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ABSTRACT This paper presents a new approach by training and improving a convolutional neural
network (CNN) based on You Only Look Once version 2 (YOLOv2) to efficiently detect fuel trucks from
images in embedded systems. The proposed method considers the entire image area for strong object
detection compared with existing methods that only focus on the image area where the class object exists to
predict its probability to be in a class. The loss function for CNN is improved to enhance effective learning,
especially when only a limited amount of data is available for training. The class probability can be learned by
improving the loss function although the anchor boxes are not in the center of the target object. The learning
process of the model can be in a limited range and achieve rapid convergence although the sizes of the initial
anchor and target boundary boxes are different. Experimental results of various fuel truck images show the
efficiency of the proposed approach under different detection scenarios of real fuel trucks. The detection
rate of the proposed method is approximately 4% higher than the YOLOv2 object detection method. The
proposed method is suitable to monitor long country borders using unmanned drones.

INDEX TERMS Convolutional neural network, CNN, object detection, fuel trucks, you only look once,
YOLOv2.

I. INTRODUCTION
Fuel is an important resource used by countries in the world.
Thus, governments must take precautions to protect this
wealth from smuggling. Smuggling gangs usemanymethods,
such as using sea routes, small vessels or boats, and through
land using different types of large vehicles, such as fuel trucks
and others, to smuggle these resources outside the country
borders. Many methods for antifuel smuggling are found in
the literature, where object detection is considered a reliable
method. Different object detection methods for persons, vehi-
cles, and general things have been proposed. However, most
of them focus on obtaining high detection accuracy while
reducing high computational complexity. Several of those
methods are unsuitable for real-time applications [1], [2].

Objects can be normally detected either from pictures or
video feeds [3]. To detect an object, a bounding box is drawn
around the area where it appears. Such a process involves
two main steps, namely, classification of the object’s type
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and drawing a box around that object. The width, height,
and position of the object within the image are labeled and
used as ground truth information in the deep network learn-
ing phase. Different types of object detection algorithms,
such as region-based convolutional neural network (R-CNN),
fast R-CNN, You Only Look Once (YOLO), YOLOv2, and
YOLOv3, are used. The operation of these algorithms expe-
riences many problems that affect the detection performance
of the system. R-CNN requires a multistage learning process
that results in slow object detection [4]. Fast R-CNN treats
and improves this problem by simultaneously receiving and
processing object candidate regions [5]. However, a consider-
able amount of time is consumed in calculating the candidate
regions for object detection. The computation time using
faster R-CNN is reduced by adding a network for finding
candidate regions in the network for object classification [6].
The above methods require high computational throughput
on graphics processing unit (GPU), thereby resulting in addi-
tional cost to the system and making them difficult to be used
in real-time systems with limited computing power, such as
embedded systems.
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YOLO and its improved YOLOv2 are algorithms that can
recognize various objects with high computational speed and
identify their positions in the image [7], [8]. The learning
in YOLOv2 is only performed for the cell where the object
exists. Therefore, the learning of other neural network parts,
that is, the area not belonging to the class, is not performed.
Thus, a situation where a high-class probability is generated
in an area where an object does not exist, and the training
efficiency is lowered because only the anchor boxes belong-
ing to the cell where the center of the object is located in
the training image are used for class probability learning.
Therefore, the efficiency of the YOLOv2 algorithm is low.

This paper mainly aims to modify the operation mech-
anism of YOLOv2 for improving its object detection effi-
ciency by introducing a deep network-based algorithm and its
learning method for efficient object detection. The proposed
method improves the loss function compared with that of
YOLOv2. Thus, the class probability can be learned, espe-
cially on anchor boxes that do not belong to the center of
the object. This model is designed to limit the range and to
quickly converge although the sizes of the initial anchor and
target bounding boxes are different in the learning process.
Intersection over Union (IOU) between the target bounding
and anchor boxes is used to enable stable convergence of
center position estimation and bounding box estimation of
the object. After network adjustment toward the targeted
object detection, this classification network provides an over-
all increase of approximately 4% mean average precisions
(mAPs).

The rest of this paper is organized as follows.
Section 2 presents related work. Section 3 proposes a dif-
ferent version of YOLOv2, which is called as the opti-
mized YOLOv2 fuel truck detection (OYOLOv2_FTD).
Section 4 discusses the datasets and experimental results, and
Section 5 provides the conclusion and future work.

II. RELATED WORK
Several studies have analyzed and evaluated object detection
performance using various algorithms. Recent relevant stud-
ies are reviewed below:

Viola and Jones [9] used haar features and proposed
an important task of the object detection framework. They
accomplished object detection using cascade classifiers and
Adaboost training with a technique called the sliding window.
Dalal and Triggs [10] performed classification on subwin-
dows extracted from the image itself using a linear support
vector machine (SVM) with a sliding window mechanism.
They introduced an efficient histogram of oriented gradi-
ent (HOG) features based on the directions of the edge in
an image for detection. Felzenszwalb et al. [11] proposed
a graphical model called deformable part model (DPM) to
overcome the distortions of objects within the images. DPM
technology assumes that an object is composed of different
parts. DPM utilizes linear SVM and HOG combined with
the sliding window technique. Regionlets [12] enhanced the
DPM by searching the possible positions at the different

portions of the object. Pepik et al. [13] expanded the DPM
into 3D object formation.

Uijlings et al. [14] suggested selective search (SS) to
produce a group of data-driven, category-independent object
suggestions and avert the use of a conventional sliding win-
dow search. The operation of SS depends on hierarchi-
cal segmentation applying various groups of clues. They
used SS to generate a localization and recognition system
model based on a bag-of-words. LeCun et al. [15] and
Krizhevsky et al. [16] illustrated that the remarkable success
of the CNN as an ideal extractor of features for image recog-
nition and classification has a considerable effect on object
detection. The top object detectors utilizing CNNs can be
summarized as follows:

Sermanet et al. [17] proposed a feature extractor called the
OverFeat framework. CNNwas first utilized using the sliding
window technique. Girshick et al. [4] and Uijlings et al. [14]
proposed a region-based CNN (R-CNN) that requires a mul-
tistage learning process (SS is used to generate proposals
of candidate regions for the input image, the features of
each proposal are calculated, a linear SVM is applied to
classify each region, the bounding boxes are fine-tuned,
and redundant ones are removed in postprocessing). These
processes result in slow object detection. Fast R-CNN [5]
improves object detection using spatial pyramid pooling net-
works [18] to simultaneously receive and process object can-
didate regions. Faster R-CNN [6] reduces the computation
time by adding a network-based region proposal [19], which
is a kind of fully connected network [20], for finding candi-
date regions.

Xiang et al. [21] modified fast R-CNN [5] to improve
the object candidate generation stage by entering subcate-
gory information for 3D voxel patterns [22] to the network.
Cai et al. [23] detected multiple layers of the network to han-
dle objects of different sizes. Chen et al. [24] developed 3D
proposals, these proposals are recorded by several contextual
and segmentation features for 3D object detection, and the
rescoring utilizes the fast R-CNN [5]. Yang et al. [25] intro-
duced a method depends on rejecting negative proposals of
the object using cascaded classifiers and convolutional fea-
tures. A scale-dependent object classifier was used to evaluate
the remaining proposals.

References [7], [8] and [26] considered the detection of
objects as a regression problem using YOLO and single-
shot detector (SSD) [27] algorithms and removed the stage
of object proposal creation. These algorithms are based on
an individual CNN shadowed by a nonmaximal suppression
stage. In those algorithms, all images that enter the network
are separated into (7 × 7 grid, 13 × 13 in YOLO, and
9 × 9 in SSD), where the prediction of a fixed number of
boundary boxes is the responsibility of each grid cell. Their
major advantages are the construction of a fast detector and
viewing the entire image through training, thereby increasing
the accuracy of detection. Although SSD is a modern object
detection structure, hard negativemining is difficult, and sam-
pling selection results in high confidence loss. The two major
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drawbacks of these methods are 1) imposing strict limitations
on the prediction of bounding box (for example, every grid
cell in YOLO can only predict two boundary boxes), and
2) detection of small objects is extremely difficult. The SSD
system attempted to fix the second drawback by increas-
ing the datasets for small objects. Fu et al. [28] propose
a deconvolutional SSD, which is the improved version of
SSD, to focus on the context with the help of deconvolutional
layers.

In reference [29], YOLOv2 is used to detect vehicles in
unmanned aerial vehicle images, which is the beginning of
successful use CNN regression-based in the city administra-
tion. References [30]–[35] explored vehicle detection using
CNNs. Such methods do not need human-involved features,
and only a large number of tagged vehicle images are used
to train the network with supervision before the network can
automatically learn the vehicle-type features.

The main objectives of YOLOv2 [8], which is the basis
of the proposed method and is the second version of YOLO,
are to significantly improve the accuracy while reducing
the complexity, that is, fast performance. YOLOv2, which
is an optimized model of YOLOv1, maintains the speed
advantages and increases the mAP rate of YOLOv1 (63.4).
YOLOv2 can be operated at varying and different sizes,
thereby providing an easy trade-off between accuracy and
speed using a new multi-scale training method. A list of
significant solutions was added in YOLOv2 increasing the
mAP. Batch normalization is used for pre-processing the data
of input image. The high-resolution classifier of YOLOv1 at
224×224 to 448×448 increases the mAP by 4%. A modern
network with the ‘‘network in network’’ concept [36] used by
YOLOv2 expects with comprehensive average pooling and
pads the features by inserting 1×1 convolutional core among
the 3× 3 convolutional cores.

The YOLOv2 network has few convolutional layers
(19 compared with 24 in YOLOv1) and few filters plus five
max pooling layers, making it more reliable than its prede-
cessor. YOLOv2 supports convolution with anchor boxes,
increases the resolution of each grid from 7× 7 in YOLOv1
to 13 × 13, and only has a single bounding box per grid.
After examining the curve of IOU function by calculating the
statistics of ground truth on the image sets (Visual Object

Classes (VOC) and Common Objects in Context) through
the use of the k-means algorithm, YOLOv2 detects a solu-
tion for the best amount of anchor boxes and determines
the anchor boxes number to be five, where its average IOU
(61.0) is similar to faster R-CNN (60.9) that uses nine anchor
boxes. The location is immediately predicted to overcome the
instabilities caused by anchor boxes, thereby leading to a 4%
mAP increase with the positive effect of dimension clusters.
To obtain the features extracted from the previous 26 × 26
layer, YOLOv2 subjoins a pass-through layer and combines
it with the features of the original final output to enhance the
facility of detecting small objects. Thus, YOLOv2 increases
the mAP by 1%.

III. PROPOSED ALGORITHM
The proposed algorithm called OYOLOv2_FTD focuses on
improving YOLOv2 in detecting fuel trucks. This method
uses a single deep neural network to simultaneously predict
the location of fuel trucks and classify their category. The
proposed algorithm adopts three approaches, namely,
1. Reducing the number of CNN layers.
2. Reducing the number of anchors where the amount of

processing and the required time are reduced.
3. Modifying the loss function.
The details of the network structure and learning process

to predict these outputs are described in the following sub-
sections.

A. PROPOSED NETWORK STRUCTURE
A YOLOv2-based [8] end-to-end training CNN is proposed
to detect fuel trucks. The proposed deep network structure is
shown in Figure 1, and its layers are described in Table 1. This
structure is a simplified structure of YOLOv2. Each layer
is composed of a convolutional layer and a maxpool layer.
A leaky rectified linear activation function is used.

The proposed OYOLOv2_FTD structure uses only one
anchor box compared with the existing YOLOv2 that uses
five anchor boxes. An anchor box size and position estimation
method is proposed to compensate for this difference.

The fuel trucks are estimated using the deep network,
the object class is set to one, and the image is divided into
13×13 grids, similar to YOLOv2, to estimate the position and

FIGURE 1. Diagram of the proposed CNN structure.

118810 VOLUME 8, 2020



H. R. Alsanad et al.: Real-Time Fuel Truck Detection Algorithm Based on Deep CNN

TABLE 1. Description of the proposed CNN.

size of fuel trucks using the anchor boxes belonging to each
grid cell. Thus, the final output of the deep network is 13×13
grid cells, with one anchor box for each cell, and six outputs
for each anchor box (2D center coordinates (x̧ y), width and
height (ḩ w), one class probability, one confidence). Thus,
the deep network has an output size of 13× 13× 6, as shown
in layer 8 of Table 1.

Although this paper deals with one class, the number of
classes can be extended to multiple classes when the filter
size is modified to match the number of classes in layer 8.
However, the depth of the deep network should be increased
because it has eight layers for effective object detection,
which is relatively shallow comparedwith other deep network
structures. Although this network is relatively shallow, suffi-
cient detection is possible with low hardware complexity.

B. CLASS PROBABILITY AND CONFIDENCE LEARNING
As previously mentioned, the outputs of the deep network
are the six values of the anchor box belonging to each cell
of the 13 × 13 grid cells, which are the coordinates of the
center, the width and height of the box, class probability P
(class|object), and confidence

(C = P(object) IOU). Confidence is the probability of
object existence P(object) multiplied by IOU. To learn the
class probability, object existence probability, and confidence
in YOLOv2, we set the value of P(class|object)= P(object)=
1 in the cell where the center of the class object belongs in
the training data, and we set P(object) = 0 for the remaining
cells. The class probability is only trained for cells with
probability 1, and the object existence probability is trained
for all cells. In this case, class probability learning is not
performed for cells with P(class|object) = 0. The estimation
of an object with high existence probability but does not
belong to any class and the image region where an object
does not exist recognized as an object caused by false positive
are not considered. YOLOv2 determines that the class with
the highest probability within the class defined by a softmax
function as the final class of the object, although the image

area recognized as the real object does not belong to the
class defined in the deep network. In particular, no class
comparison target is found when only one class needs to
be estimated. Thus, the class probability becomes one in
all cases using the softmax function, and the deep network
cannot perform the classifier function.

In this paper, a sigmoid function is first applied before
applying the softmax function in calculating the class prob-
ability, and the result is higher than the threshold value.
The softmax function is then applied to calculate the final
class function. The class probability is trained to make it
converge to P(class|object)= 0 for the cell where the object’s
center belongs and for the other cells. The deep network is
converted to the estimated class probability value and con-
fidence through Equations (1a & 1b), similarly to YOLOv2,
to estimate the target class probability value and confidence.

P̂ (class | object) = sig (tclass) , (1a)

Ĉ = sig
(
tObject

)
. (1b)

where tclass and tobject are the outputs of the deep network to
estimate the class probability and confidence, respectively.

C. TRAINING OYOLOv2_FTD TO ESTIMATE THE
COORDINATES AND SIZE OF ANCHOR BOXES
This subsection focuses on training OYOLOv2_FTD to esti-
mate the coordinates and size of anchor boxes. The center
coordinates of the anchor box are shown in Figure 2. The
offset is defined using the vertex at the upper-left corner of
the cell where the center of the object is located, similar to
YOLOv2. The x and y offsets range are from 0 to 1 because
the side length of each cell is 1. Therefore, we estimate the
offset using the sigmoid function. For YOLOv2, the esti-
mated width ŵ and height ĥ of the anchor box are calculated
using Equation (2).

ŵ = Pwidthexp (twidth) , ĥ = Pheightexp
(
theight

)
, (2)

where twidth and theight are the output values for estimating
the width and height of the anchor box in the deep network,
and Pwidth and Pheight represent the initial estimated width and

FIGURE 2. x and y offsets of a bounding box are defined from the top-left
corner of the grid cell where the center of the object is located.
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height of the anchor box. Since the image is converted to the
size W×H at the output of the deep network, the range of the
estimated width and height in Equation (2) should be limited
to 0 ≤ ŵ ≤W and 0 ≤ ĥ ≤ H, respectively.
The above equation does not satisfy this formula, and

because of the characteristics of the exp function, the rate of
change when twidth and theight has a negative value is smaller
than the rate of change when having a positive value. The
disadvantage is that the convergence time increases when
the width and height values are relatively larger than the
estimated width and height values of the actual object. Equa-
tions (3a–d) are proposed in OYOLOv2_FTD to address this
drawback.

ŵ = Wsig (twidth − awidth) , (3a)

ĥ = Hsig
(
theight − aheight

)
, (3b)

where:

awidth = log
(
W − Pwidth
Pwidth

)
, (3c)

aheight = log
(
H − Pheight
Pheight

)
. (3d)

Through the above equations, the range of the estimated
width and the estimated height can be limited to 0 ≤ ŵ ≤ W
and 0 ≤ ĥ ≤ H , respectively. Also, due to the characteris-
tics of the sigmoid function Pwidth and Pheight are based on
W/2 and H/2. They have different rates of change, that can
quickly converge although the difference between the initial
setting values Pwidth and Pheight and the width and height of
the target bounding box is large.

D. SETTING LOSSES FOR OPTIMIZATION LEARNING
Weuse the adaptive gradient (AdaGrad) algorithm, belonging
to the gradient descent-based learningmethod for learning the
deep network. As illustrated in Equations (4–9) the loss func-
tion (Ltotal) that the algorithm aims to minimize is defined as
the weighted sum of the following:
• The localization loss (Lcentercoord ): It involves two parts
of losses, the first part is the loss from bounding box
coordinate x and y (Lxy) and the second part is the loss
from width w and height h (Lwh).

• The classification loss (Lclass): It is the class probability
loss of grid cell.

• The confidence loss (Lconfidence): It is the loss from the
confidence in each bound box.

Ltotal = (WcentercoordLcentercoord +WclassLclass
+WconfidenceLconfidence), (4)

where:

Lcentercoord =
(
Lxy + Lwh

)
, (5)

Lxy=
s2∑
i=0

Iobji exp (−IOU i) [
(
xi − x̂i

)2
+
(
yi−ŷi

)2],
(6)

Lwh =
s2∑
i

Iobji exp (−IOU i)

×

[(
√
wi −

√
ŵi
)2
+

(√
hi −

√
ĥi

)2
]
, (7)

Lclass =
S2∑
i

∑
c∈class

[λobjclassI
obj
i

(
1− P̂i (class | object)

)2
+ λnoobclassI

obj
i P̂i (class | object)

2
], (8)

Lconfidence =
S2∑
i

[
λ
obj
confidenceI

obj
i

(
1− Ĉi

)2
+λnoobconfidenceI

noob
i Ĉ2

i

]
, (9)

where Lxy, Lwh, Lconfidence, and Lclass are the sums of square
errors of the center coordinates, width and height, confidence,
and class probability between the target bounding box and the
anchor box, respectively. Iobji has a value of 1 when the center
of the bounding box is located in the i-th cell, otherwise, it is
0, and Inoobi has the opposite value. In the formulas of Lxy and
Lwh, IOUi denotes to the IOU between the anchor box and the
target bounding box belonging to the i-th cell. As learning
progresses, the overall loss decreases, and the IOU value of
the anchor box belonging to the cell where the center of the
target bounding box is located decreases. In this paper, the
weight of Lcentercoord in Equation (4) is applied by applying
exp(–IOUi) to the internal weight of Lxy and Lwh. Although
the internal weight value of Lcentercoord itself is large, it can
be reduced with the decrease in loss.

For Lclass, we learn that the class probability for the anchor
box belonging to the cell where the object does not exist
is zero and separate the confidence and class probability
by learning the probability of Pi(class|object) rather than
Pi(class), indicating that each class probability can be learned.
Lconfidence is configured to learn all cells similar to the loss
function of YOLOv2. For Ltotal, the specific gravity of each
loss, that is, theWclass,Wcentercoord andWconfidence, values can
be adjusted by the characteristics of the object to be detected
because the scale between each loss value is different.

For the images of fuel trucks captured with a camera placed
on drones, the size proportion occupied by the image is small.
Thus, the values of Lconfidence and Lclass that consider all cells
are larger than Lxy and Lwh that only consider cells where
their class probability is not zero. On this basis, the relative
scale between Lconfidence and Lclass can be adjusted by setting
Wcentercoord to a value that is relatively large compared with
Wconfidence and Wclass. For Lconfidence and Lclass, the class
probability for small objects is small, and the relative impor-
tance can be controlled by setting λobjconfidence and λ

obj
class with

values larger than λnoobconfidence and λ
noob
class.

IV. DATASETS AND EXPERIMENTAL RESULTS
The main objective of this paper is to modify the opera-
tion mechanism of YOLOv2 to improve its object detection

118812 VOLUME 8, 2020



H. R. Alsanad et al.: Real-Time Fuel Truck Detection Algorithm Based on Deep CNN

efficiency. The modified YOLOv2 is tested on fuel trucks as
a case study. This section describes the datasets used in the
experiments, the evaluation measures, and the results of the
conducted experiments.

A. DATASETS
Publicly available datasets, including PASCAL VOC
2007 and PASCAL VOC 2012 datasets, are used to inves-
tigate the performance of the proposed method [37]–[39].
We also build our own dataset of fuel trucks that contains
2500 fuel truck images in different environments and orien-
tations. The images in the datasets include daily scenes on
sunny and cloudy days, and noise background, people, snow,
rain, and other vehicle types are found. This dataset is divided
into training and test datasets with the desired ratio, such as
6:4 or 7:3. We use 7:3 in this paper, as shown in Table 2.

TABLE 2. Fuel trucks dataset distribution.

For the object detection task, the boundary and label for
each object’s ground truth must be manually specified. Stan-
dardized ground truth marking methods are provided in the
PASCAL VOC dataset. This method is also used in the fuel
truck dataset to create the bounding boxes and labels.

The Image Labeler application on MATLAB, which is
a widely adopted annotation tool in numerous applications,
is used to annotate the fuel truck images. This tool directly
converts the annotation message into a mat file format
containing the image’s number and class(es) with bound-
ary boxes. Image annotation is manually conducted for the
2500 fuel truck images. The schematic of the annotated fuel
trucks is shown in Figure 3. The annotated image is used as
an input to train the proposed OYOLOv2_FTD architecture.

B. EVALUATION METHODS
The proposed OYOLOv2_FTD algorithm is trained on
the fuel truck dataset and PASCAL VOC2007 and PAS-
CAL VOC2012 datasets and compared with the existing

FIGURE 3. Sample labeling of fuel trucks using the Image Labeler
application.

YOLOv2 algorithm to verify its performance. The metrics
used to evaluate the proposed model are as follows: IOU,
accuracy, and mAP. IOU denotes the overlap rate of the
predicted bounding box generated by the network and ground
truth bounding box. The bounding box is considered to be
correct when IOU overrides the threshold, as shown in Equa-
tion (10). This standard is used to measure the correlation
between the object ground truth and object prediction, where
the higher the correlation is, the greater the value will be. IOU
is used to calculate theAP of the proposed fuel truck detection
model.

The bounding box (Bpred) of a fuel truck in the image is
collected from the neural network after dropping the input
image. Equation (10) is satisfied when the IOU value is
greater than the value of threshold a0, and the prediction is
regarded as correct based on the IOU value of the predicted
bounding box of fuel trucks (Bpred) and ground truth bound-
ing box (Btruth). Figure 4 shows the detected fuel trucks and
ground truth areas, where the areas marked in purple and blue
represent the predicted bounding boxes, and the ground truth
areas are marked in green. This process aims to calculate the
IOU between the predicted and ground truth areas.

FIGURE 4. A calculation example of IOU [40].

The result is considered to be true positive (TP) when the
IOU value is larger than 50% of the threshold, otherwise, it is
considered as false positive (FP). False negative (FN) occurs
when the model predicts no fuel trucks in the image, but the
image contains fuel trucks. Accordingly, these conditions can
be combined into two metrics, namely, precision and recall.

a =
Bpred ∩ Btruth
Bpred ∪ Btruth

≥ a0, (10)

The accuracy of the predictions provided by the object
detector is measured using the IOU evaluation metric. The
importance of this evaluation metric is by setting anchor
boxes while preparing the training data and is significantly
important when non-suppression is used for the cleanup
required when multiple boxes are predicted per each object.

The value of a0 is set to 0.5, indicating that the intersection
between the predicted and ground truth regions is at least
half of the size of the ground truth area. The test case is
predicted as a fuel truck when the IOU value is larger than
the 0.5 threshold.
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Precision is defined as the ratio of TP to the total positive
predictions, which can be expressed as:

Precision =
TruePositives
Alldetections

=
TP

TP+ FP
=
TP
n
, (11)

where n (TPs + FPs) represents the total number of images
recognized by the system.

Recall =
TruePositives
Alltrueinstances

=
TP

TP+ FN
, (12)

Accuracy is an intuitive measure of performance and
is the ratio of correctly predicted observation to the total
observations. Accuracy is calculated as follows:

Accuracy =
TP+ FN

TN + TP+ FP+ FN
, (13)

The denominator of recall is the sum of TPs and FNs.
The summation of the two values can be recognized as the
total number of fuel trucks in the ground truth. An additional
evaluation measure, mAP, is equal to the area below the
curves of recall and precision. The values of this measure are
limited in the interval [0, 1], where large values indicate good
detection accuracy.

C. EXPERIENTIAL RESULTS
The proposed OYOLOv2_FTD model is trained using the
fuel truck dataset. The images in this dataset have different
sizes, resolutions, and different environments. This dataset is
used to verify the robustness of the proposed model under
different scenarios.

For a fair comparison, all experiments are conducted on
a computer with Intel(R) Core (TM) i7-6700HQ CPU @
2.60 GHz CPU and NVIDIAGeForce GTX 965MGPU, with
16 GB memory and CUDA10.1 cuDNN9.1. The operating
system of the computer is a 64-bit Windows 10. We adopt
a MathWorks support example (Object Detection Using
YOLOv2 Deep Learning) [41] to train the proposed deep
learning model. This example, which is already trained using
VOC 2007+2012, is selected as the backbone of the proposed
OYOLOv2_FTD. The results of the conducted experiments
verify the effectiveness and accuracy of the proposed method
in terms of computational cost.

YOLOv2 and OYOLOv2_FTD are separately trained on
the same dataset to verify the performance of the proposed
model. The loss values during the training phase of the
two models are shown in Figure 5. The x-axis denotes the
number of iterations, and the y-axis denotes the loss values
for each iteration. The losses of the two models decrease
and converge to 0, when the iteration number increases,
confirming that the proposed model is successfully trained
with the training dataset. As shown in Figure 5, the loss of
OYOLOv2_FTD is lower and converges to zero faster than
the original YOLOv2 model. The proposed model outper-
forms the YOLOv2 model.

The proposed algorithm immensely improves the aver-
age accuracy compared with the YOLOv2 algorithm using

FIGURE 5. Loss curves of the two models.

the fuel truck dataset. The proposed OYOLOv2_FTD algo-
rithm achieves 93.0 mAP, and the original YOLOv2 achieves
89.0 mAP, as shown in Table 3.

TABLE 3. Fuel trucks test detection results of the two Algorithms.

We train the proposed OYOLOv2_FTD algorithm for
detection using the VOC2007 dataset. Table 4 shows the
performance comparison of selected (less than real-time)
detectors like Fastest DPM [42], R-CNN Minus R [43],
Fast R-CNN [5], and the proposed OYOLOv2_FTD algo-
rithm. As shown in the results, OYOLOv2_FTD method out-
performs all other methods. The proposed OYOLOv2_FTD
algorithm achieves 80.9mAP, while the Fast R-CNN, R-CNN
Minus R, Fastest DPM achieve 70.0 mAP, 53.5 mAP,
30.4 mAP respectively.

TABLE 4. PASCAL voc2007 test detection results of different less than
real-time models.

We also trained the proposed algorithm using the
VOC (2007+2012) datasets and compared its results
with some (real-time) detectors like Fast YOLO [7],
YOLO(YOLOv1) [7], SSD [27], YOLOv2 [8]. The result is
shown in Table 5.

Figure 6 illustrates some results showing that the system
successfully detects fuel trucks in different scenes and under
different backgrounds.

Figure 7 shows the TP, FP, and FN rates of the two algo-
rithms. The average of the results of the two algorithms is
shown in a pie graph. As shown in the ratios on the pie
graph, the proposed algorithm learns the class probabilities of
regions in the image where no fuel trucks are present during
training, indicating high TP and low FP and FN rates. For
the detection speed per image, YOLOv2 has an average time
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FIGURE 6. Selected examples of fuel truck detection results on the fuel truck dataset using the proposed OYOLOv2_FTD. Each output box is associated
with the score, and the detected frame rate is displayed in the upper-left corner.

TABLE 5. PASCAL VOC2012 test detection results of different real-time
models.

of 0.0416 s, and the proposed algorithm has an average time
of 0.0191 s. This finding is because YOLOv2 uses five anchor
boxes, and the proposed algorithm detects fuel trucks using
one anchor box to improving the size estimation of the anchor
box, as shown in Equations (3a-3d).

As shown in Figure 8, the proposed OYOLOv2_FTD has
an AP value of 93% on the testing set, which is higher than
the YOLOv2 method (89%).

V. OYOLOv2_FTD LIMITATIONS
Themain limitation of our proposedmodel (OYOLOv2_FTD)
as compared to the original model (YOLOv2) is that the

FIGURE 7. TP, FP, and FN rates of YOLOv2 and the proposed
OYOLOv2_FTD algorithm during detection.

operation of our model is based on using one anchor box
rather than five. Consequently, if two or more fuel trucks lay
in the same cell (a very rare scenario), it will be considered
as one object. However, it is noteworthy that using one
anchor box provides faster training and detection compared
to the original model. The second limitation of this work
is its comparison with YOLOv3. We selected YOLOv2 for
improvement because YOLOv3 has worst performance for
detecting large objections [26]. It would be good that the pro-
posed model must be compared with YOLOv3, but YOLOv3
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FIGURE 8. Precision recall curve performance of the proposed
OYOLOv2_FTD detection and YOLOv2 detection.

has not been trained on PASCAL VOC (2007 and 2012).
Considering the excessive work, this comparison is beyond
the resources of this project.

VI. CONCLUSION
This paper focuses on the detection of fuel trucks based on
a deep neural network called YOLOv2. YOLOv2 is used
because of its ability to outperform current methods in terms
of accuracy and performance in near real-time. We proposed
a new network based on YOLOv2method, which is called the
real-time fuel truck detection algorithm based on deep CNN.
The proposed OYOLOv2_FTD method improves the class
probability and regression learning of the coordinate system
in the existing YOLOv2 method, where it can be efficiently
trained using a small amount of training data. The class proba-
bility can be learned by improving the loss function although
the anchor boxes are not in the center of the target object.
The learning process of the model can be in a limited range
and achieve rapid convergence although the sizes of initial
anchor and target boundary boxes are different. The results
of the conducted experiments show that the mAP of the
proposed OYOLOv2_FTD detection model can reach 93.0%.
The proposed OYOLOv2_FTD algorithm outperforms the
traditional YOLOv2 algorithm by 4% in detecting fuel trucks.
Although the proposed model achieves good performance in
the conducted experiments, the number of fuel trucks and the
amount of data is relatively low. In future research, we will
collect many actual fuel truck data to improve the accuracy
and speed of fuel truck detection. The proposed algorithm is
suitable for detecting and tracking fuel trucks in real-time.
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