method [29]. However, extensive training is
needed for ML approach that is time-consuming.

The aim of this study is to seek clinically applicable
biomarkers for the diagnosis of PFis. The contribution of this
work is as follows. SWE images of PF, which can depict
early PF disease with good reproducibility, were analyzed.
Considering the heterogeneous distribution of PF, ten sta-
tistical descriptors including the distribution moments were
proposed. As normal PF and PFis showed different echovari-
ance in the periphery of the calcaneus in SWE image, seek-
ing valuable texture descriptors to depict the echovariation
feature of PF were investigated. Furthermore, to increase the
clinical applicability, the descriptors were measured in spe-
cific region of interest for retest reliability, where statistical
quantities of shear modulus were measured in a standardized
region of interest (SROI) in PF and the texture descriptors
were extracted in the SWE measurement window. Addition-
ally, proper descriptors are identified, and the feasibility of
these descriptors for diagnosing PFis was confirmed by sta-
tistical analysis and cross validation.

II. METHODS
A. STUDY PROTOCOL
The study was approved by the ethics committee of
the Institutional Review Board/The Ethics Commit-
tee of Xi’an Hospital of Traditional Chinese Medicine
(No. XAZYYLS2017-26). A written informed consent was
given by all participants. Patients met the following criteria:
1) pain duration longer than 3 months; 2) have not received
steroid injections, have not undergone shock wave therapy
or heel surgery; 3) no calcaneal spur confirmed by X-ray;
4) unilateral foot pain. To minimize the impact of selec-
tion bias, healthy adults with similar body conditions were
recruited as volunteers to participate in the study. Patients
were diagnosed with PFis by orthopedic surgeons accord-
ing to the clinical practice guidelines of heel pain-plantar
fasciitis (Revision 2014) [4]. Ultrasonographywas performed
by clinicians specializing in musculoskeletal sonographic
imaging following a standardized physical examination. The
real-time examination included B-mode scanning and shear
wave elastography (SWE) using a commercial ultrasound
system (Mindray Resona 7) equipped with a linear array
transducer L14-5WU (9∼14MHz). Patients were positioned
prone with their feet hanging over the edge of the exami-
nation table during acquisition. A longitudinal view of the
plantar fascia was acquired from the anterior edge of the
inferior calcaneal border vertically to the inferior border of
the plantar fascia. The maximal thickening of the plantar
fascia was measured from the B-mode ultrasound. Mean-
while, real-time visualization of a color quantitative elasticity
map (representing the shear modulus of the soft tissue)
superimposed on a B-mode image was acquired using SWE
imaging.

In total 63 participants were included in the study
(25 healthy participants and 38 symptomatic unilateral PFis.).

General clinical characteristics of the study populations are
summarized in Table 1. There were no significant differences
in age, height and gender between the healthy volunteers and
the PFis groups. The body mass index (BMI) of the PFis
group (25.21±2.41 kg/m2) was significantly higher than that
of the Healthy group (22.88±3.33 kg/m2). The PF thickness
of the PFis group (3.51±1.00 mm) was also significantly
higher than that of the Healthy group (2.46±0.58 mm).

B. SHEAR WAVE ELASTOGRAPHY (SWE) ANALYSIS
Shear wave elastography was conducted on the calcaneal
attachments which are the most frequently affected PFis site.
The SROI in the PF was outlined individually around the
calcaneus attachment, using a consistent protocol for all par-
ticipants. This standardized elliptic region was selected near
the calcaneus where the left end of the ellipse started at the
disappearance of the foot margin. The long axis was set along
the PF centerline, and the short axis was close to the PF
thickness but smaller than it to avoid the effect of the fat pad.
Ten statistical quantities were calculated to characterize the
distribution of the shear modulus within the SROI. As pre-
viously reported, PF thickening, abnormalities in the fat pad
deep below the PF and bone cortical changes in the calcaneus
were radiographic findings of PFis [2], [8], [21]. Therefore,
the SWE measurement window was selected below the heel
skin and included the fat pad, the plantar fascia and the cal-
caneus. The size of the SWE-measurement rectangle window
was approximately 5.6 cm2. Based on the selected rectangle
region, GLCM was calculated, from which twenty texture
features were extracted to characterize the echovariation of
the shear modulus image.

1) STATISTICAL DISTRIBUTION FEATURES
Statistical distribution features of the shear modulus within
the SROI were quantified by ten statistical descriptors.
G denotes shear modulus, and p(G) is the normalized his-
togram of the shear modulus G. Ga% denotes the a% quantile
of G. µ is the mean value of G and S the sample standard
deviation. E[x] indicates the mathematical expectation of x.
The distribution of G can be characterized by the quantities
including the mode (mode), mean value (avg), median value
(med), peak value (Mx), 25% quartile (qG), range (R), quartile
deviation (Rq), coefficient of variation (Vs), skewness (SK)
and kurtosis (K ) [32]. A detailed definition of the descriptors
is provided in Table 2.

2) TEXTURE DESCRIPTORS
Texture is an important feature descriptor. The co-occurrence
probabilities provide a second-order method for generating
texture features [33]. They represent the conditional joint
probabilities of all pair wise combinations of gray levels in the
spatial window of interest given two parameters: interpixel
distance (d) and orientation (θ).
Let (x1, y1) , (x2, y2) denote the coordinates of the pixel

pair in the gray-level image I , with gray levels of I (x1, y1) =
i, I (x2, y2) = j respectively. P (i, j) denotes the GLCM of the
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TABLE 1. General clinical characteristics of the study population.

TABLE 2. Ten statistical descriptors for characteristic of the distribution
feature.

relative frequencies with which two neighboring resolution
cells separated by distance d occur on the image, one with
gray level i and the other with gray level j. The normalized
GLCM of the gray-level image is defined by (1), as shown at
the bottom of the next page, where #P is the total number of
possible pixel pairs.

Barber and LeDrew demonstrated that d = 1 produced
a significantly superior classification when compared with
others [34]. In this study, the distance was chosen as d = 1.
The GLCMs in horizontal (θ = 0) and vertical (θ = 90◦)
directions were calculated. The quantized number of gray
levels Gn was set to be 256.

Twenty texture descriptors were derived from the GLCM
and used for texture descriptors in shear wave images.
In this study, four texture descriptors including autocorrela-
tion (autoc), sum of squares (sosvh), sum average (savgh),
and sum variance (svarh) were chosen as feature descriptors
based on GLCM as shown in Table 3. Other texture descrip-
tors are provided in Appendix.

C. STATISTICAL ANALYSIS
Statistical analysis was conducted by SPSS Version 18.0
(IBM, Armonk, NY, USA) and MATLAB (The MathWorks,

Natick, MA, USA). All descriptive data was expressed as
either the mean with standard deviation or frequency (%).
Tests of normality and homogeneity of variances between
the two distributions were assessed by Shapiro–Wilks and
Levene’s tests, respectively. Comparisons of parameters
between the two groups were performed by one-way ANOVA
or Mann-Whitney test where appropriate. Two-tailed post
hoc tests were performed. Values of p < 0.05 were
considered statistically significant. A receiver operating
characteristic (ROC) curve analysis on the descriptors for
diagnosing PFis was conducted. The area under curve (AUC),
the optimal threshold for test quantities and the likelihood
ratio, as defined by sensitivity/(1-specificity), were calcu-
lated. The correlation between two continuous variables was
described by Pearson coefficient for normally distributed
data. The correlation between two non-normally distributed
continuous variables or qualitative data was measured using
Spearman’s correlation coefficient where appropriate. The
Co factors ROC analysis was conducted by support vector
machine (SVM) method [35].

III. RESULTS
A. SHEAR WAVE IMAGING OF PLANTAR FASCIA
Fig.1 displays four representative shear modulus overlap-
ping B-mode images, together with the histogram of the
shear modulus in the SROI and the horizontal GLCM in
the rectangular measurement window. Table 4 shows the
values of the descriptors for four representative subjects. The
four statistical descriptors of the shear modulus (mode, avg,
med, qG) were much higher in healthy PF than those in
PFis, due to healthy PF being capable of bearing greater
loads for its higher elasticity. From the SWE images, healthy
PF showed a layered fibrillar pattern that contributes to
its elasticity. The histogram of the healthy PF revealed a
broad elastic distribution with the mode of around 40kPa,
which corresponds to the layered fibrillar structures. In con-
trast, PFis was considered with microscopic tears within
the fascia, leading to reduction of its elasticity. The SWE
image showed that PFis had relative homogeneous focal soft
areas with loss of fibrillar patterns leading to inflammatory
exudates that decreased elasticity [6]. Therefore, the elastic
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TABLE 3. Four texture descriptors for characteristic of the image feature.

TABLE 4. Statistical and texture descriptors for the four representative subjects.

distribution for PFis was narrow and the mode was approx-
imately 10kPa. GLCM is a joint probability density for
interpixel with specific structure and spatial relation, from
which the texture descriptors are defined. The third column
in Fig.1 provides the horizontal GLCM, representing the
co-occurrence frequency of the interpixel with d = 1 in
the horizontal direction. The GLCMs for healthy PF were
broader with longer tails, whereas the GLCMs for PFis were
more compact, indicating that a healthy PF was more het-
erogeneous due to its layer fibrillar pattern. The four texture
descriptors (autoc, sosvh, savgh, svarh) in healthy PF were
much higher than those in PFis, as healthy PF had higher
elasticity and heterogeneity.

B. COMPARISION OF DESCRIPTORS IN THE HEALTHY
AND PLANTAR FASCIITIS GROUPS
1) STATISTICAL DESCRIPTORS IN THE HEALTHY AND
PLANTAR FASCIITIS GROUPS
The comparisons of the statistical descriptors are provided
in Fig. 2. The statistical quantities of the shear modulus
(mode, avg, med, qG, Mx, R, Rq) in healthy PF were sig-
nificantly higher than those in PFis group. The skewness
in the PFis group was significantly higher than that of the
Healthy group. There were no significant differences in terms
of Vs (p = 0.978) and K (p = 0.053) between the Healthy

and PFis groups. The detailed statistical results of statistical
descriptors are provided in Table S1.

2) TEXTURE DESCRIPTORS IN THE HEALTHY AND PLANTAR
FASCIITIS GROUPS
The comparison of the texture descriptors are provided
in Fig. 3. All four descriptors (autoc, sosvh, savgh, and svarh)
were significantly higher in the Healthy group than those
with PFis, in both the horizontal and the vertical directions.
Also, the texture descriptors from the horizontal GLCMwere
in strong agreement with their vertical counterparts. The
detailed results are provided in Table S2-1 and Table S2-2 for
horizontal and vertical texture descriptors respectively.

C. CORRELATION ANALYSIS
1) CORRELATION WITH CLINICICAL INDICES
PF thickness has been reported to be an early sign of PFis [3],
[5], [9]–[11]. Systematic reviews and meta-analyses of var-
ious clinical and imaging risk factors have reported higher
BMI in those with PFis being the only significant clinical
association [36]. Similar reports have found that increased
BMI was linked to decreased stiffness and increased thick-
ness of the PF [22]. The pain of PFis can be assessed by
VAS [15]. Therefore, the correlation between the proposed

p (i, j) = # {(x1, y1) , (x2, y2) | |x1 − x2| = dcosθ, |y1 − y2| = dsinθ, I (x1, y1) = i, I (x2, y2) = j} /#P (1)
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FIGURE 1. Representative shear wave elastography analysis for healthy plantar fascia and PFis. The first column shows the shear modulus overlapping
B-mode image. The white rectangle indicates the SWE measurement window. The second column shows the histogram of the shear modulus in the SROI
(as indicated by the white ellipse). The histogram was quantized into 64 gray levels for visualization purpose. The third column shows the GLCM in the
horizontal direction.
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FIGURE 2. Comparison of the statistical descriptors (mode, avg, med, qG, Mx, R, Rq, SK) between the Healthy and the PFis groups. Blue dots are the
statistical descriptors for the healthy PF and red dots indicate the PFis subjects.

descriptors (statistical and texture descriptors) and these
potential clinical indices was analyzed.

As shown in Table 5, four statistical descriptors negatively
correlated with the BMI (r = −0.510∼-0.480, p < 0.001).
There were also negative correlations between the BMI and
the texture descriptors (r ∼ −0.38, p = 0.002).

There was a negative correlation between the thickness
and mode(r = −0.416, p = 0.001). The Spearman corre-
lation between the thickness and other descriptors was r =
−0.289∼ −0.249 (p < 0.049).

There was a negative correlation between VAS and sta-
tistical descriptors (r = −0.563∼ −0.557, p < 0.001).
A negative correlation was also observed between the VAS
and the texture descriptors (r = −0.432∼ −0.423, p ≤
0.001) in both horizontal and vertical directions.

A negative correlation was also present between weight
and the statistical descriptors (r = −0.350∼ −0.344, p <
0.006), whereas there was no correlation between age or
height and the proposed descriptors (p > 0.05).

2) INDEPENDENCY ANALYSIS ON PARAMETERS
The independency of all other parameters was tested, and the
detailed results are provided in Table S3. The results showed
that the four statistical descriptors were highly correlated
(r ≥0.960, p < 0.001), and the four texture descriptors also
correlated strongly (r ≥ 0.982, p < 0.001). The correlation
between the statistical and the texture descriptors ranged

from r = 0.603 to 0.631 (p < 0.001). For clinical indices,
BMI correlated with the thickness (r = 0.513, p < 0.001).
Weight correlated with the BMI (r = 0.828, p < 0.001),
with thickness (r = 0.372, p = 0.003), and with height
(r = 0.667, p < 0.001).

D. ROC ANALYSIS
1) SINGLE FACTOR ROC ANALYSIS
ROC analysis of the proposed descriptors was conducted and
compared with those of clinical indices. The detailed AUC
values, thresholds and likelihoods are provided in Table S4.

ROC curves of statistical quantities for which the AUC
was above 0.85 are shown in Fig. 4a. The 25% quartile (qG)
showed the highest potential for diagnosing PFis, which has
AUC = 0.917±0.036 (p < 0.001) with a high likelihood
ratio of 10.197. Other quantities, such as mode (AUC =
0.899±0.038, p < 0.001), avg (AUC = 0.907±0.038, p <
0.001) and med (AUC = 0.907±0.038, p < 0.001) were also
capable of indicating PFis (likelihood ratios ≥ 6.798).

As shown in Fig.4b, the texture descriptors from
the horizontal GLCM such as autoc (AUC = 0.845±0.054,
p < 0.001), sosvh (AUC = 0.847±0.053, p < 0.001), savgh
(AUC = 0.848±0.050, p < 0.001) and svarh (AUC =
0.845±0.054, p < 0.001) were capable of indicating PFis
(likelihood ratios ≥ 3.195). In Fig. 4c, texture descriptors
from the vertical GLCM such as autoc (AUC= 0.846±0.054,
p < 0.001), sosvh (AUC = 0.847±0.053, p < 0.001), savgh
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FIGURE 3. Comparison of texture descriptors (autoc, sosvh, savgh, svarh) between the Healthy and the PFis groups. Blue dots are texture descriptors for
the healthy PF and red dots indicate the PFis subjects.

TABLE 5. Correlation of the proposed descriptors and clinical indices.

(AUC = 0.844±0.051, p < 0.001) and svarh (AUC =
0.846±0.054, p< 0.001) were also capable of indicating PFis
(likelihood ratios ≥ 3.195). The texture descriptors from the
horizontal GLCMagreedwith those from the vertical GLCM.

As shown in Fig. 4d, using clinical indices as test statistics,
AUC = 0.728±0.069 (p = 0.002) for BMI with likelihood
ratio of 2.820 and AUC= 0.778±0.059 (p< 0.001) for thick-
ness with likelihood ratio of 2.632. When using other indices
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FIGURE 4. ROC curves of statistical descriptors (a), texture descriptors from the horizontal GLCM (b) and from the vertical GLCM (c), and clinical
indices (d).

such as gender, age, height, andweight as test statistics, AUCs
were not statistically significant (p > 0.05).

The ROC analysis revealed that the four statistical descrip-
tors (mode, avg, med, qG) had high AUCs (∼0.9) with sen-
sitivity (≥0.816), specificity (≥0.88) and high likelihood
ratio (≥6.798). Using the four descriptors as test quantities
to diagnose PFis, the AUCs were clustered at 0.85±0.05
(p < 0.001) with sensitivity ≥ 0.895, specificity = 0.72,
and likelihood ratios ≥3.195. Using clinical indices as
test quantities, AUC ≤ 0.778, with sensitivity ≤0.789,
specificity = 0.72 and likelihood ratio ≤ 2.820.

The results confirm that the proposed statistical and tex-
ture descriptors are potential biomarkers for the diagnosis of

PFis, which have better diagnostic performance compared to
clinical indices (BMI and thickness).

2) CO FACTORS ROC ANALYSIS
The co factors ROC analysis was conducted by SVM using
a 5-fold cross-validation scheme. As provided in Table S5,
the co factors only including the statistical descriptors domi-
nated with higher AUCs of 0.93∼0.951, and only the texture
descriptors dominated with AUCs of 0.861∼0.868, whereas
the features only with the clinical indices presented with
AUCs of 0.72∼0.83.

The combination of statistical and texture descriptors
achieved higher AUCs of 0.868∼0.968. By combining the
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statistical descriptors and the clinical indices, the AUCs were
0.787∼0.967, and by combining the texture descriptors and
the clinical indices, the AUCs were 0.852∼0.926. When
combining the three kinds of features (statistical descriptors,
texture descriptors, and clinical indices), the AUCs were
0.862∼0.964.

The co factors ROC analysis revealed that by combining
statistical descriptors or texture descriptor into the feature
vectors, AUCs were further improved. The proposed statisti-
cal descriptors and texture descriptors are important features
and could achieve a high diagnostic accuracy.

IV. DISCUSSION
Multiple statistical descriptors (mode, avg, med, qG) in the
SROI and texture descriptors (autoc, sosvh, savgh, svarh)
from the SWE measurement window were identified that
were notable SWE predictors for PFis. There were significant
differences in these descriptors between Healthy and PFis
groups. These descriptors had high AUCs (∼0.9 for statistical
descriptors and∼0.85 for texture descriptors), and correlated
with clinical parameters.

A. DIFFERENCE ANALYSIS ON THE HEALTHY AND
PLANTAR FASCIITIS GROUPS
The shear modulus distribution features such as mode, avg,
med, Mx, and qG in the healthy PF were significantly higher
than those in the PFis group. The results support the findings
of PF softening in subjects presenting with characteristic
symptoms of PFis [18]. The range R and quartile deviation
Rq in the healthy PF were also significantly higher than
in the PFis group, indicating that the PFis group showed
much more homogeneity than the Healthy group. The results
confirm results from previous study where hypoechogenicity
was another sign of PFis in B mode ultrasound images [3],
which corresponds to the softer tissue (with lower elasticity)
in the elastography.

The proposed texture descriptors showed significant differ-
ences between the Healthy and PFis groups, in both the hor-
izontal and vertical directions. The texture descriptors from
the horizontal and the vertical GLCM were in strong agree-
ment. The texture descriptors can depict the PF well since the
shear modulus of healthy tissue and PFis had significant tex-
ture differences in terms of the fabric structure. It can be seen
from the shear modulus elastography in Fig.1 that the healthy
tissues showed clear fibrillar structure whereas the PFis tis-
sues showed softer homogenous regions due to the loss of
fibrillar patterns. The results of this study agreed with pre-
vious work in that echotexture is an important signature of
PFis [15], [17].

B. CORRELATION ANALYSIS
The correlation between the proposed descriptors and the
clinical PFis indices was investigated, with the Spearman
correlation analysis showing that the statistical descriptors
were negatively correlated with the BMI, the thickness and
the VAS. That is, the lower the shear modulus (mode, avg,

med, qG), the higher the clinical indices (BMI, thickness
and VAS scores) tended to be. A strong correlation between
Young’s modulus and the clinical scores (FFI-pain, FFI-
function, AOFAS) in symptomatic PFis has previously been
shown by SWE imaging [24], which confirmed the findings
of the present study. The texture descriptors also negatively
correlated with the clinical indices. The lower the texture
descriptor of shear modulus (autoc, sosvh, savgh, and svarh),
the higher the clinical indices were likely to be.

The correlation analysis further confirmed the fact that
softening (by statistical descriptors), and echotexture (by
texture descriptors) of PF are signatures of PFis in the shear
wave elastography. The VAS negatively correlated to both the
statistical and texture descriptors, indicating that the proposed
descriptors can reflect the degree of the PF pain.

C. ROC AND COFACTOR ROC ANALYSIS FOR THE
DIAGNOSIS OF PLANTAR FASCIITIS
The PF thickness and the BMI were associated with
PFis [3], [5], [9]–[11], [22], [36]. The ROC analysis of
the clinical indices showed that the BMI and the thickness
had AUCs ≤ 0.778(likelihood ratios ≤ 2.820). In contrast,
ROC analyses showed that both the statistical descriptors
(mode, avg, med, qG) and the texture descriptors (autoc,
sosvh, savgh, svarh) were promising biomarkers, with AUCs
of approximately 0.9 (likelihood ratio ≥ 6.798.) and 0.85
(likelihood ratio ≥ 3.195), respectively. The proposed statis-
tical descriptors within the SROI can achieve higher AUCs
(∼0.9) to identify PFis, which is superior to the results
from previous work that used the mean value on multi-site
PF regions (AUC ∼0.84) [24]. Our approach is also supe-
rior to other methods in which a radiologist used the color
channel information over the entire PF for a qualitative
assessment [14], [15], [17], [18]. The results indicate that the
proposed descriptors are significant outcomes for PFis.

Furthermore, the Co Factors ROC analysis showed that
the statistical descriptors performed better than the other
parameters, as the features which only combined the statis-
tical descriptors mostly achieved AUCs ≥ 0.93. The features
that only combined the texture descriptors achieved AUCs
of 0.86 ∼ 0.87. However, when only combining the clinical
indices, the AUCs were ≤ 0.83. The diagnosis accuracy
can be improved greatly when combining with the statistical
descriptors or the texture descriptors, indicating that the sta-
tistical descriptors or the texture descriptors are favored for
the diagnosis of PFis.

Most soft tissues such as breast, liver, lung and bone were
reported to show different texture and statistical features
between normal and diseased tissues [37], [38], extending the
proposed descriptors to the diagnosis on other soft tissues are
available. Additionally, the Co factors ROC analysis may be
helpful to improve the diagnosis for many soft tissues.

D. THE PROTOCOL OF STANDARDIZED ROI
The PF was measured around the calcaneus attachment as
this is the most frequently diseased site [2], [4], [21]. In this
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TABLE 6. Twenty texture descriptors.

study, the statistical descriptors were measured on the SROI
near the calcaneus attachment, as defined by the clinical ultra-
sound physician using the same protocol for every participant.
The elliptic SROI was selected such that it reflected the PF
elasticity but excluded adjacent non-relevant tissue. Follow-
ing the same rules, the reproducibility of the measurement
can be improved and valuable diagnostic criteria could be
established. The results show that the statistical descriptors
within the SROI can obtain clinical valuable biomarkers for
diagnosing PFis.

It has been reported that not only the PF but also the sur-
rounding tissues have elasticity changes in PFis [2], [21]. The
texture descriptors can characterize the echovariation of the
shear modulus of the PF and surrounding tissues, which were
measured in the rectangular region including the PF, the fat
pad and the calcaneus. The texture descriptors calculated
from the GLCM are dependent of the interpixel distance (d)
and orientation (θ). In this study, d = 1 and θ = 0, 90◦

were investigated. The texture descriptors from the horizontal
and the vertical GLCM were in strong agreement. In both

directions, the proposed texture descriptors are promising for
the diagnosis of PFis.

V. CONCLUSIONS AND FUTURE WORK
In this study, the statistical descriptors of the shear modu-
lus within SROIs and texture descriptors within the SWE
measurement window were proposed to characterize the PF
features. Our findings revealed that the distribution features
of the shear modulus in the SROI (mode, avg, med, qG)
and the image textures of shear modulus (autoc, sosvh,
savgh, svarh) showed significant differences between the
Healthy and the PFis groups. The statistical descriptors and
the texture descriptors have AUCs of approximately 0.9 and
0.85 respectively, with high likelihood ratios. Combinations
of statistical and texture descriptors can achieve higher AUCs
∼0.968. These descriptors moderately correlated with the
clinical indices (BMI and VAS) with Spearman coefficients
r = −0.5 ∼ −0.4. The proposed descriptors are potential
imaging biomarkers which could be applied to clinical shear
wave elastography for the diagnosis of PFis. The approach
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described in this study may be extended to the elastography
of other soft tissues.

Other populations, including patients with bilateral PFis
will be included in future work. The texture descriptors were
calculated only in one interpixel and two directions. The opti-
mal interpixel and angle can be studied by testing additional
combinations. The diagnosis of PFis by advanced machine
learning methods will also be explored.

APPENDIX
TWENTY TEXTURE DESCRIPTORS FOR CHARACTERISTIC
OF TEXTURE FEATURE
In this study, twenty texture descriptors were calculated from
the GLCM. The following equations were used to define
these texture features.

Let p (i, j) denotes the (i, j)th entry in a normalized GLCM,
and Gn the quantized number of grey levels. The mean and
standard deviations for the rows and columns of the matrix
are

µx =
∑

i

∑
j
i · p (i, j), σx =

∑
i

∑
j
(i−µx)2 · p (i, j) ,

µy =
∑

i

∑
j
j · p (i, j), σy =

∑
i

∑
j

(
j−µy

)2
· p (i, j) .

Let px (i) =
∑Gn

j=1 p (i, j) and py (j) =
∑Gn

i=1 p (i, j)
representing the ith entry in the marginal-probability matrix
obtained by summing the rows and columns of p (i, j) respec-
tively.

The joint entropy is defined by HXY = −
∑

i
∑

j p(i, j)
log(p(i, j)).
The entropy of px is HX = −

∑
i
∑

j px (i)log (p (i, j)).
The entropy of py is HY = −

∑
i
∑

j py (j)log (p (i, j)) .

HXY1 = −
∑

i

∑
j
p (i, j)log

{
px (i) py (j)

}
.

HXY2 = −
∑

i

∑
j
px (i)py (j)log

{
px (i) py (j)

}
.

px+y (k) =
∑Gn

i=1

∑Gn

j=1
p (i, j)|i+ j = k,

k = 2, 3, · · · , 2Gn.

px−y (k) =
∑Gn

i=1

∑Gn

j=1
p (i, j)| |i− j| = k,

k = 2, 3, · · · , 2Gn.
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