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ABSTRACT Litchi clusters in fruit groves are randomly scattered and occur irregularly, so it is difficult
to detect and locate the fruit-bearing branches of multiple litchi clusters at one time. This is a highly
challenging task related to continuous operation in the natural environment for visual-based harvesting
robots to carry out. In this study, a reliable algorithm based on RGB-depth (RGB-D) cameras in the fields
was developed to accurately and automatically detect and locate the fruit-bearing branches of multiple litchi
clusters simultaneously in large environments. A semantics segmentationmethod, Deeplabv3, was employed
to segment the RGB images into three categories: background, fruit and twig. A pre-processing step is
proposed to align the segmented RGB images and remove the twigs that did not bear fruits. Subsequently,
the twig binary map image was processed via skeleton extraction and pruning operations, which left
behind only the main branches of twigs. A method for non-parametric density-based spatial clustering of
application with noise was used to cluster the pixels in the three-dimensional space of the skeleton map of
the branches; thus, the fruit-bearing branches belonging to the same litchi clusters were determined. Finally,
a three-dimensional straight line was fitted to each cluster via principal component analysis, and the linear
information corresponded to the location of the fruit-bearing branches. In the experiments, 452 pairs of
RGB-D images under different illumination were collected to test the proposed algorithm. The results show
that the detection accuracy of a litchi fruit-bearing branch is 83.33%, positioning accuracy is 17.29◦±24.57◦,
and execution time for the determination of a single litchi fruit-bearing branch is 0.464s. Field experiments
show that this method can effectively guide the robot to complete continuous picking tasks.

INDEX TERMS Continuous picking, location detection of fruit-bearing branches, harvesting robots, RGB-D
image.

I. INTRODUCTION
Litchis are characteristic fruits of economic importance in
South China, and their planting area and production output
rank first globally. In 2017, the planting area and output of
litchis in China were about 546,667 m2 and 2.3 million-
tons, accounting for 68.3% and 65.7% of the global total,
respectively. Owing to the short fruiting period, picking
litchis in time is crucial for a successful harvest. Artificial
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harvesting is currently a common harvesting method, but it is
very laborious and time consuming. Therefore, it is feasible
to develop intelligent robotic systems that can pick litchis
automatically [1]. Many related studies have developed such
fruit-harvesting robots [2]–[7]. The accurate detection and
spatial positioning of the target fruits is the key to successfully
complete the picking task using such vision-based harvesting
robots.

In this regard, fruit detection and localization have been
studied extensively [8]–[11]. In [12], the researchers devel-
oped a real-time apple detection and localization vision
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system with a detection rate of 100% and a positioning
accuracy of ±3mm. In [13], a charge-coupled device (CCD)
camera was employed to acquire images of apples, and a
color- and shape-based support vector machine (SVM) was
used to detect the fruits; herein, an 89% success rate was
yielded. In [14], a vision system was developed based on an
RGB-depth (RGB-D) camera under a light shield to detect
bicolored apples using both color and shape information. The
algorithm thereof could detect 100% of fully visible apples
and 82% of partially occluded apples, and the positioning
error was below 10mm. The detection of all fruits (and obsta-
cles) and localization of an apple tree were realized simul-
taneously in one RGB-D image. A monocular vision system
for medium- and large- scale citrus harvesting was developed
in [15], wherein perspective transformation-based range esti-
mation was used to obtain three-dimensional (3D) informa-
tion on fruit position under low computational requirements,
with an accuracy of 15mm. In [16], a novel processing algo-
rithm was developed to detect kiwifruits and draw separate
lines to separate each fruit according to its growth char-
acteristics; a common camera was placed underneath the
fruits to capture images. A 93.7% success rate of detection
was yielded for fruit calyxes, and a 92% success rate was
yielded for the correct segregation of fruits during night-time
with flash. In [17], two CCD color cameras integrated with
a window zooming-based algorithm were utilized to locate
multiple fruits and vegetables. The results showed that under
varying illumination and partially occluded circumstances,
the localization errors were less than 7.5 mm for a measur-
ing distance of 300–1600mm. Among the abovementioned
studies, those that adopted multiple visual sensing methods
combined with advanced algorithms to detect and locate tar-
get fruits usually achieved a high success rate. However, those
studies mainly focused on fruits that grow in single units,
of which the picking points are at the geometric center. These
studies are not applicable to stringed fruits, whose picking
positions are at the fruit stem or the fruit-bearing branch.

In recent years, several studies have explored the direct
or indirect detection of branches (or stems), mainly for har-
vesting or pruning purposes [18]–[23]. For instance, to detect
branches of the sweet cherry tree with full foliage under
outdoor vibratory picking, the author of [24] developed
a pixel-based segmentation and detection method, used a
Bayesian classifier to classify images captured at night-time
using a stereo-vision camera under controlled lighting, and
then linked the same branch together, selecting the best-fit
model as the final branch of the cherry tree. The detection
accuracy was as high as 89.2% in this case. In another
study [25], to address the problem of branch obstacle localiza-
tion, an apple-harvesting robot was enabled to subtly extract
the endpoints and bifurcation points in the branch skeleton
image, obtained from RGB images as feature points, and
perform stereo matching of those feature points to obtain
the position information of the branches with a ±6.2 mm
localization error. In [26], the author implemented four deep
learning frameworks to segment images of grape bunches

acquired via an RGB-D sensor to estimate canopy volume
and count the bunches, with a maximum accuracy of 91.52%
being yielded despite the input images being of poor quality.
In [27], for harvesting purposes, the support wire was used
as a visual cue to locate the stems of sweet-peppers on the
basis of a stereo-vision system under controlled lighting. This
method achieved an accuracy of±0.4 cm. In [28], the authors
studied the R-G colormodel of cherry tomato images; therein,
the cherry tomatoes were planted in a greenhouse and treated
with artificial pruning. CogPMAlignTool was employed to
identify four marginal fruits of a mature bunch to guide the
robot to finish the task indirectly, yielding an 83% successful
harvest. In another study [29], an acceptable method was
proposed to locate the picking point of a litchi cluster via
application of different color spaces when one image con-
tained only a bunch of fruits, with an 83% accuracy rate and
near-real-time results being yielded. Some of the abovemen-
tioned studies needed either a cue or ideal conditions for good
performance to be achieved. In some of the others, the picking
branches could only be identified indirectly after the fruits
were first detected.

We can therefore conclude that RGB-D-based methods
are suitable for fruit detection in the field, the recogni-
tion and location of branches is a crucial step for fruit
bunch harvesting, and advanced algorithms should be uti-
lized to improve the location accuracy and success of a har-
vest. However, changes in illumination; occlusions of leaves,
fruits and branches; and disturbances due to wind remain
obstacles regarding accurate detection of fruits by robots
under natural harvest environment conditions. Our previous
research mainly focused on the detection and localization of
single-string litchis via picking of one string at a time and
usage of an eye-in-hand system (i.e., a camera installed at the
end-effector of the robot that moves with the robot). In [30],
the litchi stem was extracted using images based on mor-
phological processing collected in their natural environment
with an 80% success rate. In this study, one image included
one litchi cluster, and the stem was not occluded. In [31]
and [32], two different localization methods for litchis were
proposed on the basis of binocular stereo vision. In order to
extract the litchi clusters using the images, different segmen-
tation andmatchingmethods were employed that are resistant
towards illumination changes and partial occlusions when the
litchi images were collected under certain conditions (target
fruits had a pixel ratio in the images). The highest average
recognition rate and matching success rate were 98.8% and
98%, respectively, and the algorithm execution time was
approximately 3 s. We also built an error model of the
manipulator, analyzed the fault-tolerant range of end-effector,
and designed a five degree-of-freedom (DOF) manipulator
and picking end-effector to verify the effectiveness of the
algorithm [33], [34]. We further investigated the litchi clus-
tering recognition and picking point calculations under night-
time [35] and disturbance conditions [36] to enable the robot
to successfully complete the picking task under certain spe-
cific conditions.

VOLUME 8, 2020 117747



J. Li et al.: Detection of Fruit-Bearing Branches and Localization of Litchi Clusters

The growth of litchi clusters on a tree is typically random
and irregular, so it is difficult to simultaneously detect and
locate the fruit-bearing branches of multiple litchi bunches in
one image, which presents a major challenge to vision-based
harvesting robots that are intended to perform continuous
operations under natural environments. However, to date,
no such research has been reported in this regard. In a
recent study [37], the authors considered prioritizing robotic
grasping of stacked fruit clusters with small stalks on the
basis of RGB-D images, which is one of the most relevant
studies addressing this challenge. Therefore, we have also
attempted to research this issue. Inspired by object segmenta-
tion based on deep convolutional neural networks and fruit 3D
localization methods, this study aims to develop a combined
algorithm to detect and locate small fruit-bearing branches in
a large environment where one captured image contains mul-
tiple litchi strings to be picked. The color and depth informa-
tion in one RGB-D image were combined to provide reliable
picking information for the harvesting robot. Because some
small visible branches in the image may contain important
picking information, a precise pixel-based semantic segmen-
tation method (Deeplabv3) was used to segment fruits and
twigs from the background. Subsequently, a series of mor-
phological processing methods and 3D spatial positioning
methods were used to extract more accurate information for
picking fruit-bearing branches. This allowed for simultane-
ous extraction and location of all fruit clusters or obstacles in
a given environment scene. The effectiveness of the proposed
method was validated via experiments.

The remainder of this article is organized as follows:
Section II describes the materials, methods, and algorithms
of the sensor system. The results are presented and discussed
in Section III, and the conclusions and suggestions for further
research are included in Section IV.

II. MATERIALS AND METHODS
A. SENSOR SYSTEM AND IMAGE ACQUISITION
In this study, Kinect V2, a low-cost RGB-D camera was used,
which consists of a color camera and an infrared camera that
can generate an RGB image with a resolution of 1920×1080
pixels and a depth image with a resolution of 512×424 pixels
at 30 fps. For the experiments, the Guiwei litchi variety was
used, and 452 pairs of images were collected from: (1) an
orchard in Zengcheng, Guangzhou, China on June 27, 2018
(sunny) and (2) a Litchi Cultivation Experimental orchard
base of South China Agricultural University, Guangzhou,
China on May 20, 2019 (heavy rain to clear conditions).
All kinds of illuminations were included, and no artificial
shade or lighting interference was incorporated. As per [38],
the images in this study were randomly divided into a training
set and a test set in a ratio of 80:20.

The Kinect camera was placed within a range of
500–800 mm from the litchi trees, which not only covered
the field of vision of the camera but also the reachable area of
the picking robot. This vision sensor was mounted on a litchi

FIGURE 1. The litchi harvesting robot system.

harvesting robot, as shown inFIGURE1. The picking system
also included a six-DOF manipulator equipped with a liftable
walking platform, independently developed pneumatic-drive
end-effector affixed on the end-axle of the manipulator, and
computer (Intel Core i7-8700 CPU @ 3.20GHz and 8GB
RAM with Windows 10 operating system) to integrate the
algorithm. The program environment for the localization soft-
ware system included opencv-3.4.1 and Visual C++ 2017;
MATLAB R2017b was used to evaluate the algorithm for
the in-filed experiments. An image annotation tool, namely
LabelMe, was used to manually label images at the pixel level
as background, fruit, or twig. This task was however highly
time-consuming and took 15 days for two people to complete
because of the large number of images used and the small and
scattered target in each of those images. Subsequently, those
data were converted to the TFrecord type and registered for
image segmentation.

B. FERTILE BRANCH DETECTION AND LOCATION
ALGORITHM
The algorithm’s overall procedure for vision-based fertile
branch detection and 3D spatial localization of litchi clusters
is shown in FIGURE 2. It involves three main steps:

Step 1: A powerful semantic segmentation tool,
Deeplabv3, was used to segment the captured RGB images
to obtain the pixel area of litchi fruits and twigs. Then,
the segmented and depth images were aligned according to
the depth-to-color mapping relationship. Details pertaining
to this are presented in Section B-1.

Step 2: The fruits-bearing branches were detected via
morphological processing. This included the following pro-
cesses: removal of the fruitless twigs in the aligned images;
extraction of the skeleton and removal of the burr of these
twigs to obtain single-pixel twigs; and pruning of those twigs
to obtain the main branches, which are also the fruit-bearing
branches. More details are presented in Section B-2.
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FIGURE 2. Algorithm flow chart of litchi fruit-bearing branch detection and localization based on RGB-D images.

FIGURE 3. Parallel modules of Deeplabv3; the improved ASPP to capture the multi-scale information of target.

Step 3: In order to locate the picking line of the fruit-
bearing branches in the 3D space, the branches projected into
the space were clustered via revised density-based spatial
clustering of applications with noise (DBSCAN) and fitted
with a straight line via principal component analysis (PCA),
and the position data of those branches in the 3D space were
obtained to determine the picking position. More details are
presented in Sections B-3 and B-4.

1) IMAGE SEGMENTATION AND ALIGNMENT
The purpose of image segmentation is to segment the
fruits and twigs from the background in the RGB images.
An advanced semantic segmentation general framework,
Deeplabv3, was employed [39]. It combines deep convolu-
tional neural networks (DCNNs) with different atrous rates
of atrous convolutions to go deeper or applies the improved
atrous spatial pyramid polling (ASPP) to perform multi-scale
semantic segmentation of objects. Some highly effective
parallel modules of Deeplabv3 are shown in FIGURE 3.
To expand the receptive field to extract multi-scale informa-
tion, it duplicates several copies of the original last block in
ResNet [40], marked as block 4 in FIGURE 3, following
which it arranges them in cascade or in parallel (shown as
ASPP in FIGURE 3, consisting of three 3 × 3 convolution

with rates of 6, 12, and 18). The improved ASPP also
applies one 1 × 1 convolution before ASPP to upsample
the feature to the desired spatial dimension and global aver-
age pooling on the last feature map after ASPP to incor-
porate global context information. The resulting features
are then concatenated to generate the final results after a
1× 1 convolution.

The input to Deeplabv3 is the RGB images captured using
Kinectv2.0 at a resolution of 1920 × 1080 pixels. We fine-
tuned Deeplabv3 from its original structure in [39] by using a
publicly pre-trained model [41] and Xception_65 [42] back-
bone network on our small training dataset. The implementa-
tion details include: (1) Making our own data sets according
to PASCAL-VOC2012 [43] and initializing the parameters
for Deeplabv3 model through reuse of all trained weights
except the logits; (2) Improving the result by fine-tuning
hyperparameters such as with a learning rate of 0.0001 and
batch size of 2; and (3) 50,000 training iterations to stop the
learning procedure.

Subsequently, we aligned the segmented image and the
depth image. The process of mapping the world coordinate
point M (XW ,YW ,ZW ) to the image point m (v, u) is shown
as FIGURE 4. We could determine an RGB value for every
depth data in depth images within 1200mm (images out of the
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FIGURE 4. Mapping relationship between the world coordinate system
and image.

range are seen as background) using (1).


Di = Dpt (vi,ui)
uirgb=W (1, 1)ui+W (1, 2) vi+W (1, 3)+W (1, 4) /Di

virgb=W (2, 1)ui+W (2, 2) vi+W (2, 3)+W (2, 4) /Di

D2C i(vi,ui, :) = Rgb(virgb ,uirgb , :)
(1)

Here, (vi, ui) is pixel i’s pixel coordinates, Dpt (vi, ui) is
the depth data in the corresponding coordinates, andW is the

camera-related 4∗4 matrix that can be calculate from (2).{
M = [R,T ]
W = RR ∗M ∗ LR−1

(2)

where R and T are the rotation and translation matrices;
M is the external parameter matrix; and RR and LR are the
internal parameter matrices of the two cameras of Kinect.
They can be calculated after camera calibration using [44].
After the training, Deeplabv3 could segment the RGB image
(FIGURE 5-a) to a color binary map (FIGURE 5-d). The
camera distortion parameters were not considered in this
study. The aligned RGB image is shown in FIGURE 5-b
and the aligned segmented image is shown in FIGURE 5-e.
Clearly, the frame information around the unaligned seg-
mented image was discarded, leaving the information of
the center vision after alignment. It can be seen from
FIGURE 5-f that there are some pixel holes in the alignment
image, caused by the loss of some depth information owing
to the influence of uneven illumination.

2) MORPHOLOGICAL PROCESSING
After the image segmentation and alignment, detailed infor-
mation about the fruits and twigs at the pixel scale was
obtained. In order to determine the position of the picking
branches on the two-dimensional (2D) image, the information
of fruit-bearing branch in the image needed to be roughly
extracted. Therefore, in this study, a morphological-based

FIGURE 5. (a) RGB image; (b) Aligned RGB image; (c) Partial enlarged image of (d); (d) segmentation results of (a); (e) Aligned segmented image;
(f) Partial enlarged image of (e) (marked orange); (g) Gray image after filling of the pixel holes (in segmented image, where red represents fruit and green
represents twigs in groves).
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algorithm for removal of fruitless twigs, their skeleton extrac-
tion, and pruning was developed to detect the effective pick-
ing branch information under a single pixel.

First, we converted the aligned segmented image to
grayscale and filled the image holes using [45]; the image
obtained after filling of the pixel holes is shown in
FIGURE 5-g, Subsequently, we removed the fruitless twigs
as per the following steps:

(1) Addition of a blank pixel border to the gray image of
the twigs and marking of the eight connected regions.

(2) Checking the pixels in each isolated twig region; if
there are pixels with the same gray value as the fruit in the
7 × 7 neighborhood of the pixel, such a twig region will
be preserved, otherwise it will be excluded because it is
considered fruitless.

(3) Repetition of (2) until all connected regions in the
image have been traversed, followed by deletion of the blank
pixel border.

Next, skeleton extraction and burr removal was con-
ducted [45] to reduce the number of branch point clouds
and the time complexity of the algorithm. Subsequently,
a pruning algorithm was developed to remove the skeleton
branches and retain the trunk/backbone of the fruit-bearing
branch. As shown in FIGURE 6-a, the skeleton image
includes three types of feature points: end points (A), corner
points (B) and branch points (C), of which only branch points
have branches. Therefore, in this study, the information of

FIGURE 6. (a) Feature points of skeleton image; (b) Definition of FLAG
value of branch point P; (c) Skeleton image; (d) Image after branches
pruning; (e) Process of pruning one branch.

points A and B was preserved, and the C-type feature points
were pruned to B-type feature points. For each branch point P,
we defined two marker variables on its eight neighborhood,
where SUM is the number of non-pixels on its eight neighbor-
hood, and FLAG is the location of non-zero pixels. We deter-
mined the value of FLAG according to the location shown in
FIGURE 6-b,

P {FLAG} = {1, 2, 3, 4, 6, 7, 8, 9}. It is clear that
A {SUM} = 1, B {SUM} = 2, C {SUM} ∈ [3, 8].
We marked the connected regions of the deburred skeleton

image and then conducted pruning for each region (each
region also represents one branch), as FIGURE 6-e shows,
where each small square in the graph represents a pixel, gray
indicates that the grayscale value of that pixel point is not 0,
and white indicates that the grayscale value of that pixel
point is 0. The search is conducted first by row and then by
column. The first branch point found in the graph was C1,
and we could calculate C1 {SUM} = 4 and C1 {FLAG} =
{3, 6, 7, 9}. We then set the pixel value of the image at
FLAG(3) to 0; we found that this region was divided into two
regions, and the ratio of the number of non-zero pixels in the
two regions was RTO{FLAG(3)}=3/7. Similarly, the values
for other positions were calculated to RTO{FLAG(6)}=0,
RTO{FLAG(7)}=1/9, RTO{FLAG(9)}=2/8. To delete the
redundant branch at branch point C1 and make it a corner
point, point or connected regions with smaller RTO ratios
around point C1 should be deleted here: accordingly, the point
at the FLAG(6) position was deleted, and the region with
a small number of pixels was deleted at the FLAG(7) posi-
tion, as shown in steps ¬ and  in FIGURE 6-e. It is
clear that only the main branch information was retained.
FIGURE 6-d shows FIGURE 6-c after the pruning process.
The pseudocode routines of the branches pruning algorithm
are presented in FIGURE 7.

3) RDBSCAN CLUSTER
After the morphological processing, the image retained the
main stem of litchi fruiting branch. In order to determine
its spatial position, it was very important to process the 3D
point clouds of the branch skeleton. In this study, the depth
data between 550 mm and 1200 mm was converted to 3D
coordinate according to (3).

zi = Dpt (vi, ui)
xi = zi(ui − u0)/fx
yi = zi(vi − v0)/fx

(3)

where (vi, ui) is pixel i’s pixel coordinates, Dpt (vi, ui) is the
depth data of the corresponding coordinates, and (v0, u0) and
(fx , fx) are the internal parameter of depth camera, included
in LR matrix in Section B-1.

As shown in FIGURE 9-c, each branch is not a regular
line in space but presents a complex curve shape, as it is
difficult to directly fit a straight line. Therefore, this step
was conducted to group the branch point clouds into a set
of clusters, with each cluster representing one fruit-bearing
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FIGURE 7. Pseudocode of pruning algorithm.

branch. Considering that the cluster is made up of a high
density data cloud and some clusters are connected to each
other, a revised non-parametric density-basedDBSCANclus-
tering algorithm was adopted (inspired by [47]) to achieve
more specific results. The algorithm flowchart is shown in
FIGURE 8, where equationN =Retrieve_Neighbors(P, Eps)
denotes that the data points within range Eps of point P
are stored in N , dist(Pborder, P′border ) denotes the distance
between points Pborder and P′border , and an object whose
number of points in its N set is greater than the value of
Minpts is defined as a core object. According to this method,
upon entering data set D and two important RDBSCAN
parameters (scanning radius Eps and minimum number of
included points Minpts), we were able to obtain the specific
clusters into which this intensive data set D was aggregated
as well as the noise points that did not belong to any cluster.

On analyzing the point cloud data of the picture in this
study, we found that more than 70% of the images contained
only about 800 points; the data scale was small but required
a high degree of clustering accuracy, so an adaptive analysis
method based on the K-average nearest neighbor (K-ANN)
and mathematical expectations was used to determine param-
eters Eps andMinpts for each image [48]. First, for each point
in data set D, the K-NN distance between it and its K-NN
data point was calculated, followingwhich theK-NNdistance
was averaged over all data points, and the K-ANN distance

FIGURE 8. The algorithm flowchart of revised DBSCAN.

vector for all K values was calculated. This vector was the
calculated list of Eps parameters for the RDBSCAN cluster.
The calculation was performed as per the following steps:
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FIGURE 9. RDBSCAN cluster process and results. (a) Branch point cloud. (b) The K-Eps parameter relationship. (c) The K-Cluster Number relationship.
(d) Cluster result, where each segment is marked with a random color.

Step 1: Calculation of the distance distribution matrix
Dn×n for data set D.

Dn×n = {dist (i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ n} (4)

where n is the number of data points in the data set D, Dn×n
is a real symmetry matrix of n × n, and dist (i, j) represents
the distance from the i point to the j point in D.
Step 2: For each row of elements in Dn×n in ascending

order, the elements in column K form the K-NN vector Dk
for all data points.

Step 3: Calculation of the average value of the elements
in Dk to determine the K-ANN distance D̄k of vector Dk .
For each K-value calculation, i.e., the average value of each
column in Dk , the resulting vector is the list of Eps parame-
ters. The K-Eps parameter relationship diagram is shown in
FIGURE 9-a.

We obtained the neighborhood density threshold parame-
ter, Minpts, using equation 5.

Minpts =
1
n

n∑
i=1

Pi (5)

where P is the number of Eps neighborhood objects of the i
object.

From this, each K-value corresponds to a set of Eps and
Minpts parameters, and we performed RDBSCAN clustering

for each set of parameters to obtain the K-value in relation to
the number of clusters.

When the generated Cluster Number was the same five
times in a row, we assumed that the clustering result was
stable, and we considered the clustering number N as the
optimal clustering number, selected the maximum K value
as the optimal K value, and found a set of parameters Eps
and Minpts that corresponded to K. We assumed this set of
parameters to be the optimal parameter pair. The K-Cluster
Number relationship diagram is shown in FIGURE 9-b.
As can be seen, when N = 8 and K was between 33 and
52, the clustering results tended to be stable, and we consid-
ered the parameter pair at the maximum K value of 52 as
the optimal parameter, where Eps was 62.13 and Minpts
was 60.

Despite the time complexity of the analysis process being
relatively high, this method guarantees accuracy of the num-
ber of fruit clusters when compared to static parameters and is
highly applicable to complex field environments. The cluster
results for FIGURE 9-c are shown in FIGURE 9-d; the
pixels in the pruned skeleton map were divided into seven
clusters, with each color representing a cluster and the black
hollow circle representing noise points. These seven clusters
would be the premise for line fitting and location; that is, a
total of seven fruit-bearing branches were extracted.
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FIGURE 10. Examples of linear fitting results in aligned RGB images.

4) SPATIAL STRAIGHT LINE FITTING AND LOCALIZATION
After the clustering process, the 3D point cloud for each cat-
egory represented a string of pre-harvested fruiting branches.
Subsequently, via PCA, a 3D linear fit was performed for the
point clouds in each cluster. The 3D data were projected into
the 2D plane and then downscaled to a linear line to obtain
the linear equation for the closest picking branch in space.
According to [49], the data set matrix was diagonalized by a
covariance matrix and projected to the dimension of principal
component. For them×3 data setD in this study, PCA straight
line fitting was conducted as per the following steps:

1. Feature centralization. Subtraction of the average value
of each column in data D to obtain matrix X.

2. Determination of the covariance matrix of X ,
C = 1

mXX
T.

3. Determination of the eigenvalues and corresponding
eigenvectors of covariance matrix C.

4. Arrangement of the eigenvectors into a matrix according
to the descending order of the corresponding eigenvalues.
The previous line is to be taken to form the matrix P (the
first component). Y = PX is the data that is reduced to one
dimension from three dimensions.

The P vector obtained via PCA is the direction vector of
the space straight line in the 3D space, and the straight line
is the fitted litchi fruit-bearing branch information. Through
analysis and statistics, the average contribution rate of the first
component of all spatial lines in the images was obtained as
78.66%, which is a reliable value for the data set containing
noise. Therefore, it is reliable to use this method to locate
the 3D lines. At the same time, the calculation was based
on the existing functions of MATLAB, with small calcula-
tions and high practical application value. This completed
the process of fitting and localization the spatial straight line.
FIGURE 10 shows some examples of linear fitting results.
In the image, each line is marked with a random color,
and each line contains information about the location of the
fruit-bearing branch of the litchi to be picked.

III. RESULTS AND DISCUSSIONS
A. PERFORMANCE OF ALGORITHM
To evaluate the performance of the proposed method, the
ground-truth location for each fruit-bearing branch needed to
be measured in test dataset. We measured spatial information
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of picking branches in the test image as per the following
steps:

(1) Manual labelling of each target branch in the aligned
RGB image using LabelMe; it should be noted that the fruit-
less and invisible branches were not included in our range.

(2) Conversion of those labelled pixels into 3D spatial
coordinated, followed by PCA-based line fitting to determine
the ground-truth location of the picking branches.

1) SEGMENTATION RESULTS
To measure the segmentation performance of Deeplabv3,
mean intersection over union (MIOU) was used, the formula
for MIOU is as follows:

MIOU =
1
n

n∑
i=1

pii∑n
j=1 pij +

∑n
j=1 pji − pii

(6)

where n is the number of classes and is equals to 3 in
our study. i and j are the ground truth and the predicted
segmentation, respectively. pij represents the number of pix-
els belonging to class i but are predicted to be class j. The
Deeplabv3 segmentation results from our test are shown in
TABLE 1. Because of the small and scattered distribution
of fruits and branches (particularly fruit branches) on litchi
trees under natural harvesting environments, cumulative IOU
could not yield a very good result regarding image pixel
segmentation; the final result was 79.46%. This segmenta-
tion result was sufficient to describe the distribution and
growth characteristics of branches scientifically and would
not cause information loss for picking of fertile branches.

TABLE 1. Mean intersection over union (MIOU) of Deeplabv3 on our test
dataset.

It facilitated reliable segmentation for the following localiza-
tion experiments.

2) EXTRACTION AND LOCATION RESULTS
There are two indicators to measure the extraction and loca-
tion of the picking mother branch. One is the error extraction
rate, i.e., the error between the actual number of picking fruit
strings and the calculated number of picking fruit strings. The
other is the error between the actual spatial position of the
picked fruit strings and the calculated position. There are two
situations: one is that the actual picking fruit strings are lost
in our calculations, which are called false positives, and the
other is that the branches of the actual picking fruit strings
are extracted, i.e., the branches where the actual picking fruit
strings do not exist, which are called false negatives. Precision
is the ratio of the true positives to the number of true fruit
strings. For the secondmeasurement, the location information
of fertile branch was determined via the angle θ between the
calculated line and ground-truth line. We measured this by
calculating the angle between the direction vectors of two
spatial straight lines, as per (7):

θ = arc cos
Es1 · Es2
| Es1| | Es2|

(7)

where S1, S2 represent the direction vector of the calculated
line and the ground-truth line, respectively. The smaller is
the value of θ , the smaller is the error. To overcome the
influence of a few results with large errors, we used median
and standard deviation to measure the angle deviation for the
true positive and false negative spatial lines.

FIGURE 11 shows examples of fertile branch extraction
printed over aligned RGB images, in which the yellow line
and red line represent the true picking branches and extracted
results based on the proposed algorithm.Asmentioned above,
it is clear that yellow line 2 depicts the false positives in
the image (a). Initially, yellow line 6 also appears to be a
false positive, but it is divided by red lines 5 and 6, which
are false negatives, as well as the branches of fertile branch
yellow line 6; therefore this line is included as a true positive.
TABLE 2 shows the experimental results of our algorithms

FIGURE 11. Examples of fertile branch extraction results printed to aligned RGB images. The yellow line represents the ground-truth picking
branch, the red line represents the calculated picking branch by proposed method.
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TABLE 2. Experiments results in test data sets.

TABLE 3. Median and standard deviation of localization errors.

for extraction and spatial localization errors in test data sets
with a precision of 83.33%. TABLE 3 shows the median and
standard deviation of θ ; it is clear that the localization error
of the fertile branches for test images was 17.29◦±24.57◦.
This location error indicates that the extraction and local-
ization system is suitable for a litchi harvesting robot if the
end-effector can tolerate this angle error.

The causes for failure were grouped into two categories.
(a) When the pruning algorithm removed the skeleton

branches, it also erroneously removed the fertile branches’
trunk owing to the branch pixels being greater than the
number of trunk pixels. If two fertile branches are too close
to each other, it is hard to separate them via RDBSCAN,
so two fruit strings were observed as one branch. As shown
in FIGURE 11-a, yellow lines 1 and 2 were clubbed with red
line 1.

(b) When the fruit-bearing branch of one string fruit was
very thin or invisible, Deeplabv3 is unlikely to recognize it.
Hence, the branch of this fruit string could not be detected.
To address these problems, the following solutions can be
considered:

(1) Cultivating a new variety with fewer leaves, which
would be more suitable for robotic harvesting or improving
the algorithm performance;

(2) Utilizing prior knowledge of the fruit string; for exam-
ple, considering the fact that the mother branch tends to be
above the fruit.

3) TIME EFFICIENCY ANALYSIS
In order to ensure real-time performance of the picking pro-
cess and to reduce the time complexity of the algorithm,
we encapsulated the code as functions as far as possible and
deployed the algorithm to run on a GPU. We measured the
time elapsed for different execution steps for each image, and
the results as shown in TABLE 4.

On combining the average time of every phase, we con-
clude that for an average of 6.25 fruit strings in a scene,
the average execution time was 2.9 s; i.e., the processing
time for a single string was 0.464 s. It takes several seconds
for the robot to finish picking a fruit string, so the time per-
formance of the proposed algorithm can ensure continuous

TABLE 4. Executed time for the proposed algorithm over test dataset.

picking operations. Therefore, this method can be applied for
real-time picking of litchi strings.

B. DISCUSSIONS
While theoretical analyses and practice experiments show
that the algorithm can satisfy the requirements for real-time
picking in terms of accuracy and time complexity, there is still
some room for improvement.

(a) Because of the random distribution of litchi fruit clus-
ters in the field environment, several clusters close to each
other would have an impact on the extraction accuracy.

(b) When fertile branches are seriously occluded and the
lighting conditions change significantly (particularly in the
case of strong light), the final results would be unsatisfac-
tory. Under the shade of litchi trees, the influence of light
would be considerably weakened; the interactions among
many fruit strings extracted from the same scene would also
be effectively reduced. The information of fruit strings that
are occluded in some scenes can be extracted from the scene
captured from another angle.

(c) In addition, in the field experiments, we found that
obstacles such as branches and fruits may lead to the failure of
the picking task on the premise that the fruit-bearing branches
have been accurately localized. Therefore, it is important to
study methods to avoid such obstacles during the picking
process.

IV. CONCLUSION
Localization of litchi strings is crucial to complete the picking
task successfully using a robot. Therefore, the extraction of
fertile branches and 3D spatial localization based on RGB-D
images was proposed in this study, which mainly involved the
following steps:

(a) Semantic segmentation based on Deeplabv3 to segment
the fruits, branches, and background in RGB images.

(b) Morphological process analysis to obtain information
about the fertile branches.

(c) Revised DBSCAN clustering-based branch extraction
and optimal clustering parameter analysis.
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(d) Spatial straight line fitting and localization of fertile
branches.

The algorithm achieved a mean intersection over union
of 79.46% on using Deeplabv3. In the image, although the
pixel information of the litchi fruits and twigs is small
and scattered, a favorable segmentation result can still be
obtained. An 83.33% extraction precision regarding the test
data sets was yielded. It can therefore be concluded that the
proposed method is significantly robust for spatial extraction
of litchi strings. The localization error of the fruit-bearing
branches was 17.29◦±24.57◦, which suggests that the spatial
localizationmethodwas suitable for locating the fruit-bearing
branches. The average execute time was 0.464 s for a single
litchi string, indicating that this algorithm can be applied to
practical scenarios involving a litchi-harvesting robot.

In conclusion, the proposed method can effectively extract
and locate litchi fruit strings and help guide the robot to
conduct the picking task continuously. A future study will
focus on the success rate of the picking task.
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