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ABSTRACT Welding quality directly affects the welding structure’s service performance and life. Hence,
the effective monitoring welding defects is essential to ensure the quality of the weld structure. Owing to
the non-uniformity of the shape, position and size of welding defects, it is a complicated task to analyze and
evaluate the acquired welding defects images manually. Fortunately, deep learning has been successfully
applied to image analysis and target recognition. However, the use of deep learning to identify welding
defects is time-consuming and less accurate due to the lack of adequate training data samples, which easily
cause redundancy into the classifier. In this situation, we proposed a new transfer learning model based
on MobileNet as a welding defect feature extractor. By using the ImageNet dataset (non-welding defect
data) to pre-train a MobileNet model, migrate the MobileNet model to the welding defects classifica-
tion field. This article suggested a new TL-MobileNet structure by adding a new Full Connection layer
(FC-128) and a Softmax classifier into a traditional model called MobileNet. The entire training process of
TL-MobileNet model has been successfully optimized by the DropBlock technology and Global average
pooling (GAP) method. They can effectively accelerate the convergence rate and improve the classification
network generalization. By testing the proposed TL-MobileNet on the welding defects dataset, it turned out
our model prediction accuracy has arrived at 97.69%. The experimental results show that in several aspects,
TL-MobileNet have better performance than other transfer learning models and traditional neural network
methods.

INDEX TERMS Welding defects classification, feature extraction, deep learning, DropBlock, transfer
learning, MobileNet.

I. INTRODUCTION
As one of the main methods to connect workpieces, welding
is an important part of the machine manufacturing line. Due
to the influence of the environment and welding process,
it is inevitable to produce various defects such as porosity,
cracks and slag inclusion. Therefore, the study of the weld-
ing defects detection method has far-reaching significance
for controlling product quality, improving service life and
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economic benefits. Usually, non-destructive testing (NDT)
methods for welding defects mainly contain three categories:
visual inspection [1], X-ray testing [2], [3] and ultrasonic
testing [4], etc. In general, identification of defects in X-ray
images is considered to the basic requirement for control-
ling welding quality in many industries. Based on X-ray
evaluation theory, defects testing ways can be divided
into manual the evaluation and computer-aided detection.
Computer-aided detection technology relies on artificial
intelligence technology to resolve disadvantages in manual
evaluation process, such as time consumed and subjective
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evaluation results. Thus, it has become a hot spot for more
and more researchers and engineers.

Some image preprocessing techniques like image noise
reduction [5], contrast enhancement [6], [7] and area of inter-
est segmentation were used to segment the weld seam area in
X-ray image to make the defect target area more prominent.
In the defect classification stage, it is necessary to design
a reliable classifier to distinguish different types of defects,
presently many researchers have studied and discussed the
development of different classification algorithms. Machine
learning methods such as artificial neural network (ANN),
support vector machine (SVM) and fuzzy system are the
most widely used in the field of X-ray image defects recog-
nition. The prime application of fuzzy theory in the field of
welding defects detection was in the late 1990s [3], Liao [8]
studied a fuzzy expert system method for classification of
X-ray defect types, which has better classification accuracy
than fuzzy k-nearest neighbor and multi-layer perceptron.
Baniukiewicz [9] investigated a new type of compound classi-
fier composed of fuzzy system and ANN. But there is a com-
promise between accuracy and interpretability in fuzzy defect
detection. SVM and ANN are the most commonly usedmeth-
ods in defect detection. El Ouafi et al. [10] established a weld-
ing quality evaluation method of ANN by simulating welding
parameters (welding time, current, voltage, thickness, etc.).
Zapata et al. [11] modified the ANN to improve the detec-
tion accuracy of individual and overall defect characteristics.
Yuan et al. [12] studied adaptive organization and adaptive
feed-forward neural network to figure out the essential fea-
tures of defects and effectively reduce identification errors.
In order to obtain high accuracy and improve the efficiency
of classification. Mu et al. [13] proposed an automatic clas-
sification algorithm combining principal component analysis
(PCA) and SVM for selecting the optimal dataset. Inspired
by this, Chen et al. [14] applied bees algorithm (BA) to
extract defect features, used hierarchical multi-class SVM
to obtain the accuracy up to 95%. Qi et al. [4] and
Manasa and Nagarajah [15] provided an idea on how to
optimize the feature redundancy process and improve clas-
sification efficiency and accuracy. Also, Extreme learning
machine (ELM) is often used in image classification research
because of its advantages in learning rate and generaliza-
tion ability [16]. Su et al. [17] established an automatic
defect identification system for solder joints by extract-
ing texture features of welding defects. Han et al. [18]
combined M-estimation with ELM and proposed a new
ME-ELM algorithm, the algorithm can effectively improve
the anti-interference and robustness of the model, and has
high accuracy in the prediction of welding defects. Usually,
these shallow machine learning methods are combined with
the feature extraction process, which ultimately affects the
machine learning prediction results. However, it is difficult to
know which features should be extracted. Consequently, it is
necessary to design efficient Deep Learning (DL) methods
to realize automatic feature learning and welding defects
prediction.

As a new field of machine learning, DL shows great
potential in the field of defect detection, by continuously
reducing the dimension in the process of feature learning to
avoid the influence of feature extraction on the identification
results, effectively improving the accuracy of defect detec-
tion. DL method has been applied to defect detection, includ-
ing convolutional neural network (CNN) [19], deep belief
network (DBN) [20] and sparse auto-encoder (SAE) [21].
Wang et al. [22] proposed a deep learn-based algorithm for
X-ray image multi-defect type classification and automatic
position recognition. Zhang et al. [21] studied SAE and par-
ticle swarm optimization (PSO) algorithm to realize real-time
detection of welding defects. In addition, Hou et al. [19]
adopted random oversampling, random under-sampling and
synthetic minority over-sampling techniques to solve unbal-
anced sample defected dataset problem, and used deep con-
volutional neural network to identify porosity, cracks, slag
inclusion and lack of penetration defects with an accuracy
rate of 97.2%. Zhang et al. [23] achieved a high prediction
accuracy on relatively small datasets of welding defects based
on VGG-16 full convolution neural network. Nevertheless,
in some areas the sample size is relatively small, which affects
the prediction results. Thus, many researchers use transfer
learning to overcome the problems of small samples, and use
the deep CNNmodel trained on ImageNet as a feature extrac-
tor to migrate to the small dataset in another field and obtain
good results [24]. It is worth noting that these small datasets
are completely different from ImageNet. Zhang et al. [25]
studied medical images by transfer learning methods and
then obtained an identification accuracy of 97.041%.
Ren et al. [26] researched the automatic surface detection of
Decaf model based on deep transfer learning. Compared with
other methods, the accuracy of Ren’s method was improved
by 0.66%-25.5% in classification task and 2.29%-9.86% in
seven-minute defect detection. Yang et al. [27] used the
mixed layer strategy to extract different scale features and
obtained a high recognition accuracy in the small dataset mil-
itary target recognition in the end. Since DL method achieves
good effect in feature learning and avoids the influence on
the prediction result, it has shown great potential in welding
defects classification.

It is difficult to train the deep CNN model without a good
training dataset, especially for the small sample size of weld-
ing defect labels. Thus, we proposed a new image recognition
and classification method for welding defects, which com-
bines the transfer learning algorithm and MobileNet model,
namely TL-MobileNet model. This TL-MobileNet model
has three advantages. (1) It can solve the problems of low
prediction accuracy and time-consuming, which are induced
by insufficient welding defects learning samples. Because
this model combining transfer learning theory with trained
MobileNet model form a welding defects feature extractor.
(2) It has an enhanced feature extraction capability, since it
added a new Fully Connected layer (FC-128) and a Softmax
classifier after the MobileNet. The network layer structure
gets deeper and the feature extraction level increases, the final
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classification accuracy will be improved. (3) It can prevent
the occurrence of over-fitting, and has a good generalization
ability. Because the Global average pooling (GAP) and Drop-
Block are integrated for the utilization of optimizing the entire
training process in the TL-MobileNet model. This proposed
TL-MobileNet will be tested on a welding defects dataset.
And its good effect in welding defect recognition also will be
proved by comparing with other methods (such as traditional
MobileNet, Xception, VGG-16, VGG-19 and ResNet-50).

The rest of this paper is organized as follows: Section II,
proposing the related welding defects classification model
TL-MobileNet and DropBlock optimization algorithm;
Section III, Experimental research on the classification
of welding defects based on TL-MobileNet model; and
Section IV, presenting the conclusion and future research
work.

II. ARCHITECTURE OF THE PROPOSED APPROACH
It is difficult to train a deep network structure with a small
number of labeled samples in the welding defect recogni-
tion field, compared with the well-trained ImageNet dataset
model with 14 million labeled images. Hence, the pro-
posed TL-MobileNet model integrates Transfer learning &
MobileNet for improving the classification accuracy of weld-
ing defects. the training process of TL-MobileNet is address,
and the performance evaluation method of welding defect
classification model is presented.

A. TL-MOBILENET WELDING DEFECTS CLASSIFICATION
MODEL
1) TL-MOBILENET STRUCTURES
The weights and features of the MobileNet model are
pre-trained in the source domain ImageNet [28] dataset (non-
welded dataset), then they are transfer to the target domain
for welding defects classification (Fig 1). The target domain
does not use random initialization to start the data learning
process from the beginning, and the model parameters are
shared between the source domain and the target domain,
so this method will help to improve the learning efficiency.
In order to achieve the perfect classification effect of model
training, the weights and features parameters of the train-
ing model of the migrated welding defect image dataset are
fine-tuned.

FIGURE 1. TL-MobileNet based on transfer learning model.

The structure of TL-MobileNet as shown in Fig 2, which
includes three parts: 1) Data preprocessing, 2) Pre-trained
MobileNet model initialization and 3) Defect classifier. The
pre-training MobileNet model is composed of many con-
volutional layers, pooling layers and FC-1024. The number
of neurons in the hidden layer of FC layer is 1024, which
has 28 layers (1+2∗13+1=28) and is taken as the feature
extraction layer for welding defects. The defect classifer has
a Fully Connection layer FC-128 (new layer) and Softmax
classifiers for improving the accuracy ofwelding defects clas-
sification. Thus, the TL-MobileNet has a depth of 29 layers.
The Residual Connection Block (RCB) is the most important
element forMobileNet. The RCB-1 and RCB-2 structures are
used in the pre-trained MobileNet model (Fig 2b) to prevent
gradient explosion. For welding defects classification, the
multiple RCB-1 and RCB-2 blocks are superimposed after
inputting the first convolution layer Conv3-32.

In Fig 2, the Conv3-128 indicates that the filter size
in the convolutional layer is 3 × 3 and its depth is 128.
Conv1-128 indicates that the filter size in the convolutional
layer is 1 × 1. FC-128 represents 128 neurons in the full
connection layer. It is worth noting that the structure of
Conv1-512 has 5 layers.

2) RESIDUAL CONNECTION BLOCK
The RCB is based on the idea of shortcut connection to skip
convolutional layers, which will help optimize the parameters
of the training process and avoid the problem of gradient
explosion in back propagation of errors.

RCB consists of multiple convolutional layers, batch
normalization [29] and Rectified linear unit [30] (ReLU)
function. Two different structures RCB-1 and RCB-2 are
shown in Fig 3. RCB-1 represents stride=1 and the input and
output feature sizes are the same, so the input and output are
directly added, and F(x) represents the non-linear function
of the convolution path, then the output of RCB-1 can be
expressed as equation (1). RCB-2means that the stride=2 and
the input and output feature sizes are different, then the output
of RCB-2 can be expressed by equation (2).

y = F(x)+ x (1)

y = F(x) (2)

B. OTHER RECOMMENDATIONS
1) DATA AND PRE-PROCESSING
For x-ray images, segment image blocks establish a welding
defect dataset according to the size of the network input. Then
we divide the dataset into training data and test data, and label
different defects.

2) PRE-TRAINED MOBILENET MODEL INITIALIZATION
The weights of the pre-trainedmodel on the ImageNet dataset
are re-saved to the MobileNet feature extractor to classify
welding defects (Fig. 2). Then the depth-separate convo-
lution applies several filters to the local area of the input
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FIGURE 2. Technology Roadmap of the TL-MobileNet for welding defects classification.

FIGURE 3. Residual connection block.

image to obtain the feature map of the welding defect image.
When the input image block size is m∗m, the given filter
convolution process can be presented as in equation (3).
Generally, the pooling layer is used to implement the
downsampling operation behind the convolution layer for
reducing the feature dimension and preventing the over-
fitting. Thus, this model can extract a wider range of
defect features. The maximum pooling process is shown in
equation (4).

fi,s = soft max(wixs + bi) (3)

pools = max(xs) (4)

where wi represents the weight of the filter, xs represents the
input data, bi is the bias of the filter i, and σ represents the
activation function.

3) DEFECT CLASSIFIER
Defect features, obtained through pre-training, are input to
the New Layer FC-128 and Softmax defect classifiers for
training, and the final output is the probability of different
classes of welding defects. During the training process, reg-
ularized DropBlock technology and GAP are used to reduce
the amount of parameter calculation for the Fully Connected
layer, prevent network over-fitting, and improve the accuracy
of defect classification.

C. PERFORMANCE EVALUATION USING CONFUSION
MATRIX
A traditional confusion matrix method is used to evaluate
the learning performance of TL-MobileNet. In the image
classification, the confusionmatrix is mainly used to compare
the classification with the actual measurement value for
describing the accuracy of model classification intuitively
and accurately. the distribution of five kinds of welding
defects can be directly identified by using the confusion
matrix, and the evaluation indicators are shown in
equation (5) and equation (6).

precision =
TP

TP+ FP
(5)

sensitivity = recall =
TP

TP+ FN
(6)

where TP (True positive) is the real example, FN (False
negative) is the false negative example, FP (False positive)
is the false positive example, TN (True negative) is the
true negativeexample, precision indicates accuracy, and recall
indicates recall rate.

The Fscore is used to evaluate the classification perfor-
mance of TL-MobileNet on different types of defect datasets,
which is shown in equation (7). If the value of Fscore is closer
to 1, then the performance of model classification for various
defects is better.

Fscore =
2 ∗ precision ∗ recall
precision+ recall

(7)

III. EXPERIMENTAL RESULTS
A. WELDING DEFECTS DATASET
The dataset for subsequent experimental studies was from the
public database (namely GDXray), which was provided by
the BAM federal institute for materials research and testing in
Berlin, Germany [2]. The ‘‘welding’’ defects in this database
contain 88 defect images with different types and sizes. Based
on prior knowledge cropping, defect samples were selected
from the defect images by manual, and then the different
defects were assigned class labels and added to the ’Weld
defect’ dataset as shown in Fig 4. There are total 6,208 defect
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FIGURE 4. The establishment of the welding defects dataset.

TABLE 1. Welding defects dataset example.

TABLE 2. Experiment setting variables parameters.

samples, which contain five types of defects: non-defective
(ND), lack of penetration (LOP), porosity (PO), slag inclu-
sion (SI) and crack (CR) as exhibited in Table 1. The training/
test ratio of the experimental data is set as 8: 2. That is,
80% of the experimental training data is randomly selected
from the defect database, and the remaining 20% is used as
the test dataset. It should be noted that the samples in all the
training dataset are completely different from the samples in
the test dataset.

B. EXPERIMENTAL IMPLEMENTS
The experimental running environment is Ubuntu18.04 with
GTX 1080Ti GPU, and the programming environment is

implemented by python3.5. Where in Keras uses TensorFlow
as the backend. All models can be found in Keras application
website: https://keras.io/applications/.

Here, the feasibility of applying transfer learning to
welding defects classification is demonstrated based on
the Fig.2 (b). The performances of TL-MobileNet is com-
pared with different transfer learning models (MobileNet,
Xception, VGG-16, VGG-19, ResNet-50). During the train-
ing process, the variables / adjusted parameters were used as
shown in Table 2. We use the ‘‘step’’ learning strategy. The
basic learning rate of other transfer learning models is set to
0.001∼0.0001 and decreases every 5 epochs with the factor
of learning rate decaying 0.5. DropBlock is set to 0.8 in the
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TABLE 3. Comparison results of TL-MobileNet model and transfer learning models in 32× 32(%).

TABLE 4. Detection results of TL-MobileNet model and transfer learning models (32× 32× 3).

TL-MobileNetmodel, whereas other transfer learningmodels
do not have such optimized technique in the convolution
process. Unless otherwise stated, all models are trained using
Adaptive Moment Estimation (Adam).

C. RESULTS AND DISCUSSION
The following section analyzed effects of different defects
pictures sizes on the model prediction accuracy, the
recognition efficiency and the model size, and discussed the
feasibility of applying transfer learning to welding defects
classification. In this research, the performance of different
transfer learning models in extracting defect features and
defect classification was proved.

1) EVALUATION THE EFFICIENCY OF WELDING DEFECTS
IDENTIFICATION(M=32)
The prediction accuracy of different models at an image
size m of 32 × 32 is shown in Table 3. All models ran
10 times. The mean accuracy and the minimum accuracy
of TL-MobileNet are 96.88% and 96.05%, respectively. The
best accuracy of TL-MobileNet is 97.75%, which is better
than the accuracy of other methods. The mean prediction
accuracy of MobileNet, Xception, ResNet-50, VGG-16 and
VGG-19 models are 95.94%, 96.80%, 74.16%, 95.59%
and 94.18%, respectively. These indicate that TL-MobileNet
model had good classification performances and was obvi-
ously better than other models.

The training parameters of experiment were set as Table 2.
And the results of the mean accuracy, running time and
model size of the entire classification process for differ-
ent models are presented in Table 4. The prediction accu-
racy of TL-MobileNet increases by 0.94% and 2.7% than

MobileNet and VGG-19, respectively. The TL-MobileNet
achieved 96.88% accuracy with running 182.46s. The accu-
racy of TL-MobileNet is 0.08% higher than that of Xception,
but its model size is only 12.5MB and the spent time is
about 2/3 of Xception. Because the TL-MobileNet employed
the deep separable convolution to compress and accelerate
in the training process, which can greatly reduce the num-
ber of model parameters. The TL-MobileNet model has less
calculation time and model size compare with other transfer
learning models, but it can acquire a higher prediction accu-
racy than other models. This indicates the TL-MobileNet has
a potential in welding defects detection.

2) THE INFLUENCE OF IMAGE SIZE M ON PREDICTION
ACCURACY
The influence of different input size m on the prediction
accuracy of the model was researched. The value of m was
set to 32 × 32, 64 × 64, 96 × 96.128 × 128, respectively,
which was more suitable for defect identification of different
sizes. The statistical parameters of running 10 times for each
model, such as the maximum (Max), minimum (Min), mean
accuracy and standard deviation (Std), were shown in Table 5.
It is obvious that with the increase of the input defect image
size, the accuracy of the model prediction will be improved
to a certain extent, and the mean accuracy and standard devi-
ation of TL-MobileNet are all better than those of VGG-16,
VGG-19 and ResNet-50.

When the value of m is 96 × 96, TL-MobileNet achieves
its best prediction result, and the best prediction accu-
racy is 98.95% by Xception model. Moreover. The pre-
diction accuracy of TL-MobileNet was 3.96%, 0.84% and
4.01% higher than that of VGG-16, VGG-19 and ResNet-50
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TABLE 5. Detection results of TL-MobileNet model and transfer learning models under different input sizes (%).

models, respectively. The prediction accuracy of Xception
is similar to that of TL-MobileNet. When m is 128 × 128,
the maximum of prediction accuracy of TL-MobileNet is
increase, but the mean accuracy decrease 0.25 than 96× 96.
However, the standard deviation of TL-MobileNet and
Xception all increase. The results in Table 5 indicate that the
image size can affect the defects identification and predic-
tion accuracy. With the increase of image size, the accuracy
of TL-MobileNet becomes significantly higher than that of
MobileNet, which demonstrates the proposed TL-MobileNet
is effective in welding defects identification.

Combined with the analysis of the experimental results
in Table 5, when the welding defects image size is increased
from 32 × 32 pixels to 96 × 96 pixels, the prediction accu-
racy of various transfer learning models is improved. This is
because when the size of the picture is increased, the details
extracted from the image that can describe the target fea-
ture are enlarged, accordingly the constructed TL-MobileNet
model can obtain and learn more welding defects features
from the enlarged picture, and improve the accuracy of defect
prediction. Nevertheless, when the welding defect picture
continues to increase from 96×96 pixels to 128×128 pixels,
TL-MobileNet model’s prediction accuracy rate drops. This
is precise because the image resolution is inversely propor-
tional to the picture size (resolution = pixel / size), when the
pixel size is fixed, the larger the size will reduce the resolution
of the picture, cause the picture to be blurry and some defects
to be overlapped, and also affect the prediction accuracy of
the model. In other words, it is not the larger the size of
welding defect image is, the higher the prediction accuracy of
small defects is. When the size of the welding defect image
exceeds a size (for our test the size is 96× 96), the accuracy
of welding defect prediction begins to decrease.

Confusion matrix is the most basic and intuitive method
to measure the accuracy of classification model. Accord-
ing to equation (5) ∼ equation (7), the confusion matrix
of the TL-MobileNet model is calculated, which repre-
sents the recognition results of welding defects for different

size images. In Fig 5, the row of confusion matrix rep-
resents the actual weld defect type and the column is
the predicted defect type. When the size of the input
image is 32 × 32, the accuracy of the PO prediction is
97.30% and the probability of being misclassified as SI
is 2.7% (Fig.5a). When the input image size is 96 × 96,
the best results of prediction accuracy achieved for differ-
ent welding defects (Fig.5c): the prediction accuracy of PO,
LOP, CR, and ND is 99.61%, 99.65%, 100 % and 100%,
respectively. However, when the input image size is
128× 128, the probability of SI being misclassified as PO is
as high as 8.29%, and the features of PO and SI feature
details begin to overlap which affect the model recognition.
It is obvious that the LOP, CR and ND are easily identified,
but PO and SI are very difficult identified and easily lead to
classification errors for any size.

In order to verify the prediction accuracy of the proposed
TL-MobileNet model, the TL-MobileNet model was com-
pared with other models for welding defect detection. The
other models include: back propagation (BP) [4], K-nearest
neighbors (KNN) [4], Extreme Learning Machine [18],
Histogram of Oriented Gridients (HOG) [19], Convolu-
tional neural networks (CNN) [31], artificial neural net-
work (ANN) [11], support vector machines with principal
component analysis (PCA-SVM) [13] and Extreme learn-
ing machine [17]). Table 6 represents the comparisons
between the accuracy of the proposed method and that
of other researchers in the prediction of welding defects
(the input image size 96 × 96). The TL-MobileNet and
ELM models have stronger robust than the KNN, ANN and
BP models. There are large differences (14.69%) between
the ANN and CNN models. It is worth mentioning that the
prediction accuracy of the Single-ELM model is 95.45%,
higher than that of other traditional neural network meth-
ods. However, the prediction accuracy of TL-MobileNet
is 97.69%, ranking the second highest in the queue, and
close to that of Ensemble-ELM with a value difference of
only 0.24%.
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FIGURE 5. Confusion matrix of TL-MobileNet results.

FIGURE 6. Visualization results of welding defects dataset for input size=96× 96× 3.

The visualization prediction results of a welding defects
by TL-MobileNet are shown in Fig 6. Obviously, in this test
identification process, the TL-MobileNet model has better
recognition for each welding defect type, and prediction type
is the same as the actual type without misjudgment. The
features of PO and LOP are significantly distinguishable.

However, sometimes the defect images for SI and CR are
similar and they are difficult to distinguish (Fig 6), which can
lead to misjudgments (Fig 5).

Table 3∼Table 6 indicate the proposed TL-MobileNet
model can obtain good results for different types of weld-
ing defects, even in small sample datasets. Because the
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TABLE 6. Mean accuracy of different methods.

TL-MobileNetmodel combined the transfer learning, FC-128
(new layer) and Softmax classifiers, it has the advantages in
feature learning. Furthermore, TL-MobileNet is better than
MobileNet, Xception, VGG-16, VGG-19, ResNet-50 and
traditional methods (such as BP, KNN, HOG, CNN, ANN,
PCA-SVM, ELM) in terms of average prediction accuracy
and standard deviation, which further shows the potential of
this model in welding defects detection.

IV. CONCLUSION AND FUTURE RESEARCHES
This paper proposes a TL-MobileNet for welding defects
detection. The experiments of welding defects classification
using the ’Weld’ dataset verify that the TL-MobileNet can
accurately identify specific defects on a limited number of
training samples. A number of experiments have been carried
out for various size images using different transfer learning
models. It proves that the proposed TL-MobileNet method
has better recognition accuracy with smaller model size and
less calculation time. The results demonstrate that the feature
extracted by TL-MobileNet is significantly better than the
traditional method in the classification task. The proposed
TL-MobileNet will be applied in the actual industry to
improve the accuracy of the defect identification for welding
products.

There are two limitations for TL-MobileNet: (1) building
datasets of the welding defect usually requires the prior
knowledge to manually select the defect image, which is
easy to be misclassified into other types of defects in the
selection process. (2) this study did not involve welding
defects in on-line detection. In the future, we will collect
more welding defect samples from diversified production and
working environments to expand the dataset. Furthermore,
to improve prediction accuracy and detection efficiency the
TL-MobileNet will be optimized and it will be implemented
on-line through deploying on the mobile terminal.
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