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ABSTRACT Spatial Crowdsourcing (SC) is a new paradigm of crowdsourcing applications. Unlike tra-
ditional crowdsourcing, SC outsources tasks to distributed potential workers, and those who accept the
task are required to travel to a predefined location to complete it. Currently, the primary aim of SC is to
maximize the number of matched tasks or to minimize the travelling distances of the workers. However,
less focus is given in matching the right tasks to the right workers, particularly in a heterogeneous tasks
environment. To address this lacking, our work provides an efficient framework for selecting optimal workers
for every task with various specification (geographical proximity, domain types, and expiration times), based
on workers’ attributes (task domain-specific knowledge, expertise or performance history, distance to task
location, and task workload distribution). We introduce the use of Bayesian Network in modelling and
selecting optimal workers, and use k-medoids partitioning technique for tasks clustering and scheduling. Our
experimental results on both synthetic and real-world large datasets have shown that our proposed approach
has outperformed other baseline approaches, in terms of low average error rate and fast execution time.

INDEX TERMS Spatial crowdsourcing, worker selection, Bayesian network, task allocation, task matching
accuracy, computational efficiency.

I. INTRODUCTION
Crowdsourcing refers to an emerging distributed problem-
solving paradigm that incorporates the power of both human
computations and machine intelligence. It is an arrangement
where public crowds contribute towards solving requested
tasks in the form of open calls with some incentives [1], [2].
Many emerging online crowdsourcing platforms such as
Amazon’s Mechanical Turk (mTurk) provides commercial
crowdsourcing services [3]. However, online crowdsourcing
may not be suitable when the tasks need to be completed
at a predetermined physical location [4]. As the alterna-
tive, Spatial Crowdsourcing (SC) is introduced [1]. SC is
a crowdsourcing platform that outsources different types of
spatio-temporal tasks to workers, wherein spatial data is
required to enable a worker to travel to a physical location
to complete the task. The spatial data include location, time,
mobility, and contextual information.
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In SC, a requester submits task’s specification to a
SC-server, for example, a task to capture pictures of the
flood-affected area around Penang,Malaysia. The server then
crowdsources the task among available workers in the crowd.
Once the worker has accepted the task, he/she will travel
to the predetermined location to perform the task. Once the
worker has completed the task, and documented the event,
the requester is notified of the task accomplishment. The
worker is rewarded accordingly. Currently, there are numer-
ous applications in the SC platform, ranging from several
domains such as tourism, intelligence, disaster response, jour-
nalism, general labour, and urban planning [5]. SC has stim-
ulated a series of recent industrial successes such as Citizen
Sensing (Waze), P2P ride-sharing (Uber), Real-time Online-
To-Offline (O2O) services (Instacart and Postmates) and on-
demand staffing service platforms (Wonolo).

There are two modes of tasks assignment in the SC plat-
form, which areWorker-Selection (WS) and Server Assigned
Task (SAT). In WS, a worker chooses a task from the pub-
lished tasks on the server [6]. The server does not have full
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control over the task assignment [1]. As a result, there is
a probability that unpopular tasks could be left unassigned.
On the other hand, in the SAT mode, the server assigned
tasks directly to the workers. SAT mode is more popular than
the WS due to its ability to optimise available resources by
offering control over the workload balancing for each worker,
hence increases the task assignment rate [1], [7].

In both modes of task assignment, optimal worker selec-
tion is an important issue [1], [8]–[10], because allocating
inappropriate worker for a task may negatively affect the
quality of the completed task. We define this assignment
problem as a matching problem between tasks and workers.
Currently, the main objective of most of the existing task
matching solutions is to maximize the number of matched
tasks [11] or to minimize worker’s travelling distances to
task location [12]. Additionally, most of the existing worker
model for task allocation assume that workers’ knowledge
and expertise are independent of tasks [1], [13]. Nonetheless,
in a heterogeneous SC, there will be various types of tasks,
and each task belongs to diverse domains (such as observa-
tions, operations, general labour, drivers, cleaning and event
staffing), and workers may have the ability to work in more
than one domains. However, each worker may possess differ-
ent levels of knowledge and expertise for tasks from different
domains, and higher the expertise in a particular domain,
higher the expectancy of task completion [1]. Consequently,
the domain-specific knowledge and the expertise of the work-
ers are considered in this study, which plays a crucial role
in selecting optimal workers for task allocation. Moreover,
in SC, the total travelling distance that a worker requires
to travel from his location to the location of the task is
related to his cost of travel which ultimately influences his
willingness to travel to the task location in order to perform
it [14], [15]. For instance, one would end up rejecting a task
request where he is required to travel long distances just to
solve a task [15]. Hence, the total travelling distance should
be minimised. Furthermore, for the newly registered users,
it is necessary that the SC platform assigns tasks to them
as soon as possible as they enter into the system [15]. This
will encourage the new workers and will also ensure equal
opportunities for the platform workers to maintain their long
term participation, enabling the SC platform to optimize its
resources, minimize task completion time, and meeting the
real-time demand of task assignment [1], [9] [16]. As a result,
the task workload distribution among the workers shows a
decisive role in worker selection in task matching which
should be improved [1], [15]. Therefore, it is imperative
to model an optimal worker selection mechanism that will
depend on three of the most fundamental factors based on the
dedicated task requirements: i) domain-specific knowledge
and expertise to identify the expert workers in a particular
domain, ii) distance to task location to minimise the workers’
travelling cost, and iii) task workload distribution to improve
the workload balancing among the platform workers. Besides
these factors, the mechanism should be computationally effi-
cient tomeet the real-timematching demands on SC platform.

This study proposed a framework to improve the effi-
ciency of task matching by considering workers’ attributes
and tasks’ specifications prior to select optimal workers for
a specific task. Therefore, the ultimate aim of the framework
is to allocate the right task to the right worker. The primary
components of our proposed task matching framework are as
follows:

1) Task clustering and scheduling, in which tasks are clus-
tered according to their types of domains and geo locations,
and scheduled by expiration times by using k-medoids algo-
rithm, 2) Optimal workers’ selection by using the Bayesian
Network model, to enable the right task is allocated to the
right worker. The Bayesian Network model is a probabilistic
graphical model which is used for reasoning under uncer-
tainty [17]–[19].

The following contributions are the main outcomes of this
study:

1. A framework for efficient task matching in heterogeneous
SC tasks setting. To the best of our knowledge, our work
is the first to address the matching problem as the means
to optimize the efficiency of task-to-worker matching.

2. A tasks clustering and scheduling mechanism by using the
k-medoids partitioning technique in order to mitigate the
difficulty in the task matching with various specifications
based on domain types, geolocation proximity, and expi-
ration times.

3. An optimal worker selection approach by using the
Bayesian Network model makes it easier to deliver effi-
ciency in matching the right task to the right worker.

4. Simulations and empirical findings on the benchmark-
ing performances against baseline SC task-matching
approaches by using large synthetic and real-world
datasets.

The rest of the paper is organised as follows: Section 2
presents the related work. Section 3 describes the problem
formulation. Section 4 describes the proposed framework.
Section 5 reports the experimental results and discussion
followed by the conclusion in section 6.

II. RELATED WORK
In SC task allocations, worker selection strategy plays a sig-
nificant role in the achievement of efficiency, and the quality
of the completed tasks [1]. There have been numerous studies
on task allocations in SC. Reference [20] proposed a SC
platform known as gMission, which supports task publishing
and worker recruitment. It allocates tasks based on workers’
locations, and tackles the load balancing issue among the
platform workers. In the gMission platform, a time-weighted
kNN (k-nearest neighbour) algorithm was adapted so as to
facilitate the location-based task allocations. Reference [3]
proposed a real-time SAT-based SC framework for task allo-
cations by using the Greedy algorithm. The aim of the frame-
work was to maximize the number of assigned tasks under
budget constraints. Reference [21] designed a real-time, and
budget-aware task allocation mechanism to maximize the
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number of assigned tasks, and to improve the expected qual-
ity of the completed task under limited budget constraints.
The mechanism also considers the distance of each worker
from the tasks and the worker’s performance in previously
assigned tasks. A revised Greedy algorithm was then used to
automatically allocate the tasks to the appropriate workers,
based on the workers’ travelling distances; it also calculates
the corresponding rewards for each completed task. Simi-
larly, [22] proposed a reliable diversity-based SC framework
which can maximize the task completion rate, and address
tasks diversity. The framework is capable to dynamically
assigning time-constrained spatial tasks to workers. It also
utilises three approximation approaches, including Greedy,
sampling, and divide-and-conquer algorithms to assign work-
ers to spatial tasks, with the aim to improve the completion
reliability, and the spatial/temporal diversities of spatial tasks.
On the other hand, [10] used a location-aware fog platform
to identify the most suitable workers by learning their per-
formance history. They proposed a worker selection model
using the Greedy-based Upper Confidence Bound algorithm,
focusing on learning about the workers’ skills. The model
can predict worker’s performance on each spatial task prior
to selecting appropriate worker for the task. The model also
aims to improve the long-term utility of the platform.

Reference [23] proposed a framework for optimising task
allocation by making sure that each task surpasses its qual-
ity threshold. In other words, each task does not exceed
the cost limit, and workers are not over-utilised or under-
utilised. This is achieved by balancing the workload among
the workers. The framework also adopts the Computation
of Crowd Indexes Deterministic algorithm, which is based
on the Greedy algorithm. The aim is to address the task
allocation problem that relates to human factors such as
worker’s expertise, wage requirements, and worker’s avail-
ability. In [24], the Greedy approximation algorithm was pro-
posed as a measure to address the QSTA (QoS-Sensitive Task
Assignment) problem in task assignment wherein some tasks
need to be assigned to a number of workers with minimum
total rewards, but without compromising the quality of the
performed tasks.

Reference [25] proposed a multi-worker selection mech-
anism to assign workers to their most preferred tasks. The
mechanism adopts the Gale-Shapley Matching Game Selec-
tion (GSMS) which is based on game theory, to solve the
multi-worker multi-tasking allocation problem in mobile
crowdsourcing. Similarly, [12] proposed a Group-based
Multi-task Worker Selection (GMWS) framework that allo-
cates a group of workers to a cluster of tasks with the aim
of maximising the QoS of tasks and minimising the trav-
elling distance required by the employed workers. GMWS
clusters tasks based on their geographical proximity using
k-mediods algorithm and deploys genetic algorithm to allo-
cate a group of workers to task clusters. It also incorporates
a meta-heuristic approach using tabu search algorithm for
scheduling tasks in a cluster for each worker to minimize the
completion time. Likewise, [26] presented a group-oriented

crowdsourcing framework that outsources tasks to natu-
rally existing worker groups through social networks. The
authors proposed two algorithms to select workers, followed
by a selection of workers within a group with a leader
and selection of workers within a group without leaders.
The experimental result reported that the group-oriented
approaches could achieve better synergy performance (syn-
ergy, consistency, conflict), adaptability, and effectiveness on
reducing costs, over individual-oriented and team formation
approaches in task allocation.

Reference [27] considered a dynamic participant recruit-
ment problem for heterogeneous spatial crowdsourcing tasks
with different temporal and special requirements. The pro-
posed framework could minimise the sensing costs (a fixed
cost per selected worker, such as energy cost while being
active) while satisfying certain levels of probabilistic cov-
erage (i.e., total task coverage is equal to or larger than a
predefined coverage threshold). To address this problem, one
offline and two online Greedy algorithms were proposed.

Even though there have been several approaches for spa-
tial task allocations, the following limitations still remained.
First, most of the approaches do not consider heterogeneous
tasks specifications and workers’ attributes for a multiple
tasks allocations scenario. Secondly, most of the task allo-
cation models assumed that domain-specific knowledge of
all workers is the same regardless of various tasks domains.
Nevertheless, in practice, workers may be able to perform
tasks from different domains, but they may have different
levels of knowledge and expertise for each domain tasks.
Finally, current works in SC task allocation have addressed
three major optimization problems which are maximizing
the number of allocated tasks, maximizing the quality of
completed tasks, and minimizing the system costs. How-
ever, to the best of our knowledge, none of the studies had
attempted to efficiently match the right tasks to the right
workers, taking into consideration heterogeneous tasks with
various specifications, and specific workers’ attributes. This
study is, therefore, aims to address this gap.

III. PROBLEM FORMULATION
To illustrate the problem, let us consider a simple SC system
with three open spatial tasks (T1, T2 and T3), taken from
three different domains, involving ten workers available in
an area of 5 km × 5 km. Each task has a specific location,
domain type (CT1,A, CT2,B and CT3,C ), and expiration time.
Similarly, each worker would demonstrate a certain level
of expertise (performance on previously completed tasks)
in a particular task domain via a rating score and a task
workload balancing score. Table 1 presents the tasks and
the workers’ list, where tasks are scheduled for allocations.
Taking into consideration that the tasks are from different
domains, and workers have different attributes, there are two
approaches to allocate the available tasks. The first scenario
depends on minimising the distance travelled by the workers
to perform the task. Each task should be T1 < W5, W1,
W8, W3>, T2 < W10, W6 > and T3 < W9, W7, W4,
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FIGURE 1. Online process diagram.

TABLE 1. Workers’ attributes and tasks’ specifications.

W2 > respectively. By only minimizing the travelling dis-
tance, the quality of the task matching is not always ensured.
The reason is that the quality also depends on workers’
other attributes such as their domain knowledge, expertise
scores on specific task domains, and task workload distribu-
tion scores. In the second scenario, workers’ domain-specific
knowledge, expertise, and task workload balancing are con-
sidered together with the travelling distance. The travelling
distance can influence the selection of the right workers
for the purpose of maximising the quality and efficiency
to complete the tasks while also minimising the distance
workers need to travel. Due to the fact that the workers’
selection is based on domain-specific knowledge, expertise,
distance and workload balancing, the set of probable workers
suitable for selection must be ordered as T1 < W1, W5, W8,
W3 >,T2 < W6, W10 > and T3 < W9, W7, W2, W4 >,
respectively. Although for T1, the travelling distance ofW5 is

lesser thanW1,W1 receives a higher priority thanW5 because
W1 has a higher performance score thanW5. In looking at T2,
it can be seen that even though W10 has higher performance
score and less distance value than W6, it was only prioritised
next to W6 due to its high workload balancing score. The
reason is due to the need to ensure equal workload distribution
across multiple participants. In this case, a higher workload
balancing score would result in a lesser probability of being
selected. Therefore, for T3, W7 was prioritised over W9, and
W2 was prioritised overW4. The reason is mainly due to their
low load balancing scores.

IV. PROPOSED FRAMEWORK
This study proposes a framework for efficient task matching
in SAT-based settings. Figure 1 demonstrates the online dia-
gram of the proposed approach. Figure 2 shows the proposed
framework. The requesters send requests for tasks to be com-
pleted to the SAT server, i.e. T1, T2, T3, T4, and T5. Each
request contains information on tasks’ specifications such as
location, time, type and description. Tasks T1, T2 and T4 are
from the same task domain; hence they are represented by
the same blue colour. Tasks T3 and T4, each representing task
from two different domains, with green and yellow colours,
respectively. In the server, the task specifications’ informa-
tion is passed to the task scheduler, which is responsible
for scheduling the tasks. The data storage stores information
regarding the tasks and the workers. It also stores task-to-
worker matching histories in support of future task alloca-
tions.

The worker module contains information about the reg-
istered crowd of workers, such as their personal informa-
tion, location, domain-specific knowledge, level of expertise
(which is based on performance history or rating), and work-
load balancing score. The information on the geolocation of
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FIGURE 2. Proposed framework.

every mobile worker is continuously fed into the workers’
module, thus enables the system to find candidate workers
who are currently near to the task location. Simultaneously,
information on available workers’ for the tasks will be fed
into the worker selector. The worker selector will first classify
the workers based on their attributes’ information and task
requirements, and then it will determine a set of candidates
for optimal workers selection. Once a task is completed, the
requester receives the completion report from the system, and
both the task’s and worker’s information is updated accord-
ingly in the data storage. During this time, a crawler is contin-
uously working inside the server to check for any incoming
task requests. For every two seconds of task allocation round,
it creates a batch of requested tasks, and we define this as a
timestamp. It subsequently allocates each of the tasks from
the timestamp to suitable workers. If any task is unallocated,
it will then be added to the next timestamp. The steps would
be repeated until each of the available tasks is being allocated
from the timestamp.

The proposed framework for this study features three mod-
ules - a task module, a worker module, and a server module.
The following section will further describe each of the mod-
ules, along with their functionalities.

A. TASK MODULE
The task module is responsible for maintaining information
regarding the requested spatial task. It receives incoming task
requests from the requesters so as to allocate the tasks to the
workers. This module encompasses the following elements.

1) TASK DOMAIN (C)
Tasks are of different types and from different domains. There
are various domain-specific location-based tasks [1]. For
example, crowdsourced delivery services like ‘UberEATS’
and ‘deliveroo’ [28]. These domains are where people get
the additional opportunity to work by carrying individuals or
objects to be delivered to specific locations. Or, a crowdsens-
ing mobile app that requires people to go to a particular area,
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and report any activities that would danger the environment
such as illegal waste dumping or polluted river. In this task,
people may need to have some knowledge about environmen-
tal sustainability and possible hazard that would negatively
affect the environment. Hence, we believe it is important for
our framework to consider various forms of tasks from vari-
ous domains, such as general labour, warehouse operations,
washing and cleaning, event staffing, and plumbing.

2) TASK EXPIRATION TIME
Tasks are of two types - urgent and normal tasks based on
task expiration time [1]. Task time can be calculated from the
starting and ending times stated by the task requesters in the
task specifications. For normal tasks, a worker can start at a
suitable time, and he/she does not need to finish immediately,
for example, preparing public facility reports in a natural
disaster area for the next few days. In comparison, urgent
tasks need to start immediately; for example, a restaurant
owner might need a waiter urgently within the next couple
of hours on a busy weekend to serve the crowded restaurant.
Depending on the calculated task expiration time for each task
and other related parameters, task scheduling will be carried
out on a collection of tasks.

3) LOCATION
Location represents the geolocation of a requested task.
In SC, a worker needs to visit a specific location so as to
complete a task. For instance, a worker may need to visit
a restaurant at a specific address as requested by the task
requester to perform the cleaning task.

4) DESCRIPTION
Each task has a different task requirement or specification,
as specified by the requester. The description also incorpo-
rates the necessary skills of a worker as well as general duties
and responsibilities. It may also state the payment for the
completed task.

B. WORKER MODULE
Mobile workers are one of the most important elements in
the SC platform, and they are also termed as moving work-
ers [22]. While on the move, they can receive task invitations
located in a nearby location. The invitation may include task
description, task time, task location and payment. In the
proposed framework, the task module captures, stores and
maintains information about workers’ attributes. This module
encompasses the following elements:

1) PERSONAL INFORMATION
To perform the crowdsourcing tasks, users need to register on
the platform as platform workers. The registered users pro-
vide some personal information, such as their identification
numbers, name, age, profile picture, and contact details.

2) DOMAIN-SPECIFIC KNOWLEDGE (K)
Workers may have knowledge of more than one types of
tasks, and each task may belong to different domains [1].
Domain-specific knowledge can be derived from the worker’s

previous work experiences for a specific task domain. In our
proposed framework, we use the value of 1 to represent the
presence of knowledge, and 0 to represent the absence of
knowledge in a specific domain.

3) EXPERTISE (R)
Expertise is referring to the worker’s work performance for a
particular task in a particular domain. Reference [1] measures
worker’s expertise based on rating scores upon task comple-
tion, which were given by the task’s requesters. In our study,
a worker’s level of expertise is also obtained by analysing
his/her performance history. This is calculated by averaging
the ratings that represent worker’s performance on the accom-
plished tasks, as rated by the task requester. In our proposed
framework, we mapped the result onto a scale of 1 to 5.
0 represents the lowest and 5 represents the highest.

4) WORKLOAD (F)
Workload is a parameter used to represent the current amount
of task load of each worker. This information is crucial for the
system to monitor and ensure equal distribution of workload
among candidate workers for every task in the SC platform.
In this study, the workload was calculated from the worker’s
work history (i.e. the number of tasks completed within a
specific time span). The result is mapped onto a scale of 0
to 5.

5) DISTANCE (D)
When a task is posted, the server tracks the location of the
reported workers. It then calculates the travelling distances
of each worker to the requested task location. In this study,
we assume workers who were located within 5000 meters
from the task as having a higher chance of being selected than
those who were not within the vicinity.

C. SAT SERVER MODULE
The Server Assigned Task (SAT) module is responsible
for allocating tasks to optimal workers. When SAT module
receives tasks specifications and workers attributes from the
task and the worker modules, it will first schedule the tasks.
Then it will analyse information both the scheduled tasks
and available workers to select the most appropriate workers
for every task. The selection process involved two layers of
filtering to ensure the right tasks will be allocated to the
right worker. Details of the processes are further explained
as follows:

1) DATA STORAGE
The data storage stores information on both the requested task
specifications and workers’ attributes, including their work
history and past performances. It received the information
from the Task and the Worker modules. The information that
is acquired periodically for every batch of tasks is stored and
updated in the data storage, prior to further processing by the
task allocation component which is mainly comprised of Task
Scheduler and Worker Selector.
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2) TASK SCHEDULER
Task Scheduler receives a list of tasks from the Task module,
which also contains information about tasks specifications
provided by the task requesters such as geographical proxim-
ity, domain types, and expiration times. Subsequently, it clus-
ters tasks based on the geographical proximities and domain
types and schedules them by expiration times (high to low
priority) using the k-mediods algorithm. The k-medoids is a
classical partitioning technique of clustering; it is reminiscent
of the k-means algorithm [12]. The k-medoids have proven to
be more robust to outliers due to their ability to minimize the
distance between all points in the cluster, and not just between
the points and cluster centre, as in the case of other popular
clustering algorithms such as k-means [12].

3) WORKER SELECTOR
Worker Selector acquires information of the reported workers
and the task specifications from the workers’ pool and the
task scheduler respectively. Using this information, it detects
the available workers for each task based on the calculated
distances of the reported workers to the task location within
the minimum travelling distance from the task location. This
process is accomplished by using the Haversine formula [14].
Subsequently, from the set of available workers, the Worker
Selector will continue to identify high probable workers for
the task by using Bayes theorem. The identification process
will be based on workers’ domain knowledge, expertise,
travelling distance, and their taskworkload distribution. From
the set of high probable workers, the Worker Selector will
execute the Bayesian Network algorithm to select a set of
optimal workers for every task. The optimal workers are
ranked in decreasing order of importance for the selection.
Meaning that those who possess the highest probability value
(based on expertise, travelling distance, and task workload
balancing) is the most optimal worker for the task, and there-
fore he/she would be ranked at the top of the list. However,
if he/she does not accept the task for a due reason, then the
offer goes to the second rankedworker in the list, and so forth.
Figure 3 shows the worker’s selection process in the matching
tasks T1 and T2, each from different task domains.
• High Probable Workers Selection. We defined high
probable workers as those who possessed a higher level
of expertise, shorter travelling distance from the task
location and lesser task workload, as compared to other
reported workers who are available to work in a par-
ticular task domain. In order to select high probable
workers for each task in the heterogeneous SC tasks
environment, we first classify the available workers into
two classes - high probable and less probable workers.
Bayes theorem is used for the classification process.
The process is based on the following input factors -
worker’s expertise (R), worker’s distance from the task
location (D), and worker’s workload balancing for a
particular task domain (F). These input factors are pre-
sented as the events in the Bayes theorem, for assessing
the probability of selecting a high probable worker for

FIGURE 3. Worker selection process in task matching.

a task. The success of the classification process will
classify workers into two classes (i.e. high and low) for
each input factors, i.e., high expertise or low expertise,
long distance or short distance, high workload or low
workload. For simplicity of the problem space, only
high probable workers were considered. It is reasonable
to assume that the spatial server would not assign a
task to a worker with low expertise value, located far
from the task location and has performed the highest
number of tasks in a particular time span. In doing so,
we set a threshold point for each of the events (expertise,
distance, and workload), as represented by equation 1 in
the classification, where TPE is the threshold point for
each of the events, E , and N is the total number of
available workers. For instance, for the event expertise,
the threshold point would be greater than the midpoint
of the average of the sample rating scores.

TPE >
1
2

∑
Ei
N
; i = 1 to N (1)

After applying Bayes theorem on each event, equa-
tions 2, 3 and 4 were derived for expertise, distance, and
workload, respectively, as shown below. Note that equa-
tions 3 and 4 showed the inverse probability relation.
This means that the probability of choosing any worker
is higher when distance and workloads were low, while
equation 2 indicates that the probability of choosing any
worker is higher when the worker has high expertise.
In this study, prior belief (prior conditional probability)
of each of the events is calculated through simulations
done on the experimental dataset. An estimation
rule proposed by [29] was adopted for equation 5.
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FIGURE 4. (a) Applying Bayes theorem on candidate’s expertise. (b) Applying Bayes theorem on candidate’s distance. (c)Applying Bayes
theorem on candidate’s workload balance.

Subsequently, using prior belief, the posterior belief
(posterior conditional probability) can be obtained.
In the context of the simulations, five datasets, and

each having 10K records of workers (see section 5 that
demonstrates the dataset used), were used. Each dataset
contains the workers’ expertise rating scores in different
categories of tasks, travelling distance from the task
locations, and the task workload balancing scores. Ini-
tially, we assumed that there were two classes - a high
score (>50%) and a low score (<50%), for each of the
events, as prior belief. After simulating on each dataset, a
mean score is achieved from the five datasets for each of
the events as prior belief using equation 5. Findings from
the simulation results depicted that the chosen worker
has:
i 60.05% probability of having high level expertise, and
39.95% probability of having low level expertise.

ii 20.55% probability of being positioned closer to task
location, and 79.95% probability of being positioned
further from the task location.

iii 50.44% probability of having the least number of
tasks performed in a given time span, and 49.56%
probability of having the most number of tasks per-
formed.

Figures 4a, 4b and 4c show the visual representation
of Bayes theorem applied to each of the events. Sub-
sequently, by using the prior conditional probability,
the posterior conditional probability was calculated for
each event using equations 2, 3 and 4. The calculated
posterior probabilities are then used to obtain high
probable workers for each event.

• Optimal Workers Selection. Optimal workers for a task
were selected from the set of high probable workers by
using the Bayesian Network model. This was accom-
plished by following the three-step process proposed
by [30] who used the Bayesian Network for investigat-
ing effective wayfinding in airports. The steps involved
constructing a conceptual model structure, defining the
model state and quantifying the model. In this work,
the conceptual model interprets the significant factors
constituted by the nodes which influenced the selec-
tion of the right workers. The interactions between the
nodes were represented by the directed arrows. Primar-
ily, the Bayesian Network model is made up of discrete
nodes. Each node is categorised into a small number of
states. Considering the context of our problem, the states

FIGURE 5. Bayesian network model for worker selection.

were chosen in a meaningful way which are of distinct
values and mutually exclusive. Finally, the quantifica-
tion of the nodes was performed by using information
obtained from the various sources, such as the related
literature, experimental data, simulation results, and sta-
tistical models.

i. Conceptual Model Structure: The conceptual model
serves as the basis of the workers’ selection model.
This was done by using the Bayesian Network. Our
conceptual model was developed based on the efficient
worker’s selection mechanism for task allocation in SC.
To achieve this, a thorough review of the workers’ selec-
tion process for allocating tasks in the SC platform was
conducted. The acquired information was then used to
construct the nodes and the interactions between the
nodes, as shown in Figure 5. Each of the nodes in the
network represents the variables, and the incoming arcs
represent the required nodes for predicting the right set
of workers for the tasks. From this network, it is possible
to scan different conditional independence relationships.
This network also expresses the causal relationships
between the variables which form a directed acyclic
graph that represents the nodes and the relationships
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between them. For example, the requested spatial task
variable is represented by the task node. It is directly
connected with the other four nodes, i.e. time, category,
location, and description. The state of the task node is
directly influenced by the connected nodes, which rep-
resent the conditional independence relationships among
the variables. On the other hand, four primary variables
comprising of task domain knowledge, expertise, dis-
tance, and workload would directly influence the deci-
sion on whether a particular worker should be selected or
not. The decision also depends on the outcome of the task
variable. The relationships imply that optimal worker
selection is conditionally dependent on those variables.
It is also worthy to note that the domain-specific knowl-
edge is conditionally dependent on the domain of the
requested task while the expertise of the worker is depen-
dent on the categorical knowledge of the worker. This
is because the worker’s categorical knowledge indicates
the kind of task that he/she is good at. Similarly, distance
is influenced by the location of a task because a worker
needs to go to the specified place from his/her current
location so as to perform the required task.

ii. Defining the Model States: In this phase, the nodes
obtained in (i), and the associated information gathered
from the literature during the construction of the concep-
tual model, were used to define and assign the states.
After the nodes were defined, each was given binary
states in order to construct a robust model. The nodes,
their descriptions, and states are listed in Table 2.

iii. Model Quantification: In order to quantify the nodes of
the Bayesian Network, we used information regarding
spatial workers and tasks by adopting the datasets used
by previous researchers [5], [8]. The attained posterior
probabilities of the high probable worker for each event
(worker’s expertise, distance and workload) were used to
quantify the edges. Subsequently, the posterior probabil-
ities of each event were summed up to obtain the final
probability score P(S) for each workers using equation
6. The set of these workers possessing final probabil-
ity scores are defined as the set of optimal workers.
Workers from this set would be ranked in a descending
order based on their probability scores. The worker with
the highest optimal score is to be considered for the
requested task. If the candidate is unavailable, then the
next candidate who has the second highest score would

TABLE 2. Nodes and states of the worker selection Bayesian network
model.

be considered for selection and so forth. In equation 6,
w1, w2, and w3, with w1+w2+w3 = 100 are weights to
allow trade-off among the three events.

In worker selection, all the events do not carry the
same influence in selecting the right worker. There-
fore, the weighted sum-based multi-criteria evaluation
scheme [31], [32] is utilized to prioritize the selection of
variables (events) that are more important to the worker selec-
tion process. The model provides a systematic process for
finding a solution based on many criteria. This is achieved
by assigning weights to each criterion or group of criteria,
based on their importance to the problem state. Weights (in
percentage) are assigned to each criterion so that the total
weights would add up to 100%. In order to define weights,
an assumption is made by adapting and extending the heuris-
tics defined by [14]. The extended four heuristics may be

P (Ri |Chosen) =
P (Chosen |R)P(Ri)

P(Chosen|Ri)P(Ri)+ · · · + P(Chosen|Rn)P(Rn)
(2)

P (Di |Chosen) = 1−
P (Chosen |D)P(Di)

P(Chosen|Di)P(Di)+ · · · + P(Chosen|Dn)P(Dn)
(3)

P (Fi |Chosen) = 1−
P (Chosen |F)P(Fi)

P(Chosen|Fi)P(Fi)+ · · · + P(Chosen|Fn)P(Fn)
(4)

The prior belief for a given class =
number of samples of the particular class

total number of samples
(5)
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TABLE 3. Example of the processed dataset for spatial task location.

useful in reducing the complexity of the problem of worker
selection, as follows: i) Among workers situated within the
same distance from the task location, those with higher exper-
tise score and lesser task workload, would be given higher
preference, ii) Among workers with the same expertise and
task workload scores, those who are closer to the location
would be given higher preference, iii) Among workers with
the same expertise and task workload scores, those who have
higher expertise would be given higher preference, and iv)
Assumption is made that tasks possess close geographical
proximity in the problem space.

P(S) = w1 ∗ P (R |Chosen)+ w2 ∗ P (D |Chosen)

+w3 ∗ P (F |Chosen) (6)

V. EXPERIMENT
The evaluation of the proposed framework was done in two
phases. In phase 1, we measured the accuracy of match-
ing heterogeneous tasks to optimal workers. In phase 2,
we evaluated the efficiency of the framework by measur-
ing the real-time performance of the task matching. In both
phases, we measured the performance of our proposed
Bayesian Network-based (BN) task matching against three
other approaches. The approaches are based on three baseline
algorithms which are Greedy algorithm [3], [10], [21], [22],
kNN, time-weighted kNN algorithm [20] and Genetic Algo-
rithm [12]. In the current experiment, both the synthetic
and real-world datasets were used to simulate a realistic
SC scenario so as to demonstrate the feasibility of the pro-
posed approach. In the following subsections, we describe
our experimental datasets, settings, procedures and evaluation
metrics.

A. DATASETS
Our datasets were extracted from Gowalla1 and Yelp2

through its public API. Gowalla is a location-based social
networking website where users share their locations by
checking-in. The friendship network is undirected. The
datasets consist of 196,591 nodes and 950,327 edges. There
was a total of 6,442,890 check-ins of users over the period
from Feb. 2009 to Oct. 2010. In comparison, the Yelp datasets
consist of a subset of their businesses, reviews, and user
data for use in personal, educational, and academic purposes.
To prepare the datasets for evaluation in this study, we pro-
cessed the raw datasets that contained spatial task locations,

1https://snap.stanford.edu/data/loc-gowalla.html
2https://www.yelp.com/dataset/challenge

TABLE 4. Example of the processed dataset for spatial workers.

and spatial workers, around the task location, according to
the experimental requirement. A sample structure of the
processed datasets that composed of the requested tasks and
available workers are shown in Table 3 and Table 4, respec-
tively. To calculate the distance of each worker from the spa-
tial task location, we used the Haversine formula [33]. With
the knowledge of workers’ current longitude and latitude,
the Haversine formula helps us to determine who among the
workers has the shortest distance to a task’s location within
its sphere radius.

B. EXPERIMENTAL SETTINGS
The experiment was executed on an Intel Core i5-4200U
CPU @1.60 GHz with 8GB of RAM. A uniform imple-
mentation was provided for all the tested algorithms used
in this experiment. Golang programming language [34] was
used for implementing our model, as well as other base-
line algorithms involved in the experiment. Concurrency and
high-performance are the big features of Golang as a lan-
guage.

C. EVALUATION METRIC
We measured the accuracy of matching heterogeneous tasks
to optimal workers by using average error rate, as inspired
by [14] using the quality control runtime approach, ground
truth [2], [35]. Note that in the context of crowdsourcing
systems, there are various quality assessment approaches
that allow one to measure quality attributes (such as worker
expertise may be measured through questionnaires [2],
the accuracy of task allocation through evaluating taskmatch-
ing [14]), and one of them is by using ground truth [35].
Ground truth compares answers with a gold standard. Gold
standard is a list of known/actual answers that you can use to
evaluate in the ground truth. The average error rate, e, is the
ratio of incorrect aggregate results to the total number of tasks
in an experiment, NT , see equation 7 [14].

e =
1
NT

NT∑
k=1

1[OT k 6= TrT k] (7)

The incorrect aggregate result is referring to the aggregation
of matching results that are conflicting with the ground truth
data. The average error rate decreases if matching accu-
racy increases, which means that more relevant tasks can be
matched to the right workers.
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During the experiment, each of the spatial tasks is allocated
to the workers one by one. We assume that the ground truth of
a task T i is binary. This assumption is reasonable as it is true
in many real-world situations (e.g., whether the pictures are
taken at a particular spot or not). Let, TrT i ∈ {0, 1}, be the
ground truth of a task T i. 1 indicates a right match between
a worker to a task, otherwise 0. It explains how accurate an
approach is in matching each task with an optimal set of
workers while producing less number of errors. Fewer error
rates indicate higher matching accuracy.

D. EVALUATION PROCEDURE
The evaluation procedures were divided into two phases
involving two different sets of experiments. Experiment
1 evaluated the task matching accuracy while experiment
2 measured the runtime performance of the proposed model.
Each experiment was repeated for the other three approaches
for comparative analysis. Details of the evaluation procedures
are further explained below.

1) MATCHING ACCURACY COMPARISON
The accuracy in the task matching is measured based on how
many errors are produced when evaluating the ground truth
data against the gold standard. The lesser is the average error
rate, and the higher is the accuracy of the task matching
approach. In this experiment, five sets of workers and tasks
were considered as our datasets. Each dataset consists of
fifty workers and five tasks. Each task has its specifications
(i.e. task location, domain type, expiration time, and descrip-
tion). Similarly, eachworker has unique attributes (i.e. worker
personal information, domain-specific knowledge, expertise,
distance, and task workload).

The first step of the experiment involved matching each of
the tasks with a suitable worker from the first dataset. Each
task was matched with multiple workers; hence we assume
if one worker is unavailable or unwilling to take the task,
the next worker would be selected, and the process continues
until the task is being allocated. In doing so, the candidate
workers for every task need to be ranked. The ranking of
the workers was performed by taking the assumption that a
worker with the highest rank would be the one who exhibits
the best work performance, requires short distance to travel,
and has completed only a small number of domain specific
tasks within a specific period of time. Initially, the ranking
of the workers was produced using manual task allocations
based on human’s judgement. Eventually, five sets of ranked
workers were produced for five tasks for the first dataset,
which serves as the gold standard data for our evaluation.

In the second step of the experiment, by using the same
dataset, we executed our task matching algorithm and evalu-
ated its accuracy aiming to match the right task to the right
worker. The process outputs a set of ranked workers for
each task; as a result, a total of five sets of workers was
produced for five task allocations, which served as the ground
truth data. We then compared the ground truth against the
gold standard and used the average error rate to report the

percentage of the discrepancy between them. The lower the
percentage of average error rate, the higher is the accuracy in
the task matching. Subsequently, the same step was repeated
for the remaining four datasets. Similarly, the average error
rates in the task matching of other baseline models were also
measured by using the same datasets, and following the same
evaluation procedures for comparative analysis.

2) TIME PERFORMANCE COMPARISONS
In this evaluation, we measured the running times of our
proposed approach and other baseline approaches by using
the same datasets. We reported the running times in allo-
cating the incoming tasks to the right worker for a round
of every 2 seconds, following a batch-based task assigning
mode by [36]. For each timestamp, we considered a number
of tasks, n = [1,10], and the number of workers, w = [1,
5000]. For each round within a timestamp, we calculated the
average time (in milliseconds) of 50 iterations, as well as the
standard deviation, and then reported the results.

E. RESULT AND DISCUSSION
The results, in terms of task matching accuracy, and time per-
formance, is discussed. Noteworthy that we provided uniform
implementations, and settings for all the approaches used
when comparing the results.

1) ANALYSIS OF MATCHING ACCURACY
Figure 6 shows the performance of the proposed approach,
and other baseline approaches, in terms of reduction in the
average error rates in the task matching comparisons. The
horizontal axis represents the five datasets used in our exper-
iment. The vertical axis represents the different error rates for
each of the approach. The experimental results show that the
average error rate of the proposed BN-based approach was
10.4%. While the average error rate for the task matching
approaches that used the Greedy, the kNN, the Weighted-
kNN and Genetic algorithms stood at 72.8%, 77.2%, and
71.6% and 67.2% respectively. These results indicated that
the proposed approach is able to select the most optimal
worker for every task in a heterogeneous SC tasks environ-
ment. In other words, the proposed approach provides the
highest accuracy in matching the right tasks to the right
workers when compared to other baseline approaches. The
reasons could be attributed to the following:

a. The Greedy algorithm always computes the optimal solu-
tion with just a single attempt, from starting to ending
of a data point on a sorted dataset. It never goes back to
re-examine the decisions or consider other alternatives.
For instance, after executing the Greedy algorithm on a
sorted dataset which was based on the distance of the
probable workers from the task locations, it was observed
that the resulted output was still not optimal for other input
variables, such as expertise rating scores and workload.
Another reason is that the Greedy algorithm only takes
one variable at one single instance, and finds an optimal
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FIGURE 6. Average error rate.

solution for it. It does not consider other variables at that
instance. We also found that when the Greedy algorithm
was first executed on the workers’ expertise, and executed
it again on the outcome from the first match but this
time the matching is based on the task workload scores,
the resulting output was not optimised for both expertise
and workload. This finding indicates that the Greedy algo-
rithm performed better when the datasets contained only
a single criterion (variable).

b. The kNN (k-nearest neighbour) algorithm uses the local
neighbourhood computation, and it searches through the
datasets for the k-most similar instances. It then computes
the distance by using Euclidian distance rules between
data points and generates the nearest neighbour list. When
computing distances between data points, each attribute or
variable is normally weighed in the same way. It gives the
same preference to all variables of a dataset by assigning
the same weights while calculating the k-nearest neigh-
bour distance of the instance. This means that variables
which were less significant would also carry the same
weight on the distance when compared to more important
variables. However, in order to find the set of optimal
workers, other variables such as expertise, distance, and
workload may carry different weights on the worker’s
selection. This may cause the kNN algorithm to be less
accurate (accuracy 22.8%) in selecting optimal workers
for every task.

c. The achieved accuracy of the W-kNN algorithm in the
experiment was 28.4%. Unlike the kNN, theW-kNN algo-
rithm assigns variables with different weights according to
the impact of each variable in theworker selection process.
However, the reason for achieving a low accuracy rate
could be mainly due to the non-optimized weights of the
variables in the selection process.

d. The genetic algorithm (GA) is a metaheuristic algorithm
that is inspired by the evolutionary ideas of natural selec-
tion in the attempt to search for the optimal solution

of an optimization problem [37], [38]. The search is
accomplished by imitating the operation of a population
evolution. It first forms a population of candidate solu-
tions to a problem, and then new solutions are formed
by ‘‘breeding’’ the best solutions from the population’s
members, resulting in the formation of new generations.
The population then evolves through many generations,
and the search stops when the best solution is obtained.
Genetic algorithms are particularly useful for solving the
problem of group formation in a group-based recruitment
model [12], [39], such as assigning a group of workers to
a cluster of tasks. However, GAs is not directly suitable
for solving constraint optimization problems- where the
goal is to optimize an objective function with respect to
some variables in the presence of constraints on those vari-
ables [40]. For example, in a single task allocation prob-
lem, workers’ selection for a requested task depends on the
worker’s domain-specific knowledge, expertise, travelling
distance and task workload balancing. These variables
may carry different weights on the worker’s selection deci-
sion making, as explained in the first section. Moreover,
GAs cannot effectively solve problems in which the only
fitness measure is a single right or wrong measure (like
decision problems) [40]. For instance, for selecting the
most appropriate worker for a task from a group of optimal
workers in a single task allocation problem, the process
involves complex decision making based on several vari-
ables as there is no way to converge on the solution.
In these cases, a random search may find a solution as
quickly as a GA. The aforementioned reasons may cause
low accuracy (32.8%) for GA observed in the experiment
with respect to the formulated problem.

e. The proposed BN-based algorithm produces a high accu-
racy of 89.6% in selecting the optimal workers for
every heterogeneous task of SC. The achieved higher
accuracy is due to BN’s ability to provide support for
decision making, and can collate, organise and formalise
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information from various sources [30]. It is effective,
especially in a complex situation such as optimal workers
selection problem, where the decision depends on various
factors that influence the selection. The data related to
factors may be sparse, and so each piece of available
information need to be utilised. BN can combine differ-
ent sources of information in a mathematically coherent
manner, incorporate data with different accuracies and
allow the combination of data measured on different levels
of accuracy to be undertaken. This means the proposed
BN model combines workers’ information related to task
domain-specific knowledge, expertise or performance his-
tory, distance to task location, and task workload distribu-
tion to select optimal workers for task allocation. There-
fore, a worker is classified depending on whether he/she
is suitable for a task, given the attributes of the worker.
The classification outcomes, either high or low probable
workers. Eventually, we obtain the high probable workers
by excluding low probable workers through probabilistic
predictions for each of the attribute. Furthermore, in BN,
variables are not strongly correlated to each other, given
the classification node [41]. In a complex environment
as mentioned where results depend on various sources of
information, may need to introduce or exclude any vari-
able into the system for tuning system performance, it may
still present accurate classification result in a large number
of datasets by individually identifying and mapping each
of the variables with the model classifier.

2) ANALYSIS OF RUNTIME PERFORMANCE
In experiment 2, we aim to analyse the running time of the
proposed approach, for each round of the task matching, for
the number of tasks, n = [1, 10], and the number of workers,
w = [1, 5000], against other baseline approaches.
In this process, we assume each round to have two seconds

of a time interval, and there is a total of six timestamps. Each
timestamp has five rounds, which implies one task allocation
life cycle of 60 seconds of each approach, were evaluated in
this experiment. Table 5 shows the average execution time
of 50 iterations (in milliseconds) for each of the rounds,
along with the standard deviations. For each round of task
allocation, the number of tasks and workers varied from 1 to
10, and 1 to 5000 respectively.

The result shows that the larger the number of tasks,
the higher the execution time for task matching, for all
approaches. For example, if the number of tasks was three,
it took lesser time than when the number of tasks was 10.
In both cases, the number of workers was the same, which is
1000 for timestamp 1 and 2. This could be due to thematching
mechanism consumedmore execution time when allocating a
large number of tasks to a large number of workers at a single
instance. Note that in most of the rounds, for a large number
of workers, the BN performed better than other approaches,
and the Genetic performed better than the kNN, W-kNN and
Greedy.

Figure 7 shows the results of the runtime performance
comparisons of the approaches. The results indicate a task
allocation lifecycle of 60 seconds which comprised of task
matching between 171 tasks and 55640 workers by the SAT
server, using six timestamps. The overall observation showed
that our proposed Bayesian Network-based task matching
approach performed the best for all timestamps (average
execution time 20.72 ms), and Greedy revealed the least
performance (32.62 ms). The Genetic showed the second
best performance (23.21 ms), and the KNN (25.24 ms) and
W-KNN (26.75 ms) showed the third and fourth best perfor-
mance respectively in most of the cases.

Our proposed approach (BN) also produced the fastest
task matching predictions when applied to large datasets
as compared to other approaches, due to its less complex
calculations. For instance, the parameters of the proposed
BN approach i.e., the apriori and conditional probabilities,
were ‘learnt’ or determined by using a deterministic set of
steps. This involved two fundamental operations, which first
calculated the prior and class conditional probabilities, and
then counting and dividing. There was no iteration, epoch or
optimisation of a cost equation. Moreover, in our approach,
there is no error back-propagation involved, thus speed up the
training process.

In contrast, Genetic algorithm (GA) took comparatively
more time than BN. This is due to its concept of group for-
mation in Group-based Multi-Task Worker Selection which
starts from group size equals 1, and it is incremented grad-
ually up to the maximum group size. This leads the GA
to consider various attributes of each of the workers in
the population. Each individual in the population is eval-
uated and given a fitness score based on how well they
solve the particular problem. The higher the individual’s
fitness score, the greater their probability of evolving. The
repeated fitness function evaluation results in increasing
the rate of mutation, which may cause high computational
time [40].

The kNN algorithm, including the W-kNN, took a long
time to calculate because of the distance calculations required
for each new cases found among the instances. As the
classification time was directly related to the number of
data [42], it means that the bigger the dataset, the more
extensive distance calculations need to be performed. This
caused the classification process to become extremely slow.
It is observed that W-kNN took relatively higher time than
the kNN. This is due to the former’s additional arithmetic
operations such as multiplication of weights with each of the
variables (expertise, distance and workload) which may cost
higher computational times.

In the Greedy algorithm where the optimal result was
required, the problem was solved in stages. In each stage,
one input was considered for a given problem, and if that
input was feasible, then it would be included in the solution.
Therefore, by including all those feasible inputs together,
an optimal solution can be found. However, for many prob-
lems, there was no guarantee that making locally optimal
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TABLE 5. Comparison of algorithms in terms of execution time (milliseconds) on uniform dataset.

improvements in a locally optimal solution could provide an
optimal global solution. Furthermore, the Greedy algorithm
made decisions based on the information it has at any one
step, without considering the overall problem space. Hence,
it often failed to solve cases that involve a complex problem,
such as the Knapsack problem [43], which involved deciding
which subset of items to be considered, based on a set of

items, for achieving optimal results. Since optimal worker
selection in task matching is a complex problem due to the
various task specifications and workers attributes, it led the
Greedy algorithm to find optimal choice for each of the
attributes, at the expense of high computational time. To sum
up, our experimental findings indicate that the proposed
approach was able to outperform other baseline approaches in
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FIGURE 7. Time performance analysis of a 60 secs task allocation lifecycle.

terms of the efficiency of the task matching when allocating
heterogeneous tasks to SC workers.

VI. CONCLUSION
Task matching efficiency is still an issue in a heteroge-
neous task allocation environment for Spatial Crowdsourc-
ing. In this study, we proposed a framework that can
efficiently select the optimal workers for every heterogeneous
task in SC, based on the knowledge about tasks specifi-
cations (geographical proximity, domain types, and expira-
tion times) and workers’ attributes (workers’ domain-specific
knowledge, expertise, travelling distance, workload). Tasks
are clustered and scheduled by using k-medoids partitioning
technique. Bayesian Network is then used to select and match
optimal workers for every task. To determine the efficiency
of our proposed framework, we evaluate the accuracy of
its task matching approach, and its runtime performance.
The accuracy of the task matching process is determined by
the percentage of the average error rate. Our experimental
results show a significantly low average error rate in our
proposed approach as compared to other approaches, which is
at 10.4%. The runtime performance of our approach against
other baseline approaches is measured by the average exe-
cution time. The results demonstrate that our approach has
the fastest average execution time at 20.72 ms, followed by
GA (23.21 ms), KNN (25.24 ms), W-KNN (26.75 ms) and
Greedy (32.62 ms).

In conclusion, our proposed framework is proven feasible
to efficiently match the right task to the right worker in
a heterogeneous tasks specifications and diverse workers’
attributes. For our future work, we would incorporate the
aspects of trustworthiness into the framework, and investigate
the impact of the proposed approach on both workers and
tasks requesters satisfactions.
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