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ABSTRACT Throughout recent years, the progress of telemonitoring and telediagnostics devices for
evaluating and tracking Parkinson’s (PD) disease has become increasingly important. The early detection of
PD increases the consistency of the treatment of patients and ultimately allows it possible to achieve a rapid
diagnostic decision from an experienced clinician. In this paper, a proposed fog-based ANFIS+PSOGWO
model provided for Parkinson’s disease prediction. The proposed model exploits the advantages of the grey
wolf optimization (GWO) and the particle swarm optimization (PSO) for adjusting the adaptive neuro-fuzzy
inference system (ANFIS) parameters with the use of chaotic tent map for the initialization. The fog
processing utilized for gathering and analyzing the data at the edge of the gateways and notifying the local
community instantly. Compared to other optimization methods, many evaluation metrics used like the root
mean square error (RMSE), the mean square error (MSE), the standard deviation (SD), and the accuracy
and five standard datasets from repository of UCI machine learning that demonstrated the superiority of
the model proposed against the grey wolf optimization (GWO), the particle swarm optimization (PSO),
the differential evolution (DE), the genetic algorithm (GA), the ant colony optimization (ACO), and
the standard ANFIS model. Moreover, the proposed ANFIS+PSOGWO applied for Parkinson’s disease
prediction and achieved an accuracy of 87.5%. The proposed ANFIS+PSOGWO compared in producing
positive outcomes better than PSO, GWO, GA, ACO, DE, and some recent literature for Parkinson’s disease
prediction. The proposed model produced accuracy for the Parkinson’s disease prediction has outperformed
its closest competitors in all algorithms by 7.3%.

INDEX TERMS Parkinson’s disease (PD), metaheuristic’s algorithms, fog computing, Internet of Things
(IoT), adaptive neuro-fuzzy inference system (ANFIS).

I. INTRODUCTION
The Internet of Things, or 10T, is a world that is full of sensors
and actuators, robots, and computers that are connected and
able to communicate with larger networks. [oT can transform
the routine, regular devices into intelligent devices. These
digitally connected devices in the medical and healthcare
sector are receiving a lot of traction [1]. Integrating IoT with
medical applications has increased the efficiency of remote
health monitoring systems for the elderly or chronically
affected patients in need of long-term personal service [2].
A vast amount of data continually is provided by the medi-
cal sensors or wearable devices in the IoT health systems. The
data generated by IoT sensors are high-speed. Consequently,
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there are also very high amounts of data generated by the
IoT-based health monitoring system. This massive amount
of IoT generated data can be analyzed using the techniques
of machine learning. These techniques represent predictively,
detecting anomalies, and classification data. Classification is
the process of making a decision on a disease or of identifying
that a particular disease belongs to which class [3].
Concerning loT-cloud-based technologies, these systems
encountered several problems such as latency constraints,
data processing costs, and localization awareness [4]. CISCO
established an essential data processing method named fog
computing [5]. Using the fog, we can overcome the fun-
damental barriers described above for IoT-Cloud systems,
by processing data on the edge of the network and obtaining
immediate feedback from the local community [6]. Excel-
lent and successful cooperation between fog computing and
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IoT-enabled technology can support various advantages such
as improved service quality (QoS) in terms of data traffic
reduction, low response time, scalability, location aware-
ness, more exceptional user experience, and fewer bandwidth
requirements [7].

Parkinson Diseases (PD) is the second most prevalent
neurodegenerative disorder following Alzheimer’s disease,
affecting about 3 percent of the over 65-year-old popula-
tion [8]. The disease is a crippling neurological disorder;
its symptoms — tremors, stiffness, difficulty in walking, yet
deteriorate over time [9]. Early detection of PD improves the
quality of the patient’s health and ultimately makes it easier
for a knowledgeable practitioner to obtain quick diagnostic
judgements.

Strong and accurate clinical informatics systems are
required to identify the PD patients to provide the patient
with early diagnosis, and timely treatment to improve the
development of this disease. These systems are already striv-
ing to reduce the clinical workload [10]. The mechanisms
for determining PD depend on determining the nature of
symptoms using various device techniques. Among the most
common symptoms is the vocal problem, since, in the early
stages of the disease, most patients experience vocal abnor-
malities. Consequently, vocal-related health systems have a
dominant position in recent PD detection research [11]. The
results observed in the PD telehealth analysis indicate that
feature extraction and learning algorithms have a significant
impact on the consistency and efficiency of the proposed
program [12], [13].

One of the promising techniques that are playing a
significant role in prediction is machine learning (ML). ML,
especially when combined with data mining techniques,
is concerned with the development of algorithms which can
learn the pattern from known data to form the model, then
apply the model to an unknown data to predict the result [14].
Therefore, Machine learning and deep learning techniques
have been widely applied for the prediction of Parkinson’s
disease to improve its predicting performance as in [15]-[18].
These studies utilized different techniques like multi-layer
perceptron (MLP), support vector machine (SVM), artificial
neural networks (ANN), and random forest (RF) to handle the
Parkinson’s disease prediction and diagnosis.

Although these individual non-linear ML techniques per-
form better than classic models, such models suffer from
some overfitting and parameter optimization problems.
Therefore, hybrid models have been introduced to increase
predictive accuracy and overcome the weaknesses of the solo
models [19]-[21].

Adaptive neuro-fuzzy inference system (ANFIS) is a soft
computation approach that includes the powers of fuzzy
inference mechanisms as well as of artificial neural net-
works (ANN). ANFIS is driven by strong generalization
capacity with a quick and accurate learning process [22], [23].
We agreed to resolve the problem of Parkinson’s disease
prediction using ANFIS accordingly. However, the train-
ing of ANFIS parameters is a critical problem in terms of
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real-world implementation. The main concerns of researchers
in designing the ANFIS model is to update its parame-
ters so that improved precision achieved efficiently. Several
methods have developed for the training of these parame-
ters. These methods generally classified as deterministic and
probabilistic.

Deterministic techniques, including gradient descent (GD)
and least square estimator (LES), are slow and will not con-
verge in some cases. In contrast, metaheuristic algorithms
are population-based with the ability of global search. Each
individual in the population expresses a potential solution.
Moreover, the standard ANFIS training approaches use the
gradient descent (GD) technique, so there are many local
optimums since the chain rule used generates the gradient
calculation at each step.

For solving these issues, specific optimization algo-
rithms [24] have been developed, including differen-
tial evolution (DE), particle swarm optimization (PSO),
genetic algorithm (GA), and grey wolf optimization
(GWO) [25]-[27]. In this paper, we propose a model for
ANFIS’s parameters optimization using a hybrid of the grey
wolf optimization (GWO) and particle swarm optimiza-
tion (PSO). The proposed optimization model takes advan-
tage of the exploration capabilities of GWO, together with
the exploitation capabilities of PSO.

The contributions of this study include three parts. Firstly,
utilizing fog computing for reducing the latency that required
in many real-time applications, especially in healthcare sys-
tems. The fog in the proposed framework provides many
benefits. The fog takes the prominent role for feature extrac-
tion from IoT sensors and provides the principle functions
needed as data pre-processing. Moreover, the fog takes the
advantages to provide an expert system based on the retrieved
model from the cloud. Once a new model is available in the
cloud, its backup sent to fog. Accordingly, the fog saved up
to date model for providing users with advice or alert on
abnormal situations.

Secondly, a proposed ANFIS+PSOGWO model pre-
sented. This model takes the advantages of both the GWO
algorithm together with the PSO idea for adjusting the
parameters of the model of the adaptive neuro-fuzzy infer-
ence system (ANFIS). The PSOGWO algorithm used for
the ANFIS’s training procedure as a technique for parame-
ters adaptation. The adaptive parameters are located at the
fuzzification layer (premise parameters) and defuzzification
layer (consequent parameters). The PSOGWO start with ini-
tial solution generated using chaotic tent map rather than
random initialization. The PSO boost the proposed model
with its abilities in exploitation, together with the explo-
ration capabilities of GWO. To evaluate the efficiency of
the proposed PSOGWO model for ANFIS parameters opti-
mization, five datasets used with different evaluation criteria
like the root mean square error (RMSE), the mean square
error (MSE), the accuracy, and the standard deviation (SD).
The proposed model (ANFIS+PSOGWO) achieved better
results that outperformed all other compared methods like
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the differential evolution (DE), the grey wolf optimization
(GWO), the genetic algorithm (GA), the particle swarm
optimization (PSO), and the ant colony optimization (ACO)
algorithm.

Finally, the proposed model utilized for Parkinson’s dis-
ease prediction. The proposed model, based on the results,
achieved the least error rate in training and testing the ANFIS
model compared to other optimization methods. The main
contributions of this paper summarized in the following
points:

o A framework for Parkinson’s disease monitoring and
prediction.

o An improved model for ANFIS’s parameters optimiza-
tion using a hybrid of PSO and GWO (PSOGWO).

« Utilizing the chaotic tent map for the initial population
in PSOGWO.

o Comparing the proposed ANFIS+PSOGWO with

ANFIS+PSO, ANFIS+GWO, ANFIS+DE,
ANFIS+GA, ANFIS4+ACO, and standard ANFIS
model.

o Comparing the proposed ANFIS+PSOGWO with some
recent related work for Parkinson’s disease prediction.

The remainder of this paper proceeds to organize as fol-
lows: Section 2 summarizes the research carried out con-
cerning fog-cloud infrastructures, the ANFIS model and the
diseases of the Parkinson region. Section 3 outlines basic
concepts for the generic grey wolf optimizer (GWO) algo-
rithm, a standard PSO and the ANFIS adaptation system for
the neuro-fuzzy optimization of a particular swarm. Besides,
Section 4 illustrates in details proposed algorithm integration
and structure. The analyses and the corresponding results
presented in Section 5. Finally, in Section 6, other proposals
and some work for the future were proposed.

Il. LITERATURE REVIEW

A. ANFIS OPTIMIZATION

ANFIS provides all the benefits of neural networks, as well
as fuzzy systems. Training of ANFIS parameters is, however,
one of the main problems when applied to real-world appli-
cations. Many previous studies involved strategies addressing
the issue of ANFIS training based on different algorithms like
genetic algorithm (GA), particle swarm optimization (PSO),
and grey wolf optimization (GWO).

Based on the PSO, Lin et al. [28] proposed an approach
for training ANFIS parameters. The system focused on utiliz-
ing quantum behaving particle swarm optimization (QPSO)
for preparing an ANFIS’s parameter settings. For the def-
inition of the consequent parameters, the least square esti-
mate (LSE) applied while the premise parameters modified
by the QPSO algorithm. Hasanipanah et al. [29] proposed
a modern rock fragmentation forecasting technique utilizing
the ANFIS learning structure in conjunction with PSO as the
parameters optimization method. Their model has proved its
efficiency compared with support vector machines (SVM),
ANFIS and non-linear multiple regression (MR) models.
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Aghelpour et al. [30] developed an efficient adaptive
neuro-fuzzy inference system (ANFIS) model combined
with bio-inspired optimization algorithms for agricultural
drought monitoring using the least variables in the rain
gage-only sites. They used ANFIS-PSO (ANFIS merged with
Particle Swarm Optimization), ANFIS-GA (ANFIS com-
bined genetic algorithms), and ANFIS-ACO. ACO and GA
algorithms provide the highest performance for optimizing
ANFIS.

On the other hand, many studies were focused on explain-
ing the effect of the genetic algorithm for ANFIS param-
eters adaptation. Ghose et al. [31] developed and used the
non-linear multiple regression (NLMR) and the adaptive
neuro-fuzzy inference system (ANFIS) models for forecast-
ing rainfall from precipitation on river catchments. Both
models have utilized as learning models to predict the out-
put. Then, the genetic algorithm (GA) is connected with the
NLMR learning model to achieve the hydrological parameter
condition under which the runoff is maximal. The genetic
algorithm (GA) used to get the optimal control factor value
that maximizes the objective function. Sarkheyli ef al. [32]
established a new modified genetic algorithm (MGA) uti-
lizing a different population form to refine the simulation
parameters for ANFIS fuzzy rules and membership func-
tions. In the tunneling process, Elbaz et al. [33] established a
valuable multi-target optimizing model for the prediction of
earth pressure balance (EPB) shield performance. The genetic
algorithm (GA) implemented in this model with ANFIS pro-
cess. GA improves the precision of ANFIS by multi-objective
fitness function by adapting the corresponding parameters.
Datasets preprocessed before modelling and essential oper-
ational parameters defined via the study of principal com-
ponents analysis. Moayedi er al. [25] presented a model
with two-parameter optimizing algorithms, particle swarm
optimization (PSO) and genetic algorithm (GA), which are
primarily for calculation of the friction strength ratio (&) in
driven shafted sections.

GWO has proved its efficiency because of its discovery
capabilities. So, many previous studies have utilized GWO
for adapting ANFIS parameters. In Dehghani et al. [34],
they developed a model for predicting and modelling the
short-term to long-term influential flow rate. ANFIS and
GWO are merged to predict the rapid, short and long driven
flow rate. All of ANFIS’s parameters are optimized and
adjusted by GWO. In [35], they developed a model that
consists of the grey wolf optimization (GWO) algorithm
with the adaptive neuro-fuzzy inference system (ANFIS). The
model achieved better performance compared to the neural
network, support vector machine (SVR) and solitary ANFIS
models. Golafshani et al. [36] proposed a framework for the
compressive strength prediction of cost, energy, and time-
saving. They used the GWO algorithm for adjusting the initial
weights and parameters of the artificial neural network and
the adaptive neuro-fuzzy inference system techniques.

Moreover, many other algorithms were used for train-
ing the ANFIS model. Bui et al. [37] proposed a new
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metaheuristic method, in particular, an algorithm for whale-
optimization (WOA), which adopted 28 days for the eval-
uation of concrete compressive strength (CSC). The WOA,
coupled with a neural network (NN), is used to optimize
its computing parameters. The strategies of optimization of
ant-colony (ACO) and optimization of dragonfly algorithm
(DA) often considered benchmarking. Penghui et al. [38]
developed a model for predicting soil temperature (ST). The
model consists of a neuro-fuzzy hybridized adaptive deduc-
tion method with mutation salp swarm algorithm (SSA) and
an optimization algorithm of the Grasshopper (ANFIS-mSG).

ANFIS model proved to be an outstanding statistical tool
for different computer applications. Based on the literature,
because of its ability to compensate for data uncertainty,
the ANFIS model is a robust and intelligent simulating model.
ANFIS challenge is, however, concerned with the question of
parameters optimization. Although traditional optimization
algorithms of ANFIS produce better estimation outcomes
than mathematical and computational approaches, they are
just searching for a local optimum solution.

B. IoT BIG DATA ANALYTICS INFRASTRUCURES

Big data has different sources and strategies for storage and
analysis. In many decision-making and forecasting areas,
for example, business analytics, transport, web advertising,
recommendations, healthcare, clinicians, the identification
of fraud and tourism commercialization, big data played a
significant role. Sood et al. [39] suggested a DENF-based
cyber-physical system (CPS) supported by dew-cloud. This
method detects dengue fever (DENF) and tracks the impact
on essential body organs of DENF infection. This method
uses the linear discriminant analysis (LDA)+ANFIS for dew
space classification to detect DENF and quickly track the
likelihood of coronary heart disease (CHD) of users affected
by the DENF. Vidhya and Shanmugalakshmi [40] exam-
ined multiple diseases using a modified adaptive neuro-fuzzy
inference system (M-ANFIS). Data integration and features
extraction are used for data preprocessing. Their model
combines the closed frequent itemset (CFI), M-ANFIS, and
k-medoid clustering.

Manocha et al. [41] suggested a paradigm for measuring
patient physiological and environmental factors to forecast
general anxiety disorder (GAD)-induced wellbeing adversity.
They used a hybrid structure which consisted of a cloud
storage layer with fog. At the fog layer, weighted-naive
Bayes (W-NB) classifier is used for classifying the collected
data to forecast abnormal health incidents. The suggested
two-phase decision-making approach helps to improve the
delivery of the medical resources needed by assessing the
risk scale. They also employed the adaptive neuro-fuzzy
system-genetic algorithm for cloud calculation of health vul-
nerability indices. Khanna and Sachdeva [42] introduced a
framework for forecasting and predicting flood. The structure
utilized fog computing, mobile edge computing, and cloud
computing, together with a sensing network based on I0S.

VOLUME 8, 2020

They used the adaptive neuro-fuzzy inference system for
flood prediction.

C. PARKINSON'S DISEASE (PD)

The recent study of Parkinson’s disease mechanisms has
generated significant insight and, at the same time, chal-
lenges traditional conceptual frameworks. Tsanas et al. [43],
explained how precise speech signal processing algorithms
could be used to discriminate healthy controls against PD sub-
jects. Through the feature selection process, they used various
folds of data using minimum redundancy maximum relevance
(MRMR), local learning-based feature selection(LLBFS),
RELIEF, and least absolute shrinkage and selection operator
(LASSO). Reduced data fed to support vector machines and
random forests classifiers. The results showed the superiority
of support vector machines with RELIEF.

Parisi et al. [44], designed a program for rapid PD diag-
nosis using a modern hybrid artificial intelligence classifi-
cation based on lagrangian support vector machine (LSVM)
and multi-layer perceptron (MLP). The research details
were provided by the University of California-Irvine (UCI)
machine learning database, which had sixty-eight assess-
ment instances and clinical abstract. Sakar et al. [45] used
a function extraction technique, the tunable Q-factor wavelet
transform (TQWT) to PD patient voicing signals. The fea-
ture subsets are given for different classifiers, and they used
the ensemble learning. Gunduz [46] offered a couple of
architectures focused on convolutional neural networks pro-
vided the range of vocal (speech) features in Parkinson’s
disease (PD).

Ill. MATERIALS AND METHODS

A. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)

ANFIS is a practical Al method built by the Jang [47] that imi-
tates human thinking to solve inaccurate problems. ANFIS
is a simple data-learning technique that uses fuzzy logic
to convert inputs of highly interconnected neural network
processing elements and information connections into the
desired output. Since ANFIS incorporates both the ANN
and the fuzzy inference method, it can manage non-linear
and complex problems within a unique structure. ANFIS is
a common functionally efficient approximator in which the
information between the problem’s input and output variables
interpreted as a set of rules in the form if-then. ANFIS usually
includes five layers: fuzzification, product, normalization,
defuzzification, and summation.

ANFIS’s network architecture consists of two node types:
fixed and adaptable. Such layers are composed of multiple
nodes identified by the node function. The efficiency of the
network depends primarily on the adaptable parameters in
the nodes. The guidelines for network learning change spe-
cific parameters settings for minimizing the error between
actual and the desired output. The ANFIS architecture seen
in Fig. 1 with two inputs and one output [48]. To explain
the structure of ANFIS, two of the rules based on the fuzzy
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Layer 1 Layer2 Layer 3 Layer 4 Layer 5

Premises parameters Consequent parameters Output

Forward pass

Fixed JI } Least square estimator H Error rates. J
P Backward pass ‘ i
Gradient descent ;_ I Fixed } !

FIGURE 1. ANFIS architecture.

inference method Takagi-Sugeno form considered:

Rule 1: If xis Ay and yis By, thenfi
=pix+qy+n ey

Rule?2 : If xis Ay and y is By, thenf,
=px+qy+n (2)

A1, Ay, By, and B are fuzzy sets for x and y inputs. p1, p2, q1,
q2, 11 and rp are the parameters of the defuzzification layer.
The ANFIS model output shall be f. In IF part, parameters are
referred to as precedent or premise parameters; in Then part,
parameters are known as consequential parameters. Layer 1
(the premise) and Layer 4 (the consequent part) nodes are
adaptable while layer 2 (the product) and layer 3 (the nor-
malization) nodes are fixed. As in Fig. 1, the ANFIS model in
five layers consisting of two inputs and one output described
in the following steps [36], [49]-[51]:

Layer 1: the first layer named the fuzzification layer, any
node i is an adaptive membership function of this layer.
Typically, any parameterized functions may be a membership
function, i.e., for a linguistic label or a fuzzy set; generalized
Bell, trapezoidal, Form of the triangle, or Gaussian. E.g.,
the Gaussian membership function described as follows by
a couple of parameters (c, 0):

yEl) = Guassian (x :c,0) = 67%(%)2 3)
while Gaussian membership parameters regulated by center
¢ and width o, these parameters often pointed to as premise
or antecedent parameters. ygl) is the output of this layer.

Layer 2: is the product layer. Each node in this layer
reacts to a single sugeno style fuzzy rule. Nodes in this layer
collect inputs from the respective fuzzification neurons and
determine the firing strength of the rule they represent. As a
consequence, the output of neuron obtained in layer three as,

@O_717" @
v =TT~ @)
Q@

). . . .
where xj o is the layer input from layer 1(j) to layer 2(i) and

the output is ygz) for any neuron i in the product layer.
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Layer 3: is the normalization or standardization layer.
Nodes in this layer accept feedback from all the product layer
neurons and measures a defined rule’s weighted firing power.
In this layer, the result of neuron i is thus defined as,

(3)
X
ji -
— = = i ©)
3)
Z;l:l Xji
where x

;i represent the input received and generated accord-
ing to neuron j from the product layer to neuron i in the
normalization layer. y§3) denote the output of layer 3.

Layer 4: defined as the layer of defuzzification. The
defuzzification nodes are considered modifiable or adaptable
nodes. The neuron of the defuzzification layer measures the
corresponding weighted, measured value of specific rule as:

3
=

(€)

W= xi(4) [kio + kit + kiz] = w; [kio + kit + k]~ (6)

i
where x¥ is the layer 4 input while the output is .
L L

kio,ki1, ki» are the consequent parameters of rule i.
Layer 5: the output of this layer is the overall output for the
model, which aggregate all previous layer outputs.
y= Z; Y = Z:;l Wi [kio + kit + kiz] )
The ANFIS learning process consists of updating its
modified parameters by using a two-pass learning algo-
rithm, forward- and backwards-pass. Using a hybrid gradi-
ent descent (GD) and least square (LSE) estimator, ANFIS
is training in its parameters for minimizing errors between
actual and desired output, as shown in table 1.

TABLE 1. Learing process of ANFIS model.

Forward Backward

Consequent parameters ~ Least square estimator ~ Fixed

Premises parameters Fixed Gradient descent

signals Output of each node Error

In forward pass of the learning algorithm, node outputs
go forward from layer 1 until Layer 4, and the consequent
parameters are determined by the least squares. In backward
pass, the error signals propagate backward from output layer
until input layer, and the premise parameters are updated by
GD algorithm. At this point, neural network learns and train
to determine parameter values that can sufficiently fit the
training data.

B. PARTICLE SWARM OPTIMIZATION (PSO)

Kennedy and Eberhart first implemented the PSO algo-
rithm and is still commonly used because of their common
and effective approach to non-linear optimization [52], [53].
Rather than using evolutionary operators to control the indi-
viduals, as in other evolutionary computational algorithms,
each individual in PSO flies in the search space with a
velocity that is modified dynamically depending on the best
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position of the particle (pbest) and the companion’s best
position (gbest). In PSO, each particle has a vector of position
and velocity. The ith particle can be represent as a vector of
d dimensions like xi = (xil, xi2, xi3, ....... , xid). Modify-
ing particle’s location and speed changed by the following
equations:

vizl = wvl 4 tcirand; (pbestf)d — xf‘d)
+cprand, (gbestﬁ’d — xl-t’d) 8)
t+1 r+1
Xiq _xd+vld )

where the values obtained from the range [0,1] for rand; and
rand; as random values, t indicates the current iteration and
i denote the particle number. The related constants ¢ and c;
are components of awareness and social features. The inertial
weight of w named for the previous velocity of particles. The
pseudocode represented in algorithm 1.

Algorithm 1 Particle Swarm Optimization

Input: < size (N), particle swarm position (X),
inertia weight (W), and learning factors
{c1,c2}, number of iteration (Tyax), and the
solution dimension (d).

Output: < Optimal solution (gpest)

1. Begin
2 while t < Tax
3. Fitness evaluation of the particle swarm
4 Fori=1:N
5 Find ppest (the best solution of each
particle)
6 Find gpest (the best for all particles)
7. Forj=1:d
8. Adjust velocity by (8)
9 Adjust all positions by (9)
10. End for
11. Update W by some corresponding
strategy
12. End for
13. End
14. End

C. GREY WOLF OPTIMIZATION (GWO)

GWO is listed as top predators and is at the height of the food
chain. Grey wolves often like to live in a pack. The average
size of the group is 5 to 12. Of particular significance is their
possessing a very rigid system of social superiority, as seen
in Fig. 2 [54]. Gray wolf pack is made up of four levels named
alpha (o), beta (B8), delta (§), and omega (w). The alphas
lead the pack and responsible for taking the decisions (e.g.
hunting, sleeping, which wake-up time). The betas are the
subordinate wolves that support the alpha in making deci-
sions or other actions. The omega is the scapegoat’s role. All
other dominant wolves must always submit to omega wolves.
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The deltas must submit alpha and beta, but it is the omega’s

dominant.
p

FIGURE 2. Social hierarchy of GWO (top-down dominance).

Based on the design of the hunting strategy to capture their
prey, grey wolves regarded among the most sophisticated
optimization algorithms. It is because everyone in squad
remains in a rigorously structured crowd. So, the GWO algo-
rithm has recently developed to imitate grey wolves’ behav-
ior, which was inspired by the innate skill of grey wolves,
by the battle, scanning or circle their communications.

The first, second and third suggested alternatives in the
GWO method include alpha (@), beta (8) and delta (3).
Omega was an excellent choice for the applicants. The wolves
mathematically surround their prey during the hunting pro-
cess as follows:

— — —
D:‘C.XP—X(,) (10)
— — — —
X @+ = ‘XP(t)_ A D‘ (1D

where X ) and X p represents the positions of the gray wolf

and the Beast, respectively at iteration (t). A and C are
coefficient vectors and described by the following equations:

A = ‘2_(1).rand1 . (12)
Z’) = 2.rand?2 (13)

—_ —_ .
where rand1 and rand?2 are random vectors found in the set
[0,1]. @ is reduced linearly by the following equation from
2t00:

a=2—1%

14
T _total (14

where T_total define the total number of iterations. The loca-
tion of the grey wolf (X, Y) may be changed based on the
location of the prey (X, Y:). The position of the grey wo_l)f
can be modified with the best solution by adjusting both A

and C vectors. Fig. 3 displays a 2D place map on the grey
wolf’s next potential place.

All of the alpha («), beta (8) and delta (8) are respon-
sible for the potential positioning of the prey to simulate
the actions of hunting. The remaining wolves adjust their
conditions accoi()hng to the p0551ble three solutions: alpha,
beta and delta (X |, X 5, and X 3) as in Fig. 4. The position
updating process mathematically represented in the following
equations:

— — —
Xi+X2+X3)
3

—
X @+1) = (15)
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N
KX YRY) (resT) xyey)

FIGURE 3. Possible 2D location vector next positions.

FIGURE 4. Position updating in GWO.

— — - =
X1=Xa—A1.(Dy) (16)
— — - -
Xo=Xpg— A2.(Dyp) a7
- - - =
X3=Xs— A3.(Djy) (18)
where,
— - = —
Daz‘CIXa X‘ (19)
— - = -
Dﬁz‘czxﬁ X( (20)
— - = —
Ds :’C3 Xs— X‘ (21)

When targeting the interaction between its current position
and the interaction location, wolves change their place such
that |A| < 1. The wtﬂ;/es of Alpha (o), Beta (8), and Delta (6)
go after the beast. A ; which randomly diverts the wolves
from the victim by values above -1 or below 1. All stages
defined in algorithm 2 [55].

IV. THE PROPOSED METHODOLOGY

A. THE GENERAL ARCHITECURE OF IoT-BASED PD
PATIENT PREDICTION

The general infrastructure for Parkinson’s disease processing
and prediction presented in Fig. 5. The framework consists of
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Algorithm 2 The Grey Wolf Optimization Algorithm

N s D=

10.
11.

12.
13.
14.
15.
16.

Input: < size (N), number of iteration (Tpax), grey
wolf position (X), and the solution dimension

(d)

Output: <— Optimal solution (a)

Begin

Initialize A, C, and a by (12,13,14)

For t=1: Thax

For i=1:N

For j=1:d

- = —

Produce D o, D g, D 5 by (19,20,21)
Produce the solutions Xj, Xz, X3 by
(16,17,18)
Modify all the positions of wolves by
(15)

End for

End for

Evaluate the value of fitness function and

then modify «, 8, &

Modify a by (14)

Modify A and C by (12,13)

Determine Xq, Xg, X

End

End

three layers, namely the IoT layer, the fog layer, and the third
layer is the cloud layer.

b

2)

3)

The IoT layer: the data and services transmission sce-
nario starts from the first layer where data collection
and sensors setup. The IoT layer is responsible for col-
lecting data, environmental and behavioral data by inte-
grating multiple wearable smart sensors and generating
real-time data analysis.

The Fog layer: the fog layer responsible for storing
data that they arrive at fog when there is no cloud link.
It also contains a local personal classified model which
predicts the patient’s health status locally in the event of
internet disruption. So, the fog provides an expert system
for real-time user query and provides alerts for emer-
gency conditions. The fog layer can also make simple
pre-processing tasks. The data acquisition involves the
sampling of sensors data that measure physical condi-
tions in the real world and transform samples into digital
numerical values, which a computer can manipulate.
The data preprocessing involves several tasks such as
data transformation, data reduction, data integration, and
data cleaning [56]. Selecting the suitable preprocessing
task depends on the nature of the collected data and the
analysis process.

The Cloud layer: the cloud layer has many responsibil-
ities because of its capabilities for data storage and pro-
cessing. Since the less capacity for fog storage, the cloud
layer executes data storage and management functions
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FIGURE 5. The general model for Parkinson’s disease processing and prediction.

for long-term processing. In the cloud, the ANFIS model
training and optimization executed for Parkinson’s dis-
ease analysis and prediction.

As mention above, the fog provides an expert system,
according to the proposed architecture, the user of the sys-
tem may be the patient, caregiver, doctor, family member,
or emergence system for calling an ambulance or immedi-
ate intervention. In the following subsections (section b and
section c), the suggested particle swarm optimization with
grey wolf optimization (PSOGWO) algorithm for ANFIS
model optimization will be addressed.

B. THE PSOGWO ALGORITHM

Grey wolf optimization algorithms provide more outstanding
convergence properties when practicing several regular test
functions. In many practical problems, GWO is simple to
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operate and implement and work with few parameters. In the
GWO algorithm, the position updating process takes into
account only the first, second, and third solution neglecting
the best position of every wolf through its search. Therefore,
the concept of the PSO algorithm utilized to promote the cycle
of position updating. The current location of the particle is
updated in the PSO algorithm according to the ideal location
information for a particular particle, and the best position
data in the group. So, the hybrid combines the exploitation
potential of the particle swarm optimization (PSO) ability
with that of the discovery capacity of the grey wolf optimizer
(GWO) [57]. We have previously applied a hybrid model
that merges between the GWO and the PSO algorithms for
optimal feature selection [58].

The step of position updating modified to take into concern
four solutions is the three optimal solutions according to
GWO and the best-experienced solution for each particle
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according to PSO, as shown in algorithm 3. And hence the
updated position improvement equation will be as follows:

Xi(t+ 1) = ciry (w1 Xy (1) + waXp (1) + w3X3 (1)
+carp Kipest — X (D) (22)

where r1 and r, inside the interval [0, 1] and set randomly, ¢,
c; are for social and cognitive learning factors. X1, X5, and X3
are the optimal three solutions determined through equations
16,17, and 18. The set Xjpest gives the best position for each
grey wolf from the search beginning. The set wi, wo, and w3
are the inertia weight coefficients and estimated as follows:

1]
W= ———— (23)
lx1 + x2 + x3]
|x2]
Wy = —— 24
g |x1 4+ x2 + x3] e
|x3]
w3 = ——— (25)
|x1 +x2 + x3]

Rather than equation (14), the non-linear control variables
were used that worked better than linear optimization of the
technique, and presented as continues to follow:

2

) (26)

ar () = initial —(initial — afinal) X (
Tmax
where ajnitial and agipajare both the initial and final value of a
within the interval [2:0]. The actual iteration is t and the total
number of iterations is Tpyax.

C. ANFIS ADAPTATION USING THE PSOGWO ALGORITHM
In this paper, PSOGWO used to adapt both the ANFIS
model’s consequent and antecedent (premise) parameters.
The ANFIS training algorithms are the classical hybrid opti-
mization algorithm (GDLSE) which is a combination of two
algorithms, namely least square estimator (LSE) and gradi-
ent descent (GD). In this conventional hybrid method, LSE
supported for modifying the parameters of the then-part in
the forward transfer. While, in the backward transfer, GD uti-
lized to change membership settings as a means of back-
propagation, as seen in table 1. This table modified according
to the proposed model, as shown in table 2.

TABLE 2. Learning process of ANFIS with PSOGWO.

Forward Backward
Consequent parameters PSOGWO Fixed
Premises parameters Fixed PSOGWO

signals Output of each node  Error

Sticking to the local minima is a significant criticism
of GD, which can be avoided by metaheuristic algorithms
like the proposed PSOGWO algorithm. Since PSOGWO
is computationally less costly and incorporates discovery
and exploitation capacities, it implemented the function of
upgrading ANFIS parameters more flexible and quicker than
gradient-based approaches.
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Algorithm 3 The hybrid PSOGWO

Input: <— Total number of iterations (Tmax),
population size (N), learning factors {c¢1,c2},
grey wolf position (X), control parameter (a),
{ Qinitial» Afinal } for a, and the solution
dimension (d)

Output: < Optimal solution (e)

1. Begin

2. While t < Tiax

3. Modify a by (26)

4, Fori=1:N

5. Forj=1:d

- = =

6. Compute D o, D g, D 5 according to
(19,20,21)

7. Compute X1, X3, X3 according to
(16,17,18)

8. Compute w3, wa, Wi according to
(23,24,25)

9. Calculate Xpest // the
best-experienced solution for each
grey wolf

10. Update position according to (22)

11. End for

12. End for

13. Compute objective function and then modify
o, B, dvalues

14. End

15. end

In PSOGWO, the location of each particle reflects a full
collection of parameters for the ANFIS system. These loca-
tions include two settings for parameters. Firstly, the parame-
ters of a membership function. The second part of the solution
reserved for the coefficients of the sequential portion of the
fuzzy rule, as seen in Fig. 6. Due to the computing effort that
is necessary for the process of adaptation, the total number of
ANFIS modifiable parameters is an essential factor in ANFIS
network formation. The membership types should, therefore,
be carefully selected. Gaussian member type function, which
only takes two parameters, namely width and center, is better
than other types of member functions.

Premise Consequent Premise Consequent Premise

parameters of ~ parameterso  parametersof  parameters of

Consequent
parameters o parameters of
rule 1 rule 1 rule 2 rule 2 rulen rulen

FIGURE 6. Representation of PSOGWO position (solution).

The proposed overall PSOGWO cycle with ANFIS model
defined in Fig. 7. Data split at the model start into training
and testing. Each of which, training and testing, data selected
randomly.
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FIGURE 7. The proposed ANFIS model with PSOGWO optimization.

There are numerous irregular strategies for initialization,
including those concentrated on distributed samples (DS),
chaotic maps and some more. Chaotic number arrays have
been used in lately many applications instead of random
sequences of numbers. The essential characteristics of chaotic
motion are randomness, regularity, and ergodicity, that play
an important role in solving function optimization problem.
These characteristics helped the algorithms not to fall into
the local optima problem in order to preserve the appropriate
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diversity of the population and enhance global search capac-
ity. There are different forms of chaotic maps, such as logistic
maps and tent map. However, the search properties of various
chaotic mappings are different [57].

Though the logistic map is used in most of the literature,
nevertheless, it can lead to the inhomogeneous distribution of
values due to its higher value rate that range in [0, 0.1] and
[0.9, 1]. The tent map is one of the simplest chaos functions
that have been studied recently [59]. Experiments in [60]
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reveal that the tent map outperform much better than logis-
tic mapping in traversal homogeneity. It is able to improve
the speed of the algorithm by generating a more consistent
initial value between [0, 1]. The convergence property of the
proposed algorithm is based on the random number sequence
used to run the algorithm using different parameters [61].
Chaotic tent map utilized in the proposed model initial pop-
ulation that showed its efficiency and effectiveness rather
than the traditional methods. The tent map is mathematically
modelled as follow:

WX for 0 <x,, < 1
X1 = | 2 27)
w(l —xp)  for 5 <Xm=1
when p is estimated to 1+R and R randomly generated in
the range [0,1]. Any x¢ point of the interval is produced with
Xm in [0,1] as described above after the procedure has been
updated.
The fitness identified as a mean squared error (MSE) from
the target amount to the real performance, may have been
represented as:

Y (va—yh)°

m

MSE = (28)
where MSE denote mean square error, y/, is the target out-
put, y4 is the average output, and m represent the size
of the dataset. Step by step discussion for the proposed
PSOGWO+ANEFIS introduced in algorithm 4.

V. RESULTS AND DISCUSSION

Two experiments have been carried out in this analysis to
check the ANFIS-PSOGWO efficiency. The first experiment
used to evaluate the efficiency and effectiveness of the pro-
posed approach in achieving a minimal error utilizing five
datasets that obtained from the archive of UCI (University of
California, Irvine) [62]. This experiment’s results reported in
Section b. The second experiment used to predict the disease
of Parkinson and described in section c.

A. PERFORMANCE EVALUATION OF THE MODELS
Several measurements utilized to determine the efficiency
of the suggested ANFIS-PSOGWO approach and to check
the efficiency of the performance of the solutions, which
described as follows [63]:

1. Mean square error (MSE):

1< B}
MSE =~ 3 | (vi =5 (29)
i=1
where n indicate data points, yi is the observed values while y;
is the predicted values.
2. Root mean square error (RMSE):

RMSE = (30)
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Algorithm 4 ANFIS_PSOGWO

Input: <— population size (N), maximum number of
iterations (Tmyax), learning factors {cl,c2},
and control parameter (a), evaluation
function, solution dimension (d)

Output: <— optimized prediction model for ANFIS

1. Begin

2. Fori=1:N

3. Forj=1:d

4 Produce a disorderly series of the tent
according (27)

5 End for

6. End for

7. While t < Tiax

8 For i = I: N // train ANFIS

9 Generate
y! < Guassian (x : ¢, o) = py;(x)

10. Calculate y? < pug;(x) * pp;(x) = o

11. Calculatey? <« ﬁ = @;

12. Calculatey? <~ wi(pix + qiy +

1) = @; * fi

13. Calculate y; < >°; @i * fi

14. Input the set of premise and consequent

parameters to PSOGWO

15. For i = I: d // update parameters using

PSOGWO
- = =

16. Calculate D o, D g, D 5 according to
(19,20,21)

17. Compute X1, X3, X3 according to
(16,17,18)

18. Calculate wy, wa, w3 according to
(23,24,25)

19. Calculate Xjpest // the best-
experienced solution for each grey
wolf

20. Calculate the objective
function(MSE)

21. Update position according to (22)

22. Update a according to (26)

23. End for

24. End for

25. End

26. End

3. Standard deviation (SD):

1 n .
> =) 31)
i=1

n—1~+4

SD =

4. Accuracy

(TP +1N)
(TP + IN + FP+ FN)
where TP, FP, FN, and TN calculated using table 3.

Accuracy = 100 (32)
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TABLE 3. Confusion matrix.

Actual value
Positive Negative
o
&
E = | TP(true positive) | FN(false negative)
I
=
D
2| e
S | Z
E §> FP(false positive) | TN(true negative)
V4

B. ANFIS WITH PSOGWO EVALUATION

1) EXPERIMENTAL ENVIRONMENT AND TOOLS

Five datasets are included in this section to determine the effi-
ciency of the proposed system (ANFIS-PSOGWO), which
obtained from the UCI repository [62]. The overall properties
of these datasets are given in table 4.

TABLE 4. Datasets characteristics.

NO. Dataset NO. Instances Class labels
features NO.
1 Breast 9 699 2
cancer
2 WineEW 13 178 3
3 Lung Cancer 23 226 2
4 Parkinson’s 22 195 2
5 Vehicle 18 846 4

In this experiment, the ANFIS-PSOGWO compared to
different metaheuristic algorithms like differential evolu-
tion algorithm (DE) [64], ant colony optimization algo-
rithm (ACO), grey wolf optimization algorithm (GWO),
genetic algorithm (GA), particle swarm optimization algo-
rithm (PSO), and standard ANFIS structure.

Dataset split into 70% training and the remainder for
testing in all experiments. Table 5 shows the parameters of
all algorithms. All studies were conducted on the Windows
10 Pro 64-bit OS; Intel(R) 16 GB RAM Core(TM) i7-8550U
CPU@ 1.80GHZ 1.99 GHz CPU. MATLAB(2018a) is used
for all implementation.

The parameters of all optimization algorithms are: popula-
tion size (n) = 25, maximum iteration = 100, lower bound
= —10, upper bound = 10. Such parameters used to hold
the algorithms fairly comparable. Parameters are assigned
since they have produced some great outcomes in previous
research [38], [63].

2) EXPERIMENT OUTPUT

In this experiment, four metrics were used for evaluat-
ing the proposed ANFIS4+PSOGWO model in optimizing
the ANFIS parameters namely the root mean square error
(RMSE), the accuracy, the standard deviation (SD), and the
mean square error (MSE). The tests introduced 15 times,
and all measurements are reported on average in Tables 6:9
and Figure 8:11, respectively. We can infer from these tables
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TABLE 5. Parameters setting.

Algorithm | Parameter | Value | Algorithm | Parameter | Value
ANFIS+
Error goal 0 a [2:0]
GWO
Decrease
09 Cl=C2 2
rate
Initial step 0.01 Vinax 0.9
ANFIS
Increase 11 v 02
rate . ANFIS+ min :
PSO
Maximum
100 w 1
epochs
Crossover
0.7 Waamp 0.99
Percentage
. Selection
Mutation 05 p 04
. ressure .
Percentage ANFIS+
ANFIS+ ACO @
GA gamma 02 Zeta 1
Mutation ol Beta (min, 0.2,
Rate ANFIS+DE max) 0.8)
Beta 8 PCR 0.1

and figures that ANFIS-PSOGWO has outperformed the
other algorithms in all cases of 5 datasets. In breast can-
cer dataset, the proposed model achieved better results in
the training stage, but ANFIS4+ACO outperformed the pro-
posed model in evaluation. According to the accuracy that
showed in table 9 and figure 11, we note that the proposed
ANFIS+PSOGWO outperformed all algorithms in all uti-
lized datasets. This experiment proves the success of our
suggestion and can be relied upon to improve the process of
ANFIS’s parameters optimization.

C. PARKINSON'S DISEASE CLASSIFICATION

Parkinson’s disease (PD) is a recurrent motor and non-motor
neurodegenerative disease [65]. There is increasing interest
to find reliable and effective telemedicine systems for PD
diagnosis and monitoring. These systems can extend the
lifetime of PD patients with the aid of surgical or pharma-
cological treatments. Moreover, decreasing the amount of
uncomfortable physical trips to hospitals for surgical tests
and minimizing the workload of clinicians [10]. Telemedicine
PD programs utilize many instruments and methods to assess
the symptoms. Around 90% of PD patients in early disease
phases impaired by vocal difficulties, one of the most signif-
icant signs.

In this section, the proposed model for Parkinson’s disease
prediction is introduced. Referencing to Fig. 5, fog and cloud
have different functions. The proposed model utilizes both the
structures of fog and cloud for predicting Parkinson’s disease.
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TABLE 6. The MSE results for the five datasets in training and testing the seven models.

Algorithm / Training Testing
dataset WineEW Vehicle Breast Lung Parkinson | WineEW Vehicle Breast Lung Parkinson
cancer cancer cancer cancer
ANFIS 0.26523 0.15994 0.19954 0.1198849 0.15513 0.161825 0.267061 0.24178 0.195768 0.15779
ANFIS+DE 0.058296  0.059498 0.15911 0.092303  0.092939 | 0.078945  0.05771747 0.14914 0.14967 0.11434
ANFIS+GA 0.06834 0.058284 0.13879 0.077793 0.087327 | 0.068326 0.057671 0.11969 0.1283 0.10962
ANFIS+ACO 0.065874  0.05933 0.13787 0.084787  0.086785 | 0.10186 0.057394 0.10567 0.12195 0.12991
ANFIS+PSO 0.051462  0.056905 0.13275 0.089794 0.10986 0.097751 0.065279 0.126484 0.10258 0.13984
ANFIS+GWO 0.054606  0.059823 0.13019 0.081159  0.087854 | 0.083737 0.055488 0.18375 0.12941 0.13448
ANFIS+PSOGWO 0.05005 0.054123 0.12641 0.07152 0.051616 0.0503 0.045015 0.1103 0.094608 0.08568
TABLE 7. The RMSE results for the five datasets in training and testing the seven models.
Algorithm / Training Testing
dataset WineEW  Vehicle Breast Lung Parkinson | WineEW Vehicle Breast Lung Parkinson
cancer cancer cancer cancer
ANFIS 0.55936  0.34989 0.49299 0.39438 0.30188 0.494336 0.526088 0.57641 0.43979 0.39335
ANFIS+DE 0.23935  0.24145 0.38875 0.30398 0.30371 0.35938 0.24024 0.37568 0.37904 0.33829
ANFIS+GA 0.23915  0.24101 0.37214 0.27886 0.29551 0.26139 0.23994 0.3342 0.33956 0.3314
ANFIS+ACO 0.25666  0.24378 0.36589 0.29106 0.29357 0.31837 0.23955 0.32445 0.34792 0.34916
ANFIS+PSO 0.22707  0.23602 0.36071 0.29965 0.31916 0.31264 0.25552 0.3541 0.32029 0.37368
ANFIS+GWO 0.23347  0.24356 0.36081 0.28487 0.29556 0.28885 0.2364 0.42843 0.36029 0.3626
ANFIS+PSOGWO  0.22416  0.23307 0.35597 0.27481 0.22732 0.2287 0.21226 0.36098 0.30765 0.29441
TABLE 8. The SD results for the five datasets in training and testing the seven models.
Algorithm / Training Testing
dataset WineEW  Vehicle Breast Lung Parkinson | WineEW Vehicle Breast Lung Parkinson
cancer cancer cancer cancer
ANFIS 0.55961  0.34441 0.49341 0.39535 0.30299 0.4985 0.52111 0.57593 0.43111 0.39256
ANFIS+DE 0.24031  0.24165 0.38914 0.30495 0.30482 0.35645  0.24048 0.37655 0.37581 0.33986
ANFIS+GA 0.23762  0.24121 0.36939 0.27861 0.2957 0.26626 0.24239 0.32739 0.34024 0.33272
ANFIS+ACO 0.25769  0.24399 0.36608 0.29899 0.29465 0.32103  0.240401 0.32596 0.34727 0.34673
ANFIS+PSO 0.22799  0.23622 0.36104 0.30061 0.32033 0.32946 0.25592 0.35284 0.32245 0.33934
ANFIS+GWO 0.23441  0.24377 0.36118 0.28671 0.29664 0.29162 0.23653 0.42937 0.36007 0.36572
ANFIS+PSOGWO  0.22008  0.23327 0.35633 0.27569 0.22816 0.2249 0.21267 0.36135 0.30141 0.26582
TABLE 9. The accuracy results for the five datasets in training and testing the seven models.
Algorithm WineEW  Vehicke Breast cancer Lung cancer parkinson
ANFIS 96 98.2 98 78 96
ANFIS+DE 96.2 99 99 79 98
ANFIS+GA 97 99.1 99 88.2 98
ANFIS+ACO 96 99.2 99 88.2 98
ANFIS+PSO 97 99.2 100 88.2 97.2
ANFIS+GWO 98 99.5 100 79.4 98
ANFIS+PSOGWO 100 99.6 100 88.2 98.41

The sequence of the model showed in Fig. 12. One of the
main functions of the fog layer is data preprocessing. The fog
preserves a temporary storage for generated data. Moreover,
fog saves a backup for the classification model that devel-
oped in the cloud in case of internet connection failure. The
classification model saved in fog utilized as an expert for
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patients and can give alert in case of abnormal cases. The
cloud used for training the proposed model and long term data
storage.

The proposed Parkinson’s disease prediction consists of
two main processes, namely data preprocessing and data
classification.
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FIGURE 9. The RMSE results for the five datasets in training and testing the seven models.

1. Data Preprocessing: data preprocessing is an essen- preprocessing has many forms according to the given
tial stage for classification models design. Data problem. Data normalization and feature selection
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FIGURE 11. The accuracy results for the five datasets in training and testing the seven models.

are used in this model for preparing and producing to produce a weighted features bPoundaries. Moreover,
high-quality data and hence high-quality prediction the correlation feature selection (CFS) [67] used to
results. The min-max normalization [66] method used pick the most optimal features for the diagnosis of
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FIGURE 12. Parkinson’s disease classification process.

Parkinson’s disease. A reduced version of the original
dataset resulted from the feature selection process was
fed to the ANFIS model for classification.

2. Data Classification: Data classification is the task of
analysis where a model for prediction is constructed.
The proposed model utilizes the ANFIS classifier with
PSOGWO for parameters adaptation.

Data from the Department of Neurology of the University
of Istanbul’s Faculty of Medicine in Cerrahpasa obtained
from 188 patients with PD (107 men and 81 women) between
33 and 87 years of age [45]. There are 64 stable individ-
uals (23 males and 41 females) of age between 41 and 82
(61.1£8.9) inside the test community. During data collecting,
the microphone set to 44,1 kHz and three repetitive calls from
each subject have obtained after the physician’s examination.
Data characteristics are shown in table 10.

TABLE 10. Parkinson’s disease data properties.

Attribute Integer, Attributes 754
characteristics real
Class label 2 Instances 756

The correlation feature selection (CFS) is developed
using weka software tool. CFS reduced the Parkinson’s dis-
ease dataset cardinality from 754 to 119 features. These
features are used for training and testing the proposed
ANFIS+PSOGWO model. The same environment setting
was used as in the first experiment for Parkinson’s disease
dataset.

Table 11 shows all output results of the proposed Parkin-
son’s disease classification model. Moreover, the pro-
posed ANFIS+PSOGWO compared to ANFIS+4PSO,
ANFIS4+GWO, ANFIS+ACO, ANFIS+DE, ANFIS+GA,
and standard ANFIS models. As shown in Table 12 and
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TABLE 11. The proposed model results for parkinson’s disease.

Training testing
MSE 0.093522 0.15343
RMSE 0.30581 0.391685
SD 0.30608 0.391765
Accuracy 87.5

TABLE 12. The accuracy results of parkinson’s disease for all models.

Model Accuracy
ANFIS 77.8
ANFIS+DE 75.5
ANFIS+GA 80.1
ANFIS+ACO 78
ANFIS+PSO 75.8
ANFIS+tGWO 80.2
ANFIS+PSOGWO 87.5

Fig. 13, the proposed model for Parkinson’s disease outper-
formed all other models in accuracy evaluation.

The proposed model is compared with some of the recent
studies such as Sakar et al. [45] and Gunduz [46] studies.
These experiments use the same model training methods
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FIGURE 13. The accuracy comparison for all models for Parkinson’s
disease dataset.

(i.e. the same sample, training protocol and evaluation mea-
surements) as our analysis and therefore give us the chance
to equate our results with the suggested experiments explic-
itly. While the results of Sakar er al. [45] were 86% and
Gunduz [46] 86.9%, our proposed model outperformed these
studies and resulted in the accuracy of 87.5%. Table 13 and
Fig. 14 show a comparison between the proposed model and
the related work.

TABLE 13. The accuracy comparison of literatures to the proposed model.

Study Model Accuracy
Sakar et al. (MRMR) feature selection, 86
[45] SVM-RBF classifier
Gunduz [46] Different feature selectionst CNN 86.9
The proposed CFS feature selection, 87.5
model PSOGWO+ANFIS
Accuracy
Proposed model NGNS

Gunduz [35] [N

Model

Sakar etal. [34]

85 85.5 86 86.5 87 87.5 88

Accuracy
FIGURE 14. The proposed model accuracy vs. literatures.
D. RESULT DISCUSSION

There are two experiments for evaluating the proposed
ANFIS+PSOGWO model. The goal of the first experiment is
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to make evaluation for the efficiency of the proposed model.
Five datasets and four evaluation metrics utilized in the first
experiment. The proposed model gave good results in all
datasets used. In comparison to the standard ANFIS model,
the proposed model achieved the lowest error rate in training
and testing stages together with the highest accuracy. More-
over, different optimization algorithms were evaluated like
the genetic algorithm (GA), the particle swarm optimization
(PSO), the grey wolf optimization (GWO), the ant colony
optimization (ACO) algorithm, and the differential evolu-
tion (DE) algorithm. The results reveals that the proposed
model outperformed all of them in terms of MSE, accuracy,
SD, and RMSE. All tests in the first experiment involved the
entire features subsets in the original dataset to explain the
effect of PSOGWO in optimizing the parameters of ANFIS
model.

In the second experiment, the proposed model employed
for Parkinson’s disease classification. In this experiment,
the CFS used to select the most informative features that
help for the diagnosis of Parkinson’s disease. The CFS
choose 119 features from 754 features. The proposed
ANFIS+PSOGWO model applied on the reduced feature
subset. The results of the ANFIS+PSOGWO model out-
performed all compared model. According to the accuracy,
the proposed model produced 10+ more than the standard
ANFIS model while 7.4+ more than the next in perfor-
mance. In order to avoid any confusion between the data
in the first and second experience, the datasets in the first
experiment were used because there is literature research
that have suggested approximately + 90 accurate schemes
for distinguishing balanced subjects on such limited datasets
from PD patients. In such data sets, the number of subjects
was often relatively limited, and the accuracy of complicated
models achieved on these small data sets cannot found in
another dataset with a greater number of subjects.

VI. CONCLUSION AND FUTURE WORK

This paper introduces a novel model for extracting clinically
useful information for Parkinson’s disease (PD) assessment
and utilizing learning algorithms to achieve reliable decision
support systems. In this study, a proposed ANFIS+PSOGWO
model for PD prediction using sets of vocal (speech) features
in fog-cloud has introduced. The fog infrastructure provides
real-time data processing and analysis and overcoming the
cloud limitations. The PSOGWO algorithm merges the explo-
ration and exploitation capabilities of grey wolf optimiza-
tion (GWO) and particle swarm optimization (PSO), respec-
tively. A chaotic tent map for initialization prevents the code
from getting locked into a local optima issue. The proposed
model was evaluated through different dataset with different
metrics to approve its efficiency. Through the outcomes,
the suggested model produces good results compared to other
algorithms—the proposed model success in predicting the
Parkinson’s disease with accuracy 87.5. The proposed model
will, in future, be extended to a broader range of data sets for
other machine learning algorithms that can train fog learning.
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Hybridization can also be implemented with contemporary
metaheuristic algorithms like an optimization algorithm for
dragons, algorithms for whale optimization and a chimp opti-
mization algorithm.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

G. Manogaran, D. Lopez, C. Thota, K. M. Abbas, S. Pyne, and
R. Sundarasekar, “Big data analytics in healthcare Internet of Things,” in
Innovative Healthcare Systems for the 21st Century. Cham, Switzerland:
Springer, 2017, pp. 263-284.

1. Ud Din, A. Almogren, M. Guizani, and M. Zuair, “A decade of Internet
of Things: Analysis in the light of healthcare applications,” IEEE Access,
vol. 7, pp. 89967-89979, 2019.

M. M. Baig and H. Gholamhosseini, ““Smart health monitoring systems:
An overview of design and modeling,” J. Med. Syst., vol. 37, no. 2, p. 9898,
Apr. 2013.

I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios
and security issues,” in Proc. Federated Conf. Comput. Sci. Inf. Syst.,
Sep. 2014, pp. 1-8.

F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing:
A platform for Internet of Things and analytics,” in Big Data and Inter-
net of Things: A Roadmap for Smart Environments. Cham, Switzerland:
Springer, 2014, pp. 169-186.

M. Qiu, S.-Y. Kung, and K. Gai, Intelligent Security and Optimization in
Edge/Fog Computing. Amsterdam, The Netherlands: Elsevier, 2020.

B. Farahani, M. Barzegari, F. S. Aliee, and K. A. Shaik, “Towards collab-
orative intelligent IoT eHealth: From device to fog, and cloud,” Micropro-
cess. Microsyst., vol. 72, Feb. 2020, Art. no. 102938.

E. R. Dorsey, R. Constantinescu, J. P. Thompson, K. M. Biglan,
R. G. Holloway, K. Kieburtz, F. J. Marshall, B. M. Ravina, G. Schifitto,
A. Siderowf, and C. M. Tanner, ‘‘Projected number of people with parkin-
son disease in the most populous nations, 2005 through 2030,” Neurology,
vol. 68, no. 5, pp. 384-386, Jan. 2007.

M. C. de Rijk, L. J. Launer, K. Berger, M. M. Breteler, J. F. Dartigues,
M. Baldereschi, L. Fratiglioni, A. Lobo, J. Martinez-Lage, C. Trenkwalder,
and A. Hofman, ‘“‘Prevalence of Parkinson’s disease in Europe: A col-
laborative study of population-based cohorts. Neurologic Diseases in the
Elderly Research Group,” Neurology, vol. 54, no. 11, p. S21-3, 2000.

H. Giiriiler, “A novel diagnosis system for Parkinson’s disease using
complex-valued artificial neural network with K-means clustering feature
weighting method,” Neural Comput. Appl., vol. 28, no. 7, pp. 1657-1666,
Jul. 2017.

B. Erdogdu Sakar, G. Serbes, and C. O. Sakar, “Analyzing the effectiveness
of vocal features in early telediagnosis of Parkinson’s disease,” PLoS ONE,
vol. 12, no. 8, Aug. 2017, Art. no. e0182428.

M. A. Little, P. E. McSharry, E. J. Hunter, J. Spielman, and L. O. Ramig,
“Suitability of dysphonia measurements for telemonitoring of Parkin-
son’s disease,” IEEE Trans. Biomed. Eng., vol. 56, no. 4, pp. 1015-1022,
Apr. 2009.

B. E. Sakar, M. E. Isenkul, C. O. Sakar, A. Sertbas, F. Gurgen, S. Delil,
H. Apaydin, and O. Kursun, *“Collection and analysis of a parkinson speech
dataset with multiple types of sound recordings,” IEEE J. Biomed. Health
Informat., vol. 17, no. 4, pp. 828-834, Jul. 2013.

B. Kuang, Y. Tekin, and A. M. Mouazen, ‘“Comparison between artificial
neural network and partial least squares for on-line visible and near infrared
spectroscopy measurement of soil organic carbon, pH and clay content,”
Soil Tillage Res., vol. 146, pp. 243-252, Mar. 2015.

A. Ascherio and M. A. Schwarzschild, ““The epidemiology of Parkinson’s
disease: Risk factors and prevention,” Lancet Neurol., vol. 15, no. 12,
pp. 1257-1272, Nov. 2016.

E. M. Hill-Burns, J. W. Debelius, J. T. Morton, W. T. Wissemann,
M. R. Lewis, Z. D. Wallen, S. D. Peddada, S. A. Factor, E. Molho,
C. P. Zabetian, R. Knight, and H. Payami, ““Parkinson’s disease and Parkin-
son’s disease medications have distinct signatures of the gut microbiome,”
Movement Disorders, vol. 32, no. 5, pp. 739-749, May 2017.

M. R. Salmanpour, M. Shamsaei, A. Saberi, I. S. Klyuzhin, J. Tang,
V. Sossi, and A. Rahmim, “Machine learning methods for optimal pre-
diction of motor outcome in Parkinson’s disease,” Phys. Medica, vol. 69,
pp. 233-240, Jan. 2020.

VOLUME 8, 2020

(18]

(19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

R. M. Sadek, S. A. Mohammed, A. R. K. Abunbehan, A. K. H. A. Ghattas,
M. R. Badawi, M. N. Mortaja, B. S. Abu-Nasser, and S. S. Abu-Naser,
Parkinson’s Disease Prediction Using Artificial Neural Network. IIARW,
2019.

K. Khosravi, P. Daggupati, M. T. Alami, S. M. Awadh, M. 1. Ghareb,
M. Panahi, B. T. Pham, F. Rezaie, C. Qi, and Z. M. Yaseen, ‘“Meteo-
rological data mining and hybrid data-intelligence models for reference
evaporation simulation: A case study in iraq,” Comput. Electron. Agricult.,
vol. 167, Dec. 2019, Art. no. 105041.

Z. M. Yaseen, W. H. M. W. Mohtar, A. M. S. Ameen, 1. Ebtehaj,
S. E. M. Razali, H. Bonakdari, S. Q. Salih, N. Al-Ansari, and S. Shahid,
“Implementation of univariate paradigm for streamflow simulation using
hybrid data-driven model: Case study in tropical region,” IEEE Access,
vol. 7, pp. 74471-74481, 2019.

Z. Yaseen, 1. Ebtehaj, S. Kim, H. Sanikhani, H. Asadi, M. Ghareb,
H. Bonakdari, W. Wan Mohtar, N. Al-Ansari, and S. Shahid, “Novel hybrid
data-intelligence model for forecasting monthly rainfall with uncertainty
analysis,” Water, vol. 11, no. 3, p. 502, Mar. 2019.

M. E Allawi, O. Jaafar, F. Mohamad Hamzah, N. S. Mohd, R. C. Deo,
and A. El-Shafie, “Reservoir inflow forecasting with a modified coactive
neuro-fuzzy inference system: A case study for a semi-arid region,” Theor.
Appl. Climatol., vol. 134, nos. 1-2, pp. 545-563, Oct. 2018.

A. Sharafati, A. Tafarojnoruz, M. Shourian, and Z. M. Yaseen, “Simu-
lation of the depth scouring downstream sluice gate: The validation of
newly developed data-intelligent models,” J. Hydro-Environ. Res., vol. 29,
pp. 20-30, Mar. 2020.

W. Jing, Z. M. Yaseen, S. Shahid, M. K. Saggi, H. Tao, O. Kisi, S. Q. Salih,
N. Al-Ansari, and K.-W. Chau, “Implementation of evolutionary com-
puting models for reference evapotranspiration modeling: Short review,
assessment and possible future research directions,” Eng. Appl. Comput.
Fluid Mech., vol. 13, no. 1, pp. 811-823, Jan. 2019.

H. Moayedi, M. Raftari, A. Sharifi, W. A. W. Jusoh, and A. S. A. Rashid,
“Optimization of ANFIS with GA and PSO estimating « ratio in driven
piles,” Eng. Comput., vol. 36, no. 1, pp. 227-238, Jan. 2020.

D. Tien Bui, K. Khosravi, S. Li, H. Shahabi, M. Panahi, V. Singh,
K. Chapi, A. Shirzadi, S. Panahi, W. Chen, and B. Bin Ahmad, “New
hybrids of ANFIS with several optimization algorithms for flood suscepti-
bility modeling,” Water, vol. 10, no. 9, p. 1210, Sep. 2018.

M. Ahmadlou, M. Karimi, S. Alizadeh, A. Shirzadi, D. Parvinnejhad,
H. Shahabi, and M. Panahi, “Flood susceptibility assessment using inte-
gration of adaptive network-based fuzzy inference system (ANFIS) and
biogeography-based optimization (BBO) and BAT algorithms (BA),”
Geocarto Int., vol. 34, no. 11, pp. 1252-1272, Sep. 2019.

X. Lin, J. Sun, V. Palade, W. Fang, X. Wu, and W. Xu, “Training
ANFIS parameters with a quantum-behaved particle swarm
optimization algorithm,” in Proc. Int. Conf. Swarm Intell., 2012,
pp. 148-155.

M. Hasanipanah, H. B. Amnieh, H. Arab, and M. S. Zamzam, “Feasibility
of PSO-ANFIS model to estimate rock fragmentation produced by mine
blasting,” Neural Comput. Appl., vol. 30, no. 4, pp. 1015-1024, Aug. 2018.
P. Aghelpour, H. Bahrami-Pichaghchi, and O. Kisi, “Comparison of
three different bio-inspired algorithms to improve ability of neuro
fuzzy approach in prediction of agricultural drought, based on three
different indexes,” Comput. Electron. Agricult., vol. 170, Mar. 2020,
Art. no. 105279.

D. K. Ghose, S. S. Panda, and P. C. Swain, “Prediction and optimization of
runoff via ANFIS and GA,” Alexandria Eng. J., vol. 52, no. 2, pp. 209-220,
Jun. 2013.

A. Sarkheyli, A. M. Zain, and S. Sharif, “Robust optimization of ANFIS
based on a new modified GA,” Neurocomputing, vol. 166, pp. 357-366,
Oct. 2015.

K. Elbaz, S.-L. Shen, A. Zhou, D.-J. Yuan, and Y.-S. Xu, “Opti-
mization of EPB shield performance with adaptive neuro-fuzzy infer-
ence system and genetic algorithm,” Appl. Sci., vol. 9, no. 4, p. 780,
Feb. 2019.

M. Dehghani, A. Seifi, and H. Riahi-Madvar, “Novel forecasting models
for immediate-short-term to long-term influent flow prediction by combin-
ing ANFIS and grey wolf optimization,” J. Hydrol., vol. 576, pp. 698725,
Sep. 2019.

S. Maroufpoor, E. Maroufpoor, O. Bozorg-Haddad, J. Shiri, and
Z. M. Yaseen, “Soil moisture simulation using hybrid artificial intel-
ligent model: Hybridization of adaptive neuro fuzzy inference system
with grey wolf optimizer algorithm,” J. Hydrol., vol. 575, pp. 544-556,
Aug. 2019.

119269



IEEE Access

1. M. El-Hasnony et al.: Optimized ANFIS Model Using Hybrid Metaheuristic Algorithms

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

E. M. Golafshani, A. Behnood, and M. Arashpour, ‘Predicting the com-
pressive strength of normal and high-performance concretes using ANN
and ANFIS hybridized with grey wolf optimizer,” Construct. Building
Mater., vol. 232, Jan. 2020, Art. no. 117266.

D. Tien Bui, M. M. Abdullahi, S. Ghareh, H. Moayedi, and H. Nguyen,
“Fine-tuning of neural computing using whale optimization algorithm for
predicting compressive strength of concrete,” Eng. Comput., pp. 1-12,
Aug. 2019.

L. Penghui, A. A. Ewees, B. H. Beyaztas, C. Qi, S. Q. Salih, N. Al-Ansari,
S. K. Bhagat, Z. M. Yaseen, and V. P. Singh, ‘“Metaheuristic optimization
algorithms hybridized with artificial intelligence model for soil temper-
ature prediction: Novel model,” IEEE Access, vol. 8, pp. 51884-51904,
2020.

S. K. Sood, S. Kaur, and K. K. Chahal, “An intelligent framework for
monitoring dengue fever risk using LDA-ANFIS,” J. Ambient Intell. Smart
Environ., pp. 1-16, Jan. 2020.

K. Vidhya and R. Shanmugalakshmi, “Modified adaptive neuro-fuzzy
inference system (M-ANFIS) based multi-disease analysis of healthcare
big data,” J. Supercomput., pp. 1-22, Jan. 2020.

A. Manocha, R. Singh, and M. Bhatia, “Cognitive intelligence assisted
fog-cloud architecture for generalized anxiety disorder (GAD) prediction,”
J. Med. Syst., vol. 44, no. 1, p. 7, Jan. 2020.

N. Khanna and M. Sachdeva, ‘“‘OFFM-ANFIS analysis for flood prediction
using mobile IoS, fog and cloud computing,” Cluster Comput., pp. 1-18,
Jan. 2020.

A. Tsanas, M. A. Little, P. E. McSharry, J. Spielman, and L. O. Ramig,
“Novel speech signal processing algorithms for high-accuracy classifica-
tion of Parkinson’s disease,” IEEE Trans. Biomed. Eng., vol. 59, no. 5,
pp. 1264-1271, May 2012.

L. Parisi, N. RaviChandran, and M. L. Manaog, ‘“‘Feature-driven machine
learning to improve early diagnosis of Parkinson’s disease,” Expert Syst.
Appl., vol. 110, pp. 182-190, Nov. 2018.

C. O. Sakar, G. Serbes, A. Gunduz, H. C. Tunc, H. Nizam, B.
E. Sakar, M. Tutuncu, T. Aydin, M. E. Isenkul, and H. Apay-
din, “A comparative analysis of speech signal processing algorithms
for Parkinson’s disease classification and the use of the tunable Q-
factor wavelet transform,” Appl. Soft Comput., vol. 74, pp. 255-263,
Jan. 2019.

H. Gunduz, “Deep learning-based Parkinson’s disease classification using
vocal feature sets,” IEEE Access, vol. 7, pp. 115540-115551, 2019.

J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference sys-
tem,” IEEE Trans. Syst, Man, Cybern., vol. 23, no. 3, pp. 665-685,
May/Jun. 1993.

0. Kisi, S. Heddam, and Z. M. Yaseen, ‘“The implementation of univariable
scheme-based air temperature for solar radiation prediction: New develop-
ment of dynamic evolving neural-fuzzy inference system model,” Appl.
Energy, vol. 241, pp. 184-195, May 2019.

N. Hassan, R. Ghazali, and K. Hussain, “Training ANFIS using catfish-
particle swarm optimization for classification,” in Proc. Int. Conf. Soft
Comput. Data Mining, 2016, pp. 201-210.

M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems.
London, U.K.: Pearson, 2005.

S. Q. Salih, M. F. Allawi, A. A. Yousif, A. M. Armanuos,
M. K. Saggi, M. Ali, S. Shahid, N. Al-Ansari, Z. M. Yaseen, and
K.-W. Chau, ‘““Viability of the advanced adaptive neuro-fuzzy inference
system model on reservoir evaporation process simulation: Case study of
nasser lake in egypt,” Eng. Appl. Comput. Fluid Mech., vol. 13, no. 1,
pp. 878-891, Jan. 2019.

R. Eberhart and J. Kennedy, ‘‘Particle swarm optimization,” in Proc. IEEE
Int. Conf. Neural Netw., vol. 4, Nov. 1995, pp. 1942-1948.

K. M. Ang, W. H. Lim, N. A. M. Isa, S. S. Tiang, and C. H. Wong,
“A constrained multi-swarm particle swarm optimization without veloc-
ity for constrained optimization problems,” Expert Syst. Appl., vol. 140,
Feb. 2020, Art. no. 112882.

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Adv.
Eng. Softw., vol. 69, pp. 46-61, Mar. 2014.

S. Dhargupta, M. Ghosh, S. Mirjalili, and R. Sarkar, ““Selective opposition
based grey wolf optimization,” Expert Syst. Appl., vol. 151, Aug. 2020,
Art. no. 113389.

S. Garcia, J. Luengo, and F. Herrera, Data Preprocessing in Data Mining.
Cham, Switzerland: Springer, 2015.

Z.-J. Teng, J.-L. Lv, and L.-W. Guo, “An improved hybrid grey wolf
optimization algorithm,” Soft Comput., vol. 23, no. 15, pp. 6617-6631,
Aug. 2019.

119270

(58]

[59]
(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

I. M. El-Hasnony, S. I. Barakat, M. Elhoseny, and R. R. Mostafa,
“Improved feature selection model for big data analytics,” IEEE Access,
vol. 8, pp. 66989-67004, 2020.

M. A. AlZain and O. S. Faragallah, “Efficient chaotic tent map-based
image cryptosystem,” Int. J. Comput. Appl., vol. 975, p. 8887, Jun. 2017.
L. Shan, H. Qiang, J. Li, and Z.-Q. Wang, ““Chaotic optimization algorithm
based on tent map,” Control Decis., vol. 20, no. 2, pp. 179-182, 2005.

P. Anand and S. Arora, “A novel chaotic selfish herd optimizer for global
optimization and feature selection,” Artif. Intell. Rev., vol. 53, no. 2,
pp. 1441-1486, Feb. 2020.

C. Dua, Dheeru and Graff. (2017). UCI machine learning repository.
University of California, Irvine, School of Information and Computer
Sciences. Accessed: May 5, 2020. [Online]. Available: http://archive.
ics.uci.edu/ml

A. A. Ewees and M. A. Elaziz, “Improved adaptive neuro-fuzzy inference
system using gray wolf optimization: A case study in predicting biochar
yield,” J. Intell. Syst., vol. 29, no. 1, pp. 924-940, Dec. 2019.

J. Sun, Q. Zhang, and E. Tsang, “DE/EDA: A new evolutionary algo-
rithm for global optimization,” Inf. Sci., vol. 169, nos. 3—4, pp. 249-262,
Feb. 2005.

J. Jankovic, “‘Parkinson’s disease: Clinical features and diagnosis,” J. Neu-
rol., Neurosurg. Psychiatry, vol. 79, no. 4, pp. 368-376, 2008.

S. Jain, S. Shukla, and R. Wadhvani, “Dynamic selection of normalization
techniques using data complexity measures,” Expert Syst. Appl., vol. 106,
pp. 252-262, Sep. 2018.

I. M. El-Hasnony, H. M. El Bakry, and A. A. Saleh, “Comparative study
among data reduction techniques over classification accuracy,” Int. J.
Comput. Appl., vol. 122, no. 2, pp. 9-15, Jul. 2015.

IBRAHIM M. EL-HASNONY received the B.S.
and master’s degrees in information systems from
the Faculty of Computers and Information Sci-
ences, Mansoura University, Egypt. His research
interests include cloud computing, big data, data
analysis, smart city, the Internet of Things, neural
networks, artificial intelligence, web service com-
position, and evolutionary algorithms.

SHERIF I. BARAKAT is currently a Professor with
the Information Systems Department, Faculty of
Computers and Information, Mansoura University.
His research interests include computer architec-
ture, computer networks, data mining, information
theory, discrete mathematics, and numerical analy-
sis operation research. He has published more than
- 60 papers in international and local conferences,
journals, and proceedings in different fields of
information technology.

REHAM R. MOSTAFA was born in Abu Dhabi,
United Arab Emirates, in 1983. She received
the B.Sc., M.Sc., and Ph.D. degrees in informa-
tion systems from Mansoura University, Egypt,
in 2005, 2009, and 2014, respectively. She is cur-
rently an Associate Professor with the Information
Systems Department, Faculty of Computers and
Information, Mansoura University. Her research
interests include big data analytics, artificial intel-
ligence, evolutionary algorithms, the Internet of
Things, and data security.

VOLUME 8, 2020



