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ABSTRACT In this paper, we propose a channel sparsity aware sequential recursive least squares (sparse
SEQ-RLS) algorithm for function expansion filters with applications in nonlinear echo cancellation. The
algorithm is developed based on a diagonal channel structure from the Volterra filter and updating dominant
coefficients taking into consideration of sparse elements in the diagonal channel. The third-order Volterra,
third-order even mirror Fourier nonlinear (EMFN), and functional link artificial neural network (FLANN)
filters are developed according to the sparse SEQ-RLS algorithm. The computation complexity for the upper
bound is analyzed to validate the efficiency for each proposed filter. Computer simulation results demonstrate
that all proposed function expansion filters with the sparse SEQ-RLS algorithm are effective for nonlinear
echo cancellation. In general, the EMFN filter provides better performance compared to the Volterra and
FLANN filters.

INDEX TERMS Nonlinear sparse system modeling, nonlinear acoustic echo cancellation, sparse sequential
RLS algorithm, Volterra filter, even mirror Fourier nonlinear filter.

I. INTRODUCTION
Speech quality is in demand for voice commanded systems
and telephony [1]–[4]. The voice communication system
in real time often suffers from audible echoes. In order to
cancel the echoes, an acoustic echo cancellation system is
designed to increase speech quality both subjectively and
objectively. Although echo cancellation has been studied for
several decades, some fundamental challenges still need to
be addressed. One of them is the non-linearity in the acoustic
echo path in which nonlinearities may be introduced by low
quality and overdriven audio components such as ampli-
fiers, loudspeakers, and so on. A conventional linear echo
canceller cannot model the nonlinear echo path accurately;
thus the echo cancellation system suffers from performance
degradation.

In order to tackle the problems of nonlinear acoustic
echo cancellation (NAEC), several nonlinear filters have
been investigated [2]–[6], including the linear FIR filter with
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non-linear preprocessor, static power filter, cascade and par-
allel dynamic power filter, hybrid Taylor-Volterra model filter
and functional link neural network. Most of the proposed
nonlinear filters use the least mean squares (LMS) algorithm
and its variations. To improve effectiveness of nonlinear echo
cancellation and algorithm convergence speed, the recursive
least squares (RLS) algorithm [6] has been applied. However,
the RLS algorithm suffers when the dimension of the input
vector is large, resulting in algorithm instability, and a huge
computational load, which hinders its real-time implemen-
tation. Recently, the diagonal Volterra structure and func-
tional link artificial neural network (FLANN) filters [7], [8]
have been introduced to improve the processing capability
using a sequential RLS algorithm [9]–[13] in which the filter
channel can be updated sequentially. But the even mirror
Fourier (EMFN) nonlinear filter [14], [15] using the RLS
algorithm has not been reported yet for nonlinear acoustic
echo cancellation.

On the other hand, although an improvement using the
nonlinear filters for NAEC has been validated, many of the
filter coefficients during the adaptive process for modeling
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the nonlinear echo path are not significant and their values are
close to zero. Such sparsity in the nonlinear filter coefficients
can be exploited by updating the significant filter coeffi-
cients [16]–[20] and setting the non-significant coefficients
to zero.

In this paper, we develop function expansion adaptive fil-
ters wielding a new channel sparsity-aware recursive least
squares (RLS) algorithm using a sequential update. The
developed nonlinear adaptive filters using a sparse sequen-
tial RLS (SEQ-RLS) algorithm adopt a discard function to
neglect the coefficients whose values are close to zero in
the weight vector for each filter channel in order to reduce
the computational load and to improve the algorithm conver-
gence rate. Therefore, the channel sparsity-aware algorithm is
first derived for nonlinear systemmodeling and thenmodified
for echo cancellation. The proposed channel sparsity-aware
algorithm requires less computational load in comparison
with the non-sequential sparsity-aware algorithm.

To evaluate the performance of the proposed functional
expansion adaptive filters using the sparse SEQ-RLS algo-
rithm, several simulation experiments are conducted, includ-
ing nonlinear system identification and nonlinear AEC in
single-talk and double-talk scenarios.

The structure of this paper is organized as follows.
Section II proposes a new channel sparsity aware sequen-

tial RLS algorithm. In Section III, we introduce popular poly-
nomial expansion filters for effectively modelling a nonlinear
echo path. Analysis of algorithm computational complexity
is included. Section IV presents the simulation results and
discussion. Finally, the conclusion is presented in Section V.

This paper presents the following contributions:
a. Develops a framework of the sequential RLS algorithm

for function expansion filters using the diagonal structure,
particularly, for the even mirror Fourier nonlinear (EMFN)
filter. The proposed filters have a significant advantage over
the standard RLS algorithmwhich is not feasible for real-time
applications due to a huge computational load with a large
filter size for the application of echo cancellation.

b. Develops a framework for the sequential RLS algorithm
by consideration of the filter coefficient sparsity using a
discard function;

c. Validates the performances of the function expansion
filters for applications of nonlinear system identification and
acoustic echo cancelation; validates the advantage of the new
sparse SEQ-RLS EMFN filter.

II. SPARSE SEQUENTIAL RLS ALGORITHM
A standard nonlinear echo cancellation system is described
in Fig. 1.

As shown in Fig. 1, x(n) is the speech signal from the
far end, which passes through a digital to analog conver-
sion (DAC) unit. The converted analog speech signal drives
the amplifier and speaker, and nonlinear distortion may occur
due to saturation of the speaker amplifier. A portion of dis-
torted speech signal (echo signal) from the far end is further
leaked through the acoustic channel, microphone, and the

FIGURE 1. Echo cancellation system.

analog to digital conversion (ADC) unit. The output d(n)
from the ADC contains the near-end speech and echo sig-
nal. This echo signal can be cancelled by a nonlinear echo
canceller whose output y(n) is generated by an adaptive filter,
that is, the nonlinear acoustic echo canceller (NAEC). For our
framework, a multichannel adaptive filter is adopted, that is,

y(n) =
M∑
k=0

W T
k (n)Xk (n). (1)

The filter hasM+1 channel sub filters. As depicted in Fig. 1,
the error due to the far end at past time index i is expressed as

e(i) = d(i)−
M∑
k=0

W T
k (n)Xk (i) for 1 ≤ i ≤ n (2)

where the kth channel sub filter with a size of Mk has its
weight vector and input vector defined below:

Wk (n) = [w0(n) w1(n) . . . wMk (n) ]
T (3)

Xk (i) = [ x(i) x(i− 1) . . . x(i−Mk ) ]T . (4)

For the sequential RLS (SEQ-RLS) algorithm developed
in [10], the following objective function is minimized:

ζ (n) =
1
2

n∑
i=1

λn−i

(
d(i)−

M∑
k=0

W T
k (n)Xk (i)

)2

(5)

where 0 � λ < 1. The SEQ-RLS algorithm has significant
reduction of the computational load in comparison with the
standard RLS algorithm. Considering that an adaptive filter
for echo cancellation as shown in Fig. 1, may have many
non-significant filter coefficients with values close to zero,
a sparse algorithm can be developed to further reduce the
computational load as well as the steady-state error. Similar
to [19], a discard function can be employed in the adaptive
algorithm, that is,

f (w) =

{
w |w| > ε

0 |w| ≤ ε
(6)

where ε is the small threshold value and w is designated as
the element of the adaptive filter coefficients. Using (6), the
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TABLE 1. Sparse SEQ-RLS algorithm.

objective function expressed in (5) can be changed to

ζ (n) =
1
2

n∑
i=1

λn−i

(
d(i)−

M∑
k=0

f T (Wk (n))Xk (i)

)2

. (7)

Minimizing Equation (7) leads to a sparse SEQ-RLS algo-
rithm [9], [10], which is listed in Table 1.

Note that F(Wj(n)) denotes the Jacobian matrix of
f (Wj(n)). It is essentially a diagonal matrix with elements of
either ones or zeros. This framework can be further applied to
the different function expansion filters such as the FLANN,
Volterra, and EMFN filters.

III. FUNCTION EXPANSION FILTERS
In order to model a nonlinear echo path due to signal com-
panding and/or due to over driven amplifiers to near satura-
tion, we apply the sparse SEQ-RLS algorithm to the follow-
ing functional expansion filters.

A. VOLTERRA FILTERS
Let x(n) and y(n) be the input and output signals respectively.
The second-order Volterra series expansion [2], [3], [7] with
a memory length of N + 1 in terms of the diagonal channel
based-structure is given by

y(n) = f T (W0(n))X0(n)+
N2∑
k=1

f T (Wk (n))Xk (n) (8)

where N2 is the number of significant second-order channels,
W0(n) and X0(n) are the linear filter coefficient vector and
corresponding linear input vector while Wk (n) and Xk (n) are
the filter coefficient vector and corresponding input vector of
the kth second-order Volterra diagonal channels. By selecting
N2 � N + 1, we can achieve a great deal of computational
load reduction. The third-order Volterra filter based on the
diagonal channel structure can be developed similarly, that

TABLE 2. Channel input vectors in the Volterra filter.

is,

y(n) = f T (W0(n))X0(n)+
N2∑
k=1

f T (Wk (n))Xk (n)

+

N2+N3∑
k=N2+1

f T (Wk (n))Xk (n) (9)

where WN2+1(n), . . . ,WN2+N3 (n) and XN2+1(n), . . . ,
XN2+N3 (n) designate the third-order diagonal channel coef-
ficient vectors and the corresponding input vectors.

Note that N3 = 1+ 2P3 + (P3 − 1)P3/2 = (P3 + 1)(P3 +
2)/2 is the total number of the third-order Volterra diago-
nal channels and P3 is the maximum delay in the first ele-
ment in the invariant third-order diagonal channels as shown
in Table 2. Since N3 � (N + 1)(N + 3)N/2 (total number of
third-order diagonal channels), a significant reduction of the
computational load can be obtained. The signal vectors for
time-invariant channels are listed in Table 2.

B. FUNCTIONAL LINK ARTIFICIAL NEURAL
NETWORK (FLANN) FILTER
Although the digital Volterra filter has the property of being
a universal approximation for causal, time invariant, finite-
memory nonlinear systems, modeling the nonlinear echo path
will require a large number of filter coefficients in order
to compensate the nonlinear behavior as well as the echo
response time.

An alternative choice is the functional link artificial neu-
ral network (FLANN) adaptive filter [8]. The relationship
between the input and output for a FLANNfilter with an order
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TABLE 3. Channel input vectors in the FLANN filter (P = 2).

TABLE 4. Channel input vectors in the EMFN filter.

of P is given by

y(n) = f T (W0(n))X0(n)+
M∑
k=1

f T (Wk (n))Xk (n) (10)

where M + 1 = 2P + 1 and the channel input vectors are
listed in Table 3.

C. EVEN FUNCTION NONLINEAR (EMFN) FILTER
The FLANN filter is constructed based on the expansion
of the trigonometric basis. This expansion does not satisfy
the Stone-Weierstrass theorem [14]. Thus, the FLANN filter
cannot perfectly model nonlinear functions containing cross
product terms, that is, the multiplication terms, with different
time shift units, because the expansion of a FLANN basis
function does not contain these cross terms.

TABLE 5. Multiplications in the sparse SEQ-RLS algorithm.

In order to improve echo path modeling, an even-mirror
Fourier nonlinear (EMFN) filter recently introduced [15] can
be applied to approximate the input–output relationship of the
nonlinear echo path. A third-order EMFN Filter system using
the SEQ-RLS algorithm is proposed for NAEC applications.
Table 4 lists the EMFN second- and third- order input vec-
tors. Since the non-linear signal elements are bounded using
the trigonometric functions, better filter properties will be
expected.

D. COMPUTATIONAL COMPLEXITY
Let us denote sj as the sparsity of channel j at time n, where
the sparsity is defined as a ratio of the number of non-zero
elements over the total number of elements in the diagonal
channel. We can determine the numbers of multiplications
and additions per iteration for a general sparse SEQ-RLS
algorithm. The results are listed in Table 5 and Table 6,
respectively. To simplify our comparisons, we omit the com-
putation load for generating the first element of input signal
in each diagonal channel. Therefore, both the Volterra and
EMNF filters have the same computational complexity.

Note that the sparsity changes at the different channels and
iterations. To simplify our analysis by setting sj = 1 and
applying results of the upper bounds listed in Table 5, we can
derive the total number of multiplications per iteration for the
third-order Volterra and EMFN filters as:

Number of multiplications (Volterra/EMFN)

= 3[4(N + 1)2 + 3(N + 1)+ 3]

+

N2∑
j=1

[4(N + 1− j)2 + 3(N + 1− j)+ 3]
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TABLE 6. Additions in the sparse SEQ-RLS algorithm.

+ 2
P3∑

j=1,P3≥2

[4(N + 1− j)2 + 3(N + 1− j)+ 3]

+

P3∑
j=1,P3≥2

(j−1)[4(N+1−j)2+3(N+1−j)+3]. (11)

To calculate the total number of multiplications using the
standard RLS algorithm (see Table 5.) for a comparison,
we first determined the required total number of elements
by

NT−VT/EMF

= 3(N + 1)+
N2∑
j=1

(N + 1− j)

+ 2
P3∑

j=1,P3≥2

(N+1−j)+
P3∑

j=1,P3≥2

(j−1)(N+1−j). (12)

And then the total number of multiplications can be deter-
mined using the formula on the last row in Table 5. For the
FLANN filter, we can easily yield the computational load for
multiplications as

Number of multiplications

= (M + 1)[4(N + 1)2 + 3(N + 1)+ 3] (13)

where M + 1 = 2P + 1 is the number of channels and P
is the order of the FLANN filter. Given the total number of
elements in the FLANN filter as

NT−FLANN = (M + 1)(N + 1), (14)

FIGURE 2. Number of multiplications per iteration versus the filter
memory length with sj = 1; for the Volterra filter (VT): N2 = 2 and P3 = 3;
the FLAAN filter: P = 2; for the EMFN filter: N2 = 2 and P3 = 3.

we can determine the complexity of multiplications
via Table 5. Fig. 2 depicts the multiplication com-
plexity for each filter versus the filter memory length
of (N + 1).
Again, using Table 6, the required additions for the

Volterra/EMFN, and FLANN filters can be determined,
respectively. The results are listed below.

Number of additions (Volterra/EMFN)

= 1+ 3[3(N + 1)2 + 2(N + 1)− 1]

+

N2∑
j=1

[3(N + 1− j)2 + 2(N + 1− j)− 1]

+ 2
P3∑

j=1,P3≥2

[3(N + 1− j)2 + 2(N + 1− j)− 1]

+

P3∑
j=1,P3≥2

(j− 1)[3(N + 1− j)2 + 2(N + 1− j)− 1].

(15)

Number of additions (FLANN)

= 1+ (M + 1)[3(N + 1)2 + 2(N + 1)− 1]. (16)

The number of additions for each of the standard RLS
Volterra, EMFN, and FLANN filters can be determined using
the result on the last row in Table 6, (12) and (14). Fig. 3
displays their comparisons.

From Figs. 2 and 3, we see that using the significant
diagonal channels equipped with the SEQ-RLS algorithm
can significantly reduce the computational load when the
filter memory length increases. A further reduction of com-
putation can be yielded when the sparsity factor is taken
into account. It should be pointed out that introducing the
sparsity may cause performance degradation if the thresh-
old value ε in the discard function (6) is not properly
chosen.
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FIGURE 3. Number of additions per iteration versus the filter memory
length with sj = 1. For the Volterra filter (VT): N2 = 2 and P3 = 3; for the
FLANN filter: P = 2; for the EMFN filter: N2 = 2 and P3 = 3.

IV. COMPUTER SIMULATIONS
A. SYSTEM IDENTIFICATION
To validate the developed algorithms, we first perform non-
linear system identification and compare the performances
with the Volterra, FLANN and EMFN adaptive filters each
using the sparse SEQ-RLS algorithm respectively. Then we
further investigate the effect of sparsity. To begin, two non-
linear systems which are assumed to present the nonlinear
acoustic echo path are given in (17) and (18). The system
expressed in (17) consists of the linear section and nonlinear
section with products of delayed trigonometric elements. The
second system is a typical polynomial systems with the cross
product terms.

d(n)= 0.3x(n− 1)+ 0.5x(n− 3)− 0.4 cos[πx(n)]

+ cos[πx(n−3)]−sin[πx(n−1)/2] sin[πx(n−2)/2]

+ sin[3πx(n)/2]− 0.9 sin[3πx(n− 2)/2]

+ 0.5 cos[πx(n)] sin[πx(n− 1)/2]

− 0.6 sin[πx(n− 1)/2] cos[πx(n− 3)]

+ sin[πx(n−1)/2] sin[πx(n−2)/2] sin[πx(n−3)/2]

+ v(n); (17)

d(n)= 0.3x(n− 1)+ 0.5x(n− 3)− 0.4x2(n)+ x2(n− 3)

− x(n− 1)x(n− 2)+ x3(n)− 0.9x3(n− 2)

+ 0.5x2(n)x(n− 1)− 0.6x(n− 1)x2(n− 3)

+ x(n− 1)x(n− 2)x(n− 3)+ v(n). (18)

In (17) and (18), the input signal of x(n) is the uniformly
distributedwhite noise and v(n) is the random noise which has
aGaussian distribution. The signal to noise power ratio (SNR)
of 30 dB is used for all the simulations. Each adaptive filter
with a memory size of N + 1 = 10 is adopted. We use
the normalized mean square error (NMSE) for performance
comparisons. The NMSE is assembled over 100 runs versus

FIGURE 4. NMSE performance comparisons of system identification for
(17) with the sparse sequential-RLS algorithms and standard function
expansion RLS algorithms.

the number of iterations as defined below:

NMSE = 10 log10

(
E{e2(n)}

σ 2
d

)
(19)

where σ 2
d is the power of signal d(n). For all the simulations,

we use the following parameters for a fair comparison:
RLS algorithm:

λ = 1− 0.01/(N + 1); δ = 0.01;

Qj(−1) = δI/E{x2j (n)}; Wj(−1) = 0;

j = 0, 1, . . . ,M ,

where M is the number of diagonal channels while E{x2j (n)}
indicates the power of the time-invariant channel.

Volterra filter: N2 = 2 and P3 = 3;
FLANN filter: P = 2;
EMFN filter: N2 = 2 and P3 = 3;
Sparsity: sj = 1

For the standard non sequential RLS algorithm:

λ = 1− 0.01/(N + 1); δ = 0.01

Q(−1) = δI/
∑
j

E{x2j (n)}; W (−1) = 0;

where
∑
j
E{x2j (n)} indicates the sum of powers from all the

time-invariant channels.
Fig. 4 and Fig. 5 display the plots of NMSEs for the system

in (17) and the system in (18), respectively. It can be seen that
the EMFN filter with a sequential RLS algorithm is the best
performing system for (17). This is due to the fact that (17)
is a type of the EMFN model. The proposed EMFN filter’s
performance is close to the standard EMFN RLS algorithm.
The Volterra filter with a sequential RLS algorithm performs
the best for identifying the system expressed in (18). Note
that (18) is a type of the Volterra model and the performance
from the proposed Volterra filter achieves the same level as
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FIGURE 5. NMSE performance comparisons of system identification for
(18) with the sparse sequential-RLS algorithms and standard function
expansion RLS algorithms.

FIGURE 6. NMSE versus ε (threshold in the discard function) for the RLS
based algorithms for (17).

that from the standard RLS Volterra filter. Clearly, the effec-
tiveness of using the function expansion filters depends on the
system model. Next, the sparsity effect in these two systems
is investigated by plotting the NMSE versus various values
of ε (threshold value for the discard function) ranging from
0.000001 to 0.01, as shown in Fig. 6 for (17) and Fig. 7 for
(18). As shown in Fig. 6, it is evident that the EMFN filter is
more sensitive to the threshold value since the system model
is an EMFN type.

A similar trend can be seen in the NMSE performance
comparison as shown in Fig. 7 for the system given in (18).
Since the system model is a Volterra type model, the Volterra
filter is more sensitive to the threshold value.

For effective system identification, that is, the EMFN filter
for (17) and the Volterra filter for (18), under the 30 dB noisy
environment, the performance will significantly suffer if the
sparsity is emphasized during the implementation, that is,
ε > 0.00001. This result suggests that in the noisy

FIGURE 7. NMSE versus ε (threshold in the discard function) for the RLS
based algorithms for (18).

FIGURE 8. Speech signal used in the simulations (Fs=8000 Hz).

environment condition, the discard function is not preferred
unless further reduction of computational load is a must.

B. SINGLE TALK SIMULATIONS
For the application of nonlinear echo cancellation, we adopt
the far end and near end speech segments with a sampling rate
of 8000 Hz shown in Fig. 8.

The nonlinear echo path consists of the nonlinear function
cascaded by a linear acoustic impulse response (AIR) echo
path shown in Fig. 9, which is a 150th order polynomial
model extracted from the AIRmultichannel impulse response
database [21], [22]. The memoryless nonlinearity is intro-
duced before the linear echo path model, which is a piecewise
nonlinear system defined below:

f (x) =


2x/(3ξ ) |x| ≤ ξ
sign(x)

(
3−(2−|x/ξ |)2)/3

)
ξ < |x| ≤ 2ξ

sign(x) 2ξ < |x| ≤ 1

(20)
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FIGURE 9. Echo cancellation path (FIR model).

FIGURE 10. Input and output of the nonlinear system.

where ξ is the controlling factor and set to 0.4. The system
input and output relation is depicted in Fig. 10.

For a nonlinear adaptive filter to effectively model the
specified echo path, a filter memory length of (N + 1) = 150
must be chosen to cover the time response. This filter memory
size hinders real-time application (even off-line simulations)
if a standard function expansion RLS algorithm is used. For
the third-order Volterra or EMF filter, the total number of
filter coefficients [7] can reach (N + 1+ 3)!/[(N + 1)!3!]−
1 = 153!/(150!3!) − 1 = 589151. Matrix Q(n) will then
have a size of 589151 × 589151. Therefore, we only con-
duct simulations for the proposed sequential RLS algorithms.
Again, to reduce the effect of initial condition and have a fair
comparison, the same parameters for the RLS algorithm setup
for Volterra, FLANN and EMFN filters are used and listed
below:

N = 149;

λ = 1− 0.01/(N + 1); δ = 0.0001

Qj(−1) = δI/E{x2j (n)};

Wj(−1) = 0, and sj = 1;

Volterra filter: N2 = 3 and P3 = 2;

FIGURE 11. ERLE performance comparisons of single talk scenario.

FLANN filter: P = 2;

EMFN filter: N2 = 3 and P3 = 2.

To validate the performance of echo cancellation, a standard
criterion of the echo return loss enhancement (ERLE), which
is the ratio of send-in signal power and the residue signal
power after the cancellation, assembled over 100 runs versus
the number of iterations, is used:

ERLE dB = 10 log10

(
E{y2(n)}
E{e2(n)}

)
. (21)

Note that y(n) is the echo to be cancelled while e(n) is the
residual signal after nonlinear echo cancellation.

In our single talk scenario, a SNR of 30 dB is assumed
at the near end for simulations. The performances of
ERLEs from all three algorithms are obtained and displayed
in Fig. 11, respectively. As shown in Fig. 11, the FLANN
canceler achieves the highest ERLE value while the Volterra
canceler has the lowest ERLE value. The performance of
echo cancellation from the EMFN canceler is close to the one
from the FLANN canceller. This can explained as follows:
the nonlinear acoustic echo path is assumed to have a memo-
ryless saturation model cascaded by the linear time invariant
system. The resultant nonlinear system may not contain the
cross-product terms. Therefore, the FLANNfilter has a better
match to the echo path. The EMFN filter can also match well
but wastes the trigonometric product terms. TheVolterra filter
cannot compete with the other two methods due to the fact
that many cross-product terms cannot take effect.

C. DOUBLE TALK SIMULATIONS
In this simulation, we repeat the previous experiments by
using the same echo path in a double talk situation. The
parameter settings are listed below.

N = 149;

λ = 1− 0.01/(N + 1); δ = 0.0001

Qj(−1) = δI/E{x2j (n)};

Wj(−1) = 0, and sj = 1;
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FIGURE 12. Far end, near end and observed signals for the nonlinear ACE.

FIGURE 13. Residual signals from the memoryless system.

Volterra filter: N2 = 2 and P3 = 3;

FLANN filter: P = 2;

EMFN filter: N2 = 2 and P3 = 3.

Notice that both the Volterra and EMFN filters use 3 diagonal
channels for the second-term terms and 10 diagonal channels
for the third-order terms, respectively. The FLANN filter has
5 time invariant channels.

To evaluate the performance for the case of a double talk
scenario, the ERLE measurement is not appropriate since the
near end speech creates residue power which disturbs the
measurement. Instead, the residue signal, that is, e(n)− s(n),
which is the difference between the echo cancelled signal
[s(n)+d(n)−y(n)] and the near end signal (s(n)) is examined,
where d(n) is the echo signal due to the far end speech
appearing at the near end. Fig. 12 depicts the far end, near
end and observed signals (echo+near end signal).

After nonlinear echo cancellation, according to the plotted
residual signals, the method which gives the minimum ampli-
tudes is the best performing NAEC system for the double talk
scenario. Fig. 13 demonstrates the performances. From the
residual signal plot in Fig. 13, it can be noted that the EMFN

filter achieves lower amplitudes than the other two filters. The
Volterra filter catches the echo cancellation quality after it
converges. This may be due to that when the near end speech
signal is involved in the nonlinear acoustic echo cancellation,
the cross-terms from both EMFN and Voltera filters take an
effect. As a conclusion, the EMFN filter shows its advantage
for both single talk and double talk scenarios.

V. CONCLUSION
We have developed the function expansion adaptive filters
by applying the sparse SEQ-RLS algorithm for nonlinear
acoustic echo cancellation. The algorithm is developed based
on a diagonal channel structure from the Volterra filter and
updating dominant coefficients with consideration of sparse
elements in the diagonal channel. The third-order Volterra,
third-order even mirror Fourier nonlinear (EMFN), and func-
tional link artificial neural network (FLANN) filters are
developed according to the sparse SEQ-RLS algorithm. The
computation complexity for each filter algorithm is ana-
lyzed. From the performance of nonlinear echo cancellation
in single and double talk scenarios, all proposed function
expansion filters equipped with the sparse SEQ-RLS algo-
rithm are effective for nonlinear echo cancellation. In general,
the EMFN filter provides better performance in comparison
with the other functional expansion filters.
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