
Received June 3, 2020, accepted June 21, 2020, date of publication June 29, 2020, date of current version July 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3005359

BioMASS, a Spatial Model for Situated Multiagent
Systems That Optimizes Neighborhood Search
CANDELARIA ELIZABETH SANSORES-PÉREZ 1, (Member, IEEE),
AND JOEL ANTONIO TREJO-SÁNCHEZ 2
1Complex Systems Simulation Laboratory, Universidad del Caribe, Cancún 77528, Mexico
2CONACyT—Centro de Investigación en Matemáticas, Mérida 97302, Mexico

Corresponding author: Candelaria Elizabeth Sansores-Pérez (csansores@ucaribe.edu.mx)

This work was supported by the Mexican Ministry of Public Education under the program ‘‘Programa Fortalecimiento de la Calidad
Educativaa (PFCE).’’

ABSTRACT We present BioMASS, a new model to implement a spatially explicit environment that
supports constant-time sensory (neighborhood search) and locomotion functions for situated multiagent
systems (MAS). In contrast, the spatial models currently provided by agent-based modeling and computer
simulation (ABMS) platforms have computational costs that grow quadratically with perception range and
linearly with the number of agents. To conserve computation, existing ABMS models of complex systems
are oversimplified, by limiting the environment size, perception ranges, or the number of agents. BioMASS
achieves constant time search and locomotion for the majority of function calls by implementing a linked list,
nearest-neighbor data structure. This model makes the functions largely independent of the environment size,
perception range, and the number of agents. We conduct a theoretical and experimental study of BioMASS
compared to other spatial models. Experiments performed using a prey-predator swarm model show that
BioMASS significantly outperforms the continuous and hybrid models in terms of execution time, allowing
for higher-resolution modeling and simulation of complex systems.

INDEX TERMS Complexity analysis, multiagent system, simulation.

I. INTRODUCTION
Agent-based modeling and computer simulation (ABMS) is
an approach to modeling the dynamics of complex systems.
It is widely used to study these systems in a variety of scien-
tific disciplines, such as economics [1]–[3], ecology [4]–[7],
sociology [8]–[11] and biology [12]–[14]. Complex systems
often exhibit self-organizing behavior and emergent proper-
ties as a result of the interactions among individual compo-
nents. In ABMS, the behavior of individual components is
modeled using abstractions such as autonomy, communica-
tion with other agents, the ability to perceive and respond
to changes in the surroundings, problem-solving, conflict
resolution, and the potential to make independent choices.
By tracking the properties and decisions of a large number of
individual agents, a computer simulation can reproduce the
behavior of the complex, multi-agent system. In other words,
the computer simulation encapsulates the behavior of a com-
plex system in real-world scenarios through its algorithms,

The associate editor coordinating the review of this manuscript and

approving it for publication was Donatella Darsena .

mathematical expressions, and equations. Experiments can
then be performed by running the simulation with different
populations of agents and observing directly the effect of
these heterogeneous, autonomous entities interacting in a
non-linear fashion in a shared environment.

Over the years, numerous agent-based modeling and sim-
ulation frameworks have been developed [15]–[22] to carry
out such experiments in different domains. These frameworks
address simulation aspects like discrete time-event schedul-
ing, charting, support for geographic information systems
(GIS), and 2D or 3D spatial modeling [23]–[26]. Although
these platforms are frequently used they have no specific
programming syntax for agent design and construction; these
are general-purpose tools able to address multiple application
domains.

In this context, we see the need for a spatially explicit
ABMS framework that can represent an environment suit-
able for agents that support complex sensory and locomotion
functions. For example, one use case is to model agents with
a limited perception range that need to efficiently explore
the environment beyond their immediate surroundings. These

120282 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-7236-0222
https://orcid.org/0000-0001-9326-7713
https://orcid.org/0000-0003-3341-2776

C. E. Sansores-Pérez, J. A. Trejo-Sánchez: BioMASS, a Spatial Model for Situated Multiagent Systems

functions are of primary importance in a simulation that relies
on accurately modeling local interactions among a group of
different (possibly continuously moving) entities.

The classical method adopted to solve these types of prob-
lems involves a discrete virtual space (usually a two- or
three-dimensional rectangular lattice) and a search algorithm
whose computational cost per individual increases with the
perception range and with the number of discrete cells in the
search area. To reduce this cost, the number of cells must
be kept low. This is done either by reducing the perception
range or by increasing cell size (sacrificing detail in the
environment representation). Another approach is to use a
continuous space where the computational cost per agent
increases linearly with the number of agents. However, mod-
els with a large number of agents (1000s or more) perform
poorly under this scheme. To avoid very costly processing in
this case, a collection of agents can bemodeled as a group and
represented as a special kind of agent. But this again sacrifices
detail in the model representation, especially regarding the
degree of heterogeneity among the agents.

Oversimplifying the spatial representation or the number
of individuals may work for certain systems. However, in
[4], Sansores et al. described several scenarios that require
large spatial dimensions, fine spatial granularity and a large
number of agents at the same time. Moreover, the perception
range of the agents may change over time, so it is desirable
to preserve the heterogeneity that forms the foundation of
ABMS models. The combination of these requirements cre-
ates an additional level of complexity in the spatial model that
is not addressed by any current ABMS framework. Our main
contribution focus on the BioMASS spatial model.

A. CONTRIBUTION
In this paper, we address the stated problems of classical
spatial models and provide a solution that can combine a
large space with fine granularity while accommodating a
large number of agents. The model also supports agents
with widely varying and even dynamic neighborhood lookup
ranges, without significantly affecting performance. The phi-
losophy behind the design of the model is to make the time
complexity of the agent functions independent of the size of
the space and the number of agents, as much as possible.

The remainder of this article is as follows. Section II
describes the problem that motivated this work. Section III
presents a formal description of the ABMS multi-agent sys-
tem. Section IV describes and analyzes the classical schemes
used to explicitly represent the environment in an ABMS
model. Section V describes the main contribution of this
work. Section VI presents a benchmark simulation experi-
ment to assess the performance of frameworks that implement
the different spatial models and discusses the results. Finally,
Section VII presents some concluding remarks and sugges-
tions for future work.

II. PROBLEM DESCRIPTION
ABMS simulations are designed and implemented as multi-
agent systems, to solve tasks in a distributed manner. Most
ABMS models for the study of complex systems can be
classified as either a behavioral simulation or an agent-based
system simulation. These categories reflect different require-
ments in terms of spatial and time resolution, so they are used
in different experimental scenarios.

In behavioral simulations, individual-level rules give rise
to complex collective patterns. This early ABMS paradigm
requires not many individuals: 10s to 100s at most. This
paradigm requires fine spatial and temporal granularity to
observe the individual behavioral interactions in the simu-
lated environment. Typically, this type of simulation does not
require large space and time dimensions, as demonstrated by
classical swarm and predator–prey models [27]–[29].

Agent-based system simulations were conceived as a com-
plementary tool to state variable models. In these models,
the physiological processes and local interactions of individ-
uals give rise to emergent properties in the population. This
paradigm demands a large number of individuals, 1000s or
more if possible, and implies a large-scale environment to
accommodate those individuals. Further, since the goal is
to generate emergent population dynamics, the simulation is
run over a long time scale, usually several years or decades.
For example, this permits the simulation to infer how a pop-
ulation changes over multiple generations. In contrast with
behavior-based simulations, the temporal and spatial granu-
larity are coarser. Trophic network models are an example of
classical simulations in this category [30]–[32].

There are cases that require combining both paradigms,
such as [4]. It is sometimes necessary to incorporate the
behavioral factor as an additional differentiating aspect in
agent-based systems simulations, especially when the behav-
ior has a direct impact on the macro variables under study.
However, such combined models make agent-based simu-
lations computationally expensive. It becomes necessary to
manage a large number of interacting agents, while keep-
ing track of each agent’s variability: its local interactions,
complete life cycle, and adopted behavior in response to its
changing internal state and the environment. An important
property of these simulation models is that they are spa-
tially explicit; therefore, perception and sensory functions
are a fundamental form of interaction. The combination of
large spaces with fine granularity also adds another level of
computational complexity: the agents need to sense a large
fraction of the environment. This requirement translates into
neighborhood search functions, which are very costly. Fur-
ther, the variability among agents implies that they can have
different perception ranges, making it difficult to optimize
this function in traditional spatial models.

The above discussion highlights the pressing need for a
spatially explicit ABMS framework that can efficiently han-
dle neighborhood exploration and locomotion functions.

VOLUME 8, 2020 120283

C. E. Sansores-Pérez, J. A. Trejo-Sánchez: BioMASS, a Spatial Model for Situated Multiagent Systems

III. ABMS MULTIAGENT SYSTEM FORMALIZATION
ABMS simulations are founded on multiagent system design
principles. This MAS formalization is general and applicable
to a wide range of systems. However, it is specifically tailored
to models requiring an explicit representation of the spatial
environment. Therefore, we emphasize the agents’ awareness
of their location in the environment and allow the agents
to have heterogeneous and dynamic perception skills. Also,
we stress a physical description of the environment.

The following multiagent system is inspired by [33] and is
defined as a synchronous system consisting of:
• A set of agents A = {a1, a2, . . . , an} where ai is any
given agent for 1 ≤ i ≤ n
– Each agent ai behaves according to a finite set of

disjoint actions Aci = {ac, ac′, . . .}
• An environment is modeled by E = {S, e0, τ }where the
set of agents A is situated and where the agents live.

The environment is defined as a triple: the set of all possible
states S = {e, e′, . . .} the environment during the MAS
execution, the initial state that describes the environment at
the beginning of the simulation, and a transformation function
τ , that represents the effect of agents’ actions on the environ-
ment. The future state of the environment is difficult to predict
from the initial conditions, because the state transitions are
determined by agents’ actions.

The decision-making mechanism [34], [35] of each agent
ai is based on a three-phase, cyclic process: (1) perception, (2)
deliberation, and (3) action. In the perception, agents sense
the environment where they are situated. In the deliberation,
an internal mechanism selects the action (based on the agent’s
internal state and the perceived environment’s state) from a
limited repertoire of actions or behaviors. As the purpose of
this section is not to explain the modeling details of existing
agent architectures, here we will just assume that the MAS
implementation chooses the most appropriate deliberation
mechanism for the problem: reactive [36], cognitive [37],
or hybrid [38], according to the problem it addresses.

In a situated MAS, the agents are sensitive to spatial rela-
tionships in the sense that these relationships can impose con-
straints and limit their available actions. Thus, concepts like
location, perception scope and neighborhood are of primary
importance. Each agent ai ∈ A is represented by a vector
of variables ai.Ev which are attributes of an agent ai. The
local state ai.stk of agent ai, represents all the values of each
variable in Ev at time k . Each agent consists of:
• A physical location ai.lock , of ai in E at step k .
• A perception scope ai.perceptionk (integer or real)
defined as the distance r that agent ai can sense to look
for other agents at time k . Agent ai perceives aj at time
k if the distance to agent aj from agent ai (dist(ai, aj))
is less than or equal to r . Note that the perception scope
ai.perceptionk can be a dynamic variable.

• A neighborhood N (ai)rk . Set of agents perceived by
agent ai at step k; i.e., N (ai)rk = {aj|dist(ai, aj) ≤
r}. The distance dist(ai, aj) is defined according to the

implementation of the environment in the MAS model
(discrete, continuous, or hybrid).

The execution of the MAS is divided into k rounds or
steps. During the k-th round the system state passes from
MAS.stk−1 toMAS.stk , then all agents perform their delibera-
tion functions to select actions. The global state of theMAS is
the union of the states of every agent inA and the environment
state Sk at step k; i.e., MAS.stk = {a1.stk ∪ a2.stk ∪ . . . ∪
ai.stk ∪ Sk}. The system starts execution at state MAS.st0.
Finally, an action in Aci is modeled as a transition function
f (ai) : (ai.stk ,MAS.stk) → ai.stk+1 which determines the
new configuration of agent ai at step k + 1. The transition
function f (ai) receives as input the state ai and the configura-
tion of the multiagent system at step k .

In the next section, we present the most common compu-
tational models used by MAS to represent spatially explicit
environments, and discuss how they are implemented.

IV. CLASSICAL SPATIAL MODELS FOR SITUATED MAS
Traditionally, the internal model of the environment in a
situated MAS is either discrete or continuous. This choice
determines how the agents can be physically organized and
the forms of the sensory and locomotion functions used by
the agents. We will also discuss the hybrid model introduced
by [23]. This model uses partial discretization of the under-
lying continuous model in order to improve the execution
performance of some functions such as neighborhood search.

FIGURE 1. A discrete spatial model E of (W ×H) cells containing a set of
agents A = {a1, a2, a3, a4, a5, a6, . . . , ai }. The perception scope of ai at
step k is the shaded subgrid. The neighborhood lookup function of ai
iterates over all cells in the shaded area and adds all agents occupying
those cells to its neighborhood set N(ai)rk = {a2, a4}.

A. DISCRETE MODEL
The discrete model is the most widely supported by simula-
tion tools. The simplicity of its implementation makes it very
intuitive to use for most domain experts. Basically, it depicts
the environment where the agents live as a grid of W × H
cells (Fig. 1). Each agent occupies at most one cell and can
move from cell to cell. In some uncommon variants agents
can move to cells that are not adjacent. One cell can contain
more than one agent, a feature known as multi-occupancy.
Cell (1, 1) in Fig. 1 is occupied by multiple agents. The basic
implementation of multi-occupancy attaches a list of agents

120284 VOLUME 8, 2020

C. E. Sansores-Pérez, J. A. Trejo-Sánchez: BioMASS, a Spatial Model for Situated Multiagent Systems

Algorithm 1 Algorithm for Neighborhood Lookup of Agent
ai at Distance r = ai.perceptionk in a Discrete Spatial Model
Input: The agent ai and grid EW×H .
Output: The set of neighbors at distance r at step k , N (ai)r .

1: r = ai.perceptionk
2: N (ai)rk ← ∅
3: for k ← ai.x − r to ai.x + r do
4: for l ← ai.y− r to ai.y+ r do
5: N (ai)r ← {N (ai)r ∪ aj} for all aj located in E(k,l)
6: end for
7: end for
8: return N (ai)r

to each cell. Therefore, the computational complexity of a
multi-occupancy model would increase in proportion to the
basic list of operations required to keep track.We now present
a brief description of the functions insert, remove, move, and
neighborhood lookup that must be performed by each agent
in a discrete spatial model.

• Insert. This action occurs when agent ai first enters the
environment E at step k . The agent contains its own
location ai.lock , consisting of a column col ≤ W and a
row row ≤ H . The complexity of this action is constant
O(1), even in the case of multi-occupancy.

• Remove. To remove agent ai from the environment E
at step k , the MAS obtains its location ai.lock and
eliminates the agent from its cell. The complexity of
this action is O(1). In the case of multi-occupancy, this
function takes O(n) in the worst case, to update the list
of agents which contains at most n elements.

• Move. Let ai.lock = (col, row) be the location of
agent ai at step k , and let ai.lock+1(col ′, row′) be the
new location of ai. The system updates the value as
ai.lock+1 = (col ′, row′) and stores agent ai in the list of
the cell at the new position. This function can be seen as
a combination of the insert and remove functions. The
complexity of this action is typically O(1). The worst
case is for the move function to take O(n) when there is
multi-occupancy in the starting position.

• Neighborhood lookup. Obtaining the neighborhood
in the discrete model is computationally expensive.
To avoid very costly processing, the search space tends
to be reduced to a few surrounding cells. Let N (ai)rk
be the neighborhood of agent ai within distance r at
step k , where r = ai.perceptionk . To obtain N (ai)rk , the
search algorithm traverses all cells whose edges intersect
the perception scope of agent ai, as shown in Fig. 1.
All agents aj in the searched cells are added to the
neighborhood N (ai)rk . In pseudo-code 1 we present the
algorithm to perform the neighborhood lookup.
Now, we show in Lemma 1 that the time complexity
of the neighborhood lookup is O(W 2). Without loss of
generality, we assume that W > H . If multi-occupancy

is allowed, the cells can contain a list ofO(n) agents, and
all agents can be contained in N (ai)rk .

Lemma 1: A neighborhood lookup for agent ai takes
O(W 2) time units in the discrete model.

Proof: Note that ai.perceptionk can be as large as W .
An agent ai traverses the entire sub-grid within its perception
scope (O(W 2) cells in the worst case). Therefore, ai performs
O(W 2) operations to obtain N (ai)rk . �
Hence, when both, the number of agents, and their percep-

tion is large, the simulation becomes very slow.

FIGURE 2. A continuous spatial model with Cartesian coordinates. The
set of agents A = {a1, a2, a3, a4, a5, a6, . . . , ai } is situated in the space
and their different perception scopes are depicted by dotted lines. The
neighborhood set of agent ai is N(ai)rk = {a1, a3, a4}. Note that the
neighborhood relation is not symmetric: agents a1 and a3 do not have
agent ai in their neighborhood.

B. CONTINUOUS MODEL
This model is a plane with Cartesian coordinates. Let C
denote this plane with dimensions W × H , as depicted
in Fig. 2. The agent locations (x, y) are implemented as
a hash table indexed by the agent identifiers. That is, the
position ai.lock of agent ai at step k is stored in the hash
table 〈id, (x, y)〉, not with the agent. Note that the number of
locations stored in the hash table is the same as the number
of agents, and hence independent of the space size (unlike
the discrete model, where the number of cells is the size of
the space).

The continuous space also uses an auxiliary hash table of
the form 〈coord, list〉, where coord = (x, y) is the key and list
is a list of agents sharing the same position. This hash table is
only used in case of multi-occupancy to make related queries
more efficient. (For example, the query of how many agents
are located at coordinates (x, y) is inexpensive to perform if
the auxiliary hash table exists, but requires O(n) time of the
main hash table otherwise. Regarding time complexity, basic
functions like insert, move and remove involve updating both
hash tables. The neighborhood lookup function uses only the
main hash table 〈id, coord〉 for both the single occupancy and
multi-occupancy cases. Now, we explain how the continuous
model performs these operations for each agent ai, and ana-
lyze their time complexity.

VOLUME 8, 2020 120285

C. E. Sansores-Pérez, J. A. Trejo-Sánchez: BioMASS, a Spatial Model for Situated Multiagent Systems

• Insert. Let ai be a new agent in the environment at step
k , and let (x, y) be its position. The continuous model
inserts an item 〈ai, (x, y)〉 into the main hash table. The
time complexity of this function is O(1). In the case of
multi-occupancy, an entry is also inserted in the auxiliary
hash table, as a one-element list [ai] with key coord =
(x, y). If the key already exists, then ai is inserted at the
end of the list with that key. In both situations the time
complexity is O(1).

• Remove. To remove an agent ai from coord = (x, y)
at step k , the entry 〈ai, coord〉 pair is deleted from the
main hash table. The time complexity of this operation
is O(1). With multi-occupancy, an extra operation is
required to delete agent ai from the list in the auxiliary
hash table with key= coord . If ai is the only agent in the
list, then the entry 〈coord, list〉 is eliminated. The time
complexity for this operation remains O(1). Otherwise,
the list is traversed to find and remove agent ai. The time
complexity for this case is O(n).

• Move. Let ai be an agent situated at (x, y) during step k ,
and let (x ′, y′) be its new coordinates. First, this function
computes the index of the main hash table where the
pair 〈ai, coord〉 will be modified, then it replaces the
value coord to the new value (x ′, y′). The time com-
plexity of this operation is O(1). For the case of multi-
occupancy, two extra operations have to be realized in
the auxiliary hash table: agent ai has to be inserted in
its new coordinates (x ′, y′) and removed from the old
coordinates (x, y). Both operations were described in the
insert and remove functions. Therefore, the complexity
for the move function is at most O(n).

• Neighborhood lookup. Let N (ai)rk be the neighborhood
of agent ai within a Euclidean distance r at step k ,
where r = ai.perceptionk . Fig. 2 illustrates agent ai
situated in the continuous space. Its perception scope r
is shown by the dotted line. The pseudo-code 2 shows
the algorithm to iterate over n elements in the main hash
table 〈id, coord〉 and identify agents aj whose Euclidean
distance from ai is less than or equal to r . The time
complexity of this function is always O(n).

C. HYBRID MODEL
We named this type of model hybrid since it is a Cartesian
plane, like the continuous model, but also uses a kind of dis-
cretization. It is designed to make the neighborhood lookup
more efficient. Let � be the space in the hybrid model.
Assume that there exists a continuous space with dimen-
sion W × H . The hybrid model � discretizes the contin-
uous space by defining a grid of l × m non-overlapping
subspaces called ‘‘buckets’’ B = {B0,0,B0,1 . . . ,Bl,m},
as shown in Fig. 3. Without loss of generality we assume
that each bucket is a square. The discretization value 1
defines the granularity of the space. Without loss of gener-
ality, we assume that1 is a divisor ofW andH . Thus, l = W

1

and m = H
1
.

Algorithm 2 Algorithm for Neighborhood Lookup of Agent
ai at Distance r = ai.perceptionk in a Continuous Space
Input: The agent ai, the space C.
Output: The set of neighbors at distance r at step k , N (ai)rk .

1: N (ai)r ← ∅
2: for all (aj, coord) ∈ C do
3: h← hash(aj)
4: coord ← C.get(h)
5: aj.loc = coord
6: if dist(ai, aj) ≤ r then
7: N (ai)r ← {N (ai)r ∪ {aj}}
8: end if
9: end for
10: return N (ai)r

FIGURE 3. A hybrid spatial model with a continuous space divided into
buckets. The set of agents A is situated in the space with real Cartesian
coordinates. The neighborhood set of agent ai is N(ai)rk = {a2, a4, a5}.
Note that agent a3 /∈ N(ai)rk : although it happens to be in a bucket that is
perceived by ai , it is not within the Euclidean distance r .

The implementation of the hybrid model uses a hash table
to represent �. The agents contained in bucket Bl,m are
designated by a list in the hash table (bucket, list) where
bucket is an integer coordinate pair (w, h) and list is a list of
agent identifiers. As in the previous models, we will analyze
the basic functions performed by agent ai with Cartesian
coordinates ai.loc. Notice that the variables in the description
are normalized with the discretization value 1, in this way,
the operations are realized in terms of buckets and not in terms
of the real coordinates of the agents.

• Insert. Let ai be a new agent to be inserted in the envi-
ronment at step k , and (x, y) be the Cartesian coordinates
of its location. An agent ai is inserted into a bucket Bw,h
if its location is contained within the area of Bw,h. The
integer coordinates of the bucket containing (x, y) are
w = bx/1c and h = by/1c. The pair (w, h) is the
index of the hash table (bucket, list), and the action is
completed by either creating a new, one-element list with
ai at this index or by inserting ai at the end of the existing

120286 VOLUME 8, 2020

C. E. Sansores-Pérez, J. A. Trejo-Sánchez: BioMASS, a Spatial Model for Situated Multiagent Systems

list . In this way, all agents whose coordinates fall into the
same Bw,h are grouped together. The time complexity of
this function is O(1).

• Remove. Let ai be the agent to be removed from the
environment at step k , and (x, y) its location. The inte-
ger coordinates of its bucket are w = bai.x/1c and
h = bai.y/1c. The pair (w, h) is the index of the list
in the hash table (bucket, list) where the agent can be
found. The list is searched to remove agent ai. The time
complexity of the remove function is O(n).

• Move. Let ai be an agent situated in the hybrid model
at coordinates (x, y) and let (x ′, y′) be its new location.
Also, letBw,h be the current bucket of agent ai. If the new
location is situated in the same bucket, (x ′, y′) ∈ Bw,h,
then it is not necessary to perform any operation on the
table (bucket, list). The change in the real coordinates is
handled by replacing the values of ai.x and ai.y. Thus,
the time complexity of the move function when it does
not involve a change of bucket is O(1). If (x ′, y′) /∈ Bw,h,
it is necessary to perform the insert and remove functions
on the hash table (bucket, list) to reflect the change of
buckets in the discrete space. The real coordinate value
of ai also has to be updated. Therefore, the complexity
for the move function involving a change of buckets
is O(n).

• Neighborhood lookup. This function is similar to that of
the discrete model, in that its time complexity depends
strongly on the discretization size. Let N (ai)rk be the
neighborhood of agent ai within a Euclidean distance
r at step k , where r = ai.perceptionk . Also, let Bw,h
be the current bucket of ai. The algorithm to obtain
N (ai)rk first finds all buckets whose boundaries intersect
the perception scope of agent ai, as shown in Fig. 3.
Let B(ai)rk = {B0,0,B0,1 . . . ,Bcol,row} be the subset of
buckets perceptible to agent ai at step k . For each bucket
in B(ai)rk , the system retrieves the corresponding list
from the hash table 〈bucket, list〉 and traverses the list
to identify the set of agents aj such that dist(ai, aj) ≤
r , in Pseudo-code 3 we present this algorithm. If the
bucket size is much larger than the typical size of a
neighborhood lookup, then a bucket will include large
numbers of agents that are not in the neighborhood of ai.
On the other hand, if the bucket size is much smaller than
the typical size of a neighborhood lookup, then many
buckets have to be inspected to cover the perception
scope of ai. This can be highly inefficient, with a time
complexity similar to that of the discrete model. As we
show in the next lemma, the time complexity of this
function is O(n × W 2), considering that there are W 2

buckets and that each bucket can contain a list of O(n)
agents.

Lemma 2: A neighborhood lookup for agent ai takes O(n×
W 2) time units in the hybrid spatial model.

Proof: Without loss of generality, assume thatW > H .
Notice that the perception scope of agent ai can be as large

Algorithm 3 Algorithm for Neighborhood Lookup of Agent
ai at Distance r = ai.perceptionk in the Hybrid Space
Input: The agent ai, the space� and the discretization value

1.
Output: The set of neighbors at distance r at step k , N (ai)rk .

1: r ← ai.perceptionk
2: rdisc← r/1
3: w← ai.x/1
4: h← ai.y/1
5: N (ai)r ← ∅
6: for col ← floor(w− rdisc) to floor(w+ rdisc) do
7: for row← floor(h− rdisc) to floor(h+ rdisc) do
8: h← hash(col, row)
9: L ← �.get(h)
10: for k ← 1 to length(L) do
11: aj← L(k)
12: if dist(ai, aj) ≤ r then
13: N (ai)r ← {N (ai)r ∪ {aj}}
14: end if
15: end for
16: end for
17: end for
18: return N (ai)r

asW . Each agent must traverse all buckets within its percep-
tion scope (O(W 2) in the worst case). Therefore, ai performs
O(W 2) operations to obtain the subset B(ai)rk . Since each
bucket has a list of O(n) agents, the neighborhood lookup
function for ai can take O(n×W 2) time units. �
If the simulation model is very dense, with many agents

in each bucket, this model [23] recommends a discretization
equal to the maximum perception scope of an agent ai. On the
other hand, if the model is very sparse, it recommends a
discretization value equal to twice the maximum percep-
tion scope. However, we have noticed an important issue in
the agent-based modeling approach that is not addressed by
existing simulation tools. In the study of complex systems,
the model can have individual agents with widely varying
perception scopes, and hence different needs for optimizing
the neighborhood lookup. The previous recommendation is
only helpful for the case of homogeneous individuals with
the same perception range. Further, there is still the question
of how to address dynamic perception ranges, since all the
previous approaches assume that agents do not change their
perception range during the simulation. In the next section we
propose a new spatial model that addresses these issues.

V. THE PROPOSED BioMASS SPATIAL MODEL
Let L be the space in the BioMASS model with dimensions
W × H . L can be portrayed as a Cartesian plane with real
coordinates. The implementation uses a quadruply linked list.
The nodes forming the list are agents with four pointers: two
in the horizontal dimension and two in the vertical dimension.

VOLUME 8, 2020 120287

C. E. Sansores-Pérez, J. A. Trejo-Sánchez: BioMASS, a Spatial Model for Situated Multiagent Systems

The pointers prevx and nextx link to the agents with the next
smallest and next largest x coordinate, respectively. A node
points to itself if there is no other agent with a smaller/larger
x coordinate. Initially, L is configured with two ‘‘sentinel’’
agents a0 and a1, which represent the corners of the 2D space
with coordinates (0, 0) and (W ,H).

FIGURE 4. The quadruply linked list in L representing the BioMASS
spatial model with a0 and a1 as sentinel nodes delimiting the simulation
space. The depicted links between nodes are valid only when the space is
empty.

The initial setup is illustrated in Fig. 4. The sentinel node a0
has 2 pointers to itself, prevx and prevy. The pointers, nextx
and nexty, point to a1. Similarly, for a1 the two ’previous’
pointers point to a0, while its ’next’ pointers point to itself.
Thus, ∀ai ∈ L, ai.prevx, ai.nextx, ai.prevy, and ai.nexty
are pointers to its four closest agents in the horizontal and
vertical dimensions. Therefore, ∀ai ∈ L, we have ai.x <=
ai.nextx.x, ai.y <= ai.nexty.y, ai.x >= ai.prevx.x, and ai.y
>= ai.prevy.y. This data structure guarantees that the agents
situated in the environment are always linked to the closest
agents in both dimensions. Now, we will analyze the basic
functions performed by an agent ai in L.
• Insert. Let ai be a new agent to be inserted at step k ,
and (x, y) the Cartesian coordinates of its location ai.loc.
First, ai must be situated in the horizontal dimension,
by finding the two closest agents in x. To do so, the
system transverses L by starting from a0 (a1) and fol-
lowing the chain of nextx (prevx) pointers. This process
stops at the first occurrence of a node with x ≥ ai.x
(x ≤ ai.x). That node becomes the next(prev) node with
respect to ai, and all pointers in the horizontal dimension
are re-linked to insert ai in the list. The same operations
apply to insert agent ai in the vertical dimension. Fig. 5
and Fig. 6 illustrate the insert function. The time com-
plexity of this function is O(n) in the worst case.

• Remove. Let ai be the agent to be removed from L at
step k . Independently of its location, agent ai abandons

FIGURE 5. The space L with only one agent, a2, pointing to sentinels a0
and a1 in both dimensions as the previous and next agent nodes
respectively.

FIGURE 6. The space L after inserting ai at coordinates (50, 8). Note that,
the links of ai do not necessarily point to the same agent in both
dimensions.

its position in the linked list by updating all the refer-
ences to itself from the previous and next agents in both
dimensions. This function is time complexity O(1).

• Move. Let ai be an agent situated in the space L at
coordinates (x, y) during step k − 1, and let (x ′, y′)
be its new Cartesian coordinates during step k . First,
the prevx or nextx linked list is traversed (depending
on where the x ′ coordinate can be reached through)
starting from ai, up to the first node whose x coordinate
is less than x ′. That node becomes the reference node
after which agent ai will be inserted in the horizontal
dimension after removing ai from its current position on

120288 VOLUME 8, 2020

C. E. Sansores-Pérez, J. A. Trejo-Sánchez: BioMASS, a Spatial Model for Situated Multiagent Systems

the list. This steps apply for the vertical dimension too.
Note that in realistic simulations of complex systems
(see Section II), the movement of agents is smooth:
changes in position at each time step are small (traverse
a constant number of agents on average) so that local
interactions of the agents can be modeled at high reso-
lution. Thus, the move function takes O(1) in most cir-
cumstances. However, we do not rule out the worst case,
where the move function takes O(n) because it needs
to traverse a large portion of the list. We will see this
occurring frequently in any situation where the agents
are densely occupying a small portion of the space and
move quickly relative to their local density. If this hap-
pens frequently, it is a sign that the simulation is not set
up correctly, because its resolution is not high enough
to model the short-range interactions correctly. Another
extreme case might happen if agents could teleport from
one end of the space to the other in a given dimension.
This is not the case for most ABMS of complex systems.

• Neighborhood lookup. Let N (ai)rk be the neighborhood
of agent ai within a Euclidean distance r at step k , where
r = ai.perceptionk . The algorithm to obtain N (ai)rk is as
follows. First, it traverses the list in the x dimension in
both directions starting from ai, looking for nodes whose
x value is within r from ai.x. For each node that complies
with this condition, its two-dimensional Euclidean dis-
tance is calculated to verify that the node is indeedwithin
the perception range of ai. If so, it is included in the set
N (ai)rk . This process is illustrated in Fig. 7. Observe that
agents {a2, a3, a4} are all within a distance r from ai in
the x dimension, but not all are within the perception
scope. Therefore, the neighborhood set is {a3, a4}. The
pseudo-code 4 shows that this calculation only requires
a few operations. The time complexity of this function
is usually O(1), due to the fact that agent nodes are
ordered by proximity in the list. An agent’s neighbors
in space are also neighbors in the list, so the search time
is roughly constant. The worst case for this function is
O(n), when N (ai)rk = {A \ {ai}}; that is, when all agents
in the space are neighbors of ai. This case is very rare and
not realistic for ABMS simulations. For this to happen,
the agent would have to either perceive the entire space
or all the agents would have to be concentrated in a small
space comparable to the perception range of ai. Neither
situation is common in a properly configured complex
system model. However, in such an uncommon case, the
neighborhood lookup function would not be necessary,
because it would be more efficient for agents to have
global access to the list of all agents in the simulation.

Table 1 summarizes the time complexities of the different
spatial models. BioMASS has the best theoretical perfor-
mance with respect to the time complexity of the neighbor-
hood lookup function, but the time complexity of its insert
function is high compared to the othermodels. However, most
simulation experiments are not limited by the insertion time

FIGURE 7. BioMASS spatial model depicting the neighborhood
N(ai)rk = {a3, a4}. The area perceived by agent ai at step k is a disk of
radius r = ai .perceptionk . Note that although agent a2 is identified as a
candidate neighbor while traversing the linked list in both dimensions, its
Euclidean distance from ai is greater than r .

TABLE 1. Time complexity of agent functions provided by the spatial
models and widely supported by agent-based simulation toolkits.

of agents, since this is done just once to set up the initial
scenario. Rather, to model the dynamics of complex systems
with local interactions, the sensory function is of primary
importance since it is used most intensively. In the case of
the BioMASS space, the time complexities of the move and
neighborhood lookup functions are both O(1).

As we explained before, the worst case implies that the
density of agents is high compared to the perception scope.
Such cases are rare in the simulation of complex systems.
When they arise, it often means that the resolution of the
simulation is unsuitable for the problem. Furthermore, if they
do happen frequently, the functions can be implemented
differently. For example, if agents are able to perceive the
whole space then it is simpler to provide them with a list
of all individuals in the space. In contrast, in the continuous
space the neighborhood lookup function is always O(n) for
all agents, independently of the perception range. In the
hybrid and discrete spaces, time complexity in O(n)2 are also
rare (when agents perceive most of the environment), the
neighborhood lookup function is still a quadratic function
of the perception, which make them less efficient than the
worst cases of the other spaces. Hence, theoretically the
BioMASS neighborhood lookup function should be the most
efficient.

VOLUME 8, 2020 120289

C. E. Sansores-Pérez, J. A. Trejo-Sánchez: BioMASS, a Spatial Model for Situated Multiagent Systems

Algorithm 4 Algorithm for Neighborhood Lookup of Agent
ai at Distance r = ai.perceptionk in the BioMASS Space
Input: The agent ai, the space L.
Output: The set of neighbors at distance r at step k , N (ai)rk .

1: r = ai.perceptionk
2: N (ai)r ← ∅
3: node← ai.nextx
4: while node.x − ai.x ≤ r and node 6= a1 do
5: if dist(ai, node) ≤ r then
6: N (ai)r ← {N (ai)r ∪ {node}}
7: end if
8: node← node.nextx
9: end while

10: node← ai.prevx
11: while ai.x − node.x ≤ r and node 6= a0 do
12: if dist(ai, node) ≤ r then
13: N (ai)r ← {N (ai)r ∪ {node}}
14: end if
15: node← node.prevx
16: end while
17: return N (ai)r

VI. EXPERIMENTATION
In this section, we compare the four spatial models through a
case study: the classical swarm model proposed by [39]. The
case study simulates a large flock of prey birds that attempt
to avoid a small number of predator birds flying in the same
environment. Individual prey and predator birds are modeled
as autonomous agents living in a 2D toroidal (opposite bound-
aries of the space are joined) continuous space. The behavior
of the agents is modeled as follows:

• Prey. This agent tries to stay close to prey within its per-
ception scope and avoid predators within a fear radius.
It finds neighboring prey agents and builds an ordered
list of the closest neighbors, which will be updated in
every step of the simulation. Therefore, a prey agent
needs to call the neighborhood lookup function each
step. The prey agent then calculates avoidance or attrac-
tion vectors to each one. With respect to other prey,
the agent flies away (flies closer) if the neighbor is too
close (far away). Hence, this vector modifies the agent’s
own velocity. Next, the prey avoids predators. It loops
through all predators and gets the distance vector to each
one. If a predator is within the prey fear radius, it adds an
avoidance vector that also modifies the agent’s velocity.
Finally, the prey moves to the location determined by its
new velocity vector.

• Predator. In every step of the simulation, a predator
agent chooses a random prey and attempts to eat it.
The perception scope of the predator is considered large
enough to perceive all prey in the environment. The prey
information is available during the whole simulation
as a list. If the predator already has a target from the

previous step, it first checks whether the magnitude of
the distance vector to the target is within its kill radius.
If so, the current target is considered dead and the preda-
tor randomly selects a new prey. Then it calculates the
distance vector to the new prey and modifies it to take
into account acceleration over time. The result is the
attack vector. Finally, it adds the attack vector to its own
velocity vector to chase the prey. If its velocity exceeds
the maximum speed, it is reduced to the maximum speed
threshold. Finally, the predator moves in space to the
location determined by its new velocity vector.

Since the BioMASS spatial model implements a con-
tinuous space with Cartesian coordinates, we decided to
compare it only to similar models. That is, we did not
test the swarm scenario with the discrete spatial model,
which performs poorly in large spaces with neighborhood
lookup ranges beyond the agent’s surrounding cells. We
selected two simulation platforms for comparison, Repast
[25] andMASON [23]. Our selection criteria were as follows:
(1) the platform supports one of the two models with
Cartesian coordinates, continuous or hybrid; (2) it is a
general-purpose simulation tool; and (3) it is an ongoing
project still releasing new versions. Also, the Java program-
ming language was an important requirement to standardize
the experiments between simulation platforms. Finally, while
selecting the platforms we also took into consideration less
critical characteristics such as robustness, running speed, and
open-source support.

A. BENCHMARK
We performed a set of experiments comparing the BioMASS
model to the continuous and the hybrid models. We set up the
following conditions. There exist 6000 prey and 4 predators.
The width of the space is 1200 and the height is 800. Notice
that the fact that the BioMASS spatial model is not grid-based
allows us to adopt larger spatial dimensions without sacri-
ficing performance. The perception scopes of the prey can
be homogeneous or heterogeneous. The perception scope of
the predators is constant since they perceive all prey. The two
configurations are as follows:

• Homogeneous perception scope. The objective of this
configuration is to evaluate the performance of the mod-
els assuming that all preys have an identical perception
scope of preyPerception = 200.

• Heterogeneous perception range. The objective of this
configuration is to test the performance of the mod-
els when agents have a range of perception scopes.
There exist complex system models where the percep-
tion scope varies across agents and over time. We adopt
a simple way of testing performance under these condi-
tions. We choose a high value and a low value for the
perception scope, and assigned each value to one half of
the prey population. Specifically, the initial setup con-
tains 3000 prey with preyPerception = 20 and 3000 prey
with preyPerception = 200. This variability is sufficient

120290 VOLUME 8, 2020

C. E. Sansores-Pérez, J. A. Trejo-Sánchez: BioMASS, a Spatial Model for Situated Multiagent Systems

to test the efficiency of the neighborhood search meth-
ods within a large space and with a large number of
agents. In models with dynamic perception scopes, there
will be additional instructions in a simulation step to
update these values, but these instructions are not depen-
dent on the current scope range or the size of the space.
Therefore, this configuration is also a reasonable bench-
mark for dynamic perception models.

We used Repast for the continuous model (we refer to this
model as Repast). With respect to choosing the discretization
parameter of the hybrid model, we are not able to define the
space as dense or sparse in advance ([23]), and in fact we do
not expect a single value of the discretization to be suitable
for every agent at all time steps. Therefore, we performed two
sets of experiments for each configuration using MASON.
In one experiment we define a discretization value equal to
the maximum perception scope an agent is likely have (d =
200 for the homogeneous experiment), reflecting the assump-
tion that the spatial model is usually dense. In another exper-
iment, we define a discretization value equal to twice the
maximum perception scope (d = 400 for the homogeneous
experiments), reflecting the assumption that the spatial model
is usually sparse. We refer to these models as Mason200
and Mason400 respectively. Additionally, we perform hybrid
model experiments for the heterogeneous configuration with
discretization values of d = 20 (Mason20) and d = 40
(Mason40), corresponding to the lower value of the percep-
tion scope. Finally, we refer to our model as BioMASS.
All simulations were executed on an iMac with a 3.2 GHz
Quad-Core Intel Core i5 processor. The iMac had 16GB of
memory and was running MacOS Catalina.

The hybrid models are at a disadvantage compared to the
continuous and BioMASS models, because the discretiza-
tion parameter is constant and must be chosen in advance.
In fact, taking into account the suggestions of the authors of
MASON, we conclude that the discretization value has no
meaning in a complex model meeting one of the following
conditions: (1) the individuals have many different neighbor-
hood lookup ranges; or (2) the agents’ movement in space
forms clusters dynamically, so the space is dense in some
zones and sparse in others. The heterogeneous Predator-Prey
swarm model used in this experiment meets both conditions.
For instance, in Fig. 8 the space is covered by small patches
with a dense distribution of agents, and also numerous small
areas without agents. In Fig. 9, however, there are large
areas without agents that would be ideal for a hybrid model
with a large discretization value, but also some dense areas
where a small discretization value would be better. Both cases
were taken from the same configuration and same run of the
experiment, at different time steps.

We performed 500 simulation runs to test the performance
of the BioMASS, continuous, and hybrid models. For the
homogeneous configuration, we performed 50 simulations
for each one, BioMASS, Mason200, Mason400, and Repast.
For the heterogeneous configuration we performed 50

FIGURE 8. The Predator-Prey swarm model graphic display. The figure
illustrates the first steps of a simulation run. Here, the space is covered
by a patchwork of densely and sparsely areas. This distribution changes
at each simulation step.

FIGURE 9. The Predator-Prey swarm model graphic display. The figure
illustrates an advanced state of the simulation run. Compared to Fig. 8,
there are fewer dense and sparse patches but the patches are much
larger.

simulations for each one, BioMASS, Mason20, Mason40,
Mason200, Mason400, and Repast.

B. RESULTS AND ANALYSIS
Each simulation run consists of 1000 time steps. For each
simulation run we gather the average, minimum, and maxi-
mum duration of a step in terms of execution time.

1) HOMOGENEOUS PERCEPTION
Figures 10, 11, and 12 present the results of the simulations.
Fig. 10 depicts the maximum time step duration of each run.
Fig. 11 depicts the minimum time step duration of each run.
Fig. 12 depicts the average time step duration of each run.
Observation 1. The average time steps in the BioMASS

simulation are shorter than both the hybrid models and the
continuous model.

VOLUME 8, 2020 120291

C. E. Sansores-Pérez, J. A. Trejo-Sánchez: BioMASS, a Spatial Model for Situated Multiagent Systems

FIGURE 10. Maximum time step duration of each run for the simulations
with homogeneous perception scope.

FIGURE 11. Minimum time step duration of each run for the simulations
with homogeneous perception scope.

Observation 2. The minimum time of steps in the contin-
uous model outperforms the hybrid models in most cases.

Observation 3. In terms of time step duration, the hybrid
model with the smaller discretization (Mason200) outper-
forms the continuous model (Repast) and hybrid model with
larger discretization (Mason400).

Observation 4. In most cases, the time step duration in the
continuous model is smaller than the time step duration of the
hybrid model with the larger discretization (Mason400).

Observation 5. In a few simulation runs, the maximum
time step in the continuous model is much larger than the
maximum time step of the BioMASS and hybrid models.

2) HETEROGENEOUS PERCEPTION
Figures 13, 14, and 15 present the results of the six sim-
ulations with heterogeneous perception scopes. As in the

FIGURE 12. Average time step duration of each run for the simulations
with homogeneous perception scope.

FIGURE 13. Maximum time step duration of each run for the simulations
with heterogeneous perception scope.

previous subsection, Fig. 13 depicts the maximum time step
duration for each of the 50 simulation runs, while Fig. 14
depicts the minimum and Fig. 15 depicts the averages.

Observation 1. The average time step durations are lowest
in the BioMaSS model.

Observation 2. The hybrid models with the smallest dis-
cretization values (Mason20 and Mason40) have similar per-
formance. They outperform the hybrid models with large
discretization values (Mason200, and Mason400).

Observation 3. The time step durations of hybrid model
Mason200 are smaller than those of the hybrid model
Mason400 and the continuous model (Repast).

Observation 4. The time step durations of the hybrid
model with the largest discretization value Mason400 are
similar to those of the continuous model (Repast).

120292 VOLUME 8, 2020

C. E. Sansores-Pérez, J. A. Trejo-Sánchez: BioMASS, a Spatial Model for Situated Multiagent Systems

FIGURE 14. Minimum time step duration of each run for the simulations
with heterogeneous perception scope.

FIGURE 15. Average time step duration of each run for the simulations
with heterogeneous perception scope.

VII. CONCLUSION
We presented BioMASS, a multi-agent spatial model to sim-
ulate spatially explicit environments in a MAS. In terms of
simulation time, our model significantly outperformed tra-
ditional continuous and discrete models, as well as hybrid
models with various discretization values. The main reason
for this accomplishment is that the spatial model is designed
to perform the neighborhood search function with O(1) time
complexity in almost all cases. This allows a large num-
ber of agents to use the search function intensively without
significantly affecting the simulation time. The BioMASS
model is very advantageous for agent-based models of com-
plex systems, which require a large population of agents
interacting both directly and through the environment in
order simulate realistic emergent behaviors. We analyzed the

time complexity of the different spatial models both theo-
retically and experimentally through simulation. The simula-
tion experiments tested various perception scopes, to test the
execution time of the spatial model for extreme values. The
results of these experiments are depicted in Figs. 10 to 15,
and clearly demonstrate that BioMASS outperforms the other
models. In future work, we propose extending the BioMASS
multi-agent space model to three dimensions.

REFERENCES
[1] L. Tesfatsion, ‘‘Agent-based computational economics: Growing

economies from the bottom up,’’ Artif. Life, vol. 8, no. 1, pp. 55–82,
Jan. 2002.

[2] J. D. Farmer and D. Foley, ‘‘The economy needs agent-based modelling,’’
Nature, vol. 460, no. 7256, pp. 685–686, Aug. 2009.

[3] L. Tesfatsion, ‘‘Agents come to bits: Towards a constructive comprehensive
taxonomy of economic entities,’’ J. Econ. Behav. Org., vol. 63, no. 2,
pp. 333–346, Jun. 2007.

[4] C. E. Sansores, F. Reyes-Ramírez, L. E. Calderon-Aguilera, and
H. F. Gómez, ‘‘A novel modeling approach for the ‘end-to-end’ analysis
of marine ecosystems,’’ Ecol. Informat., vol. 32, pp. 39–52, Mar. 2016.

[5] F. Bousquet and C. Le Page, ‘‘Multi-agent simulations and ecosystem
management: A review,’’ Ecol. Model., vol. 176, nos. 3–4, pp. 313–332,
Sep. 2004.

[6] V. Grimm and S. F. Railsback, ‘‘Agent-based models in ecology: Pat-
terns and alternative theories of adaptive behaviour,’’ in Agent-Based
Computational Modelling: Applications in Demography, Social, Eco-
nomic and Environmental Sciences, F. C. Billari, T. Fent, A. Prskawetz,
and J. Scheffran, Eds. Heidelberg, Germany: Physica-Verlag, 2006,
pp. 139–152.

[7] C. M. Buchmann, F. M. Schurr, R. Nathan, and F. Jeltsch, ‘‘Habitat loss
and fragmentation affecting mammal and bird communities—The role
of interspecific competition and individual space use,’’ Ecol. Informat.,
vol. 14, pp. 90–98, Mar. 2013.

[8] S. Zheng and H. Liu, ‘‘Improved multi-agent deep deterministic policy
gradient for path planning-based crowd simulation,’’ IEEE Access, vol. 7,
pp. 147755–147770, 2019.

[9] R. Axelrod, ‘‘Advancing the art of simulation in the social sci-
ences,’’ in Simulating Social Phenomena, R. Conte, R. Hegselmann, and
P. Terna, Eds. Berlin, Germany: Springer, 1997, pp. 21–40.

[10] R. K. Sawyer, Social Emergence: Societies as Complex Systems.
Cambridge, U.K.: Cambridge Univ. Press, 2005.

[11] R. K. Sawyer, ‘‘Artificial societies: Multiagent systems and the micro-
macro link in sociological theory,’’ Sociol. Methods Res., vol. 31, no. 3,
pp. 325–363, Feb. 2003.

[12] S. Camazine, N. R. Franks, J. Sneyd, E. Bonabeau, J.-L. Deneubourg, and
G. Theraula, Self-Organization in Biological Systems. Princeton, NJ, USA:
Princeton Univ. Press, 2001.

[13] M. Pogson, M. Holcombe, R. Smallwood, and E. Qwarnstrom, ‘‘Introduc-
ing spatial information into predictive NF-κBmodelling—An agent-based
approach,’’ PLoS ONE, vol. 3, no. 6, pp. 1–6, 2008.

[14] M. Soheilypour and M. R. K. Mofrad, ‘‘Agent-based modeling in molecu-
lar systems biology,’’ BioEssays, vol. 40, no. 7, 2018, Art. no. 1800020.

[15] N. R. Jennings, ‘‘On agent-based software engineering,’’ Artif. Intell.,
vol. 117, no. 2, pp. 277–296, 2000.

[16] F. Bergenti, E. Iotti, S. Monica, and A. Poggi, ‘‘Agent-oriented model-
driven development for JADE with the JADEL programming language,’’
Comput. Lang., Syst. Struct., vol. 50, pp. 142–158, Dec. 2017.

[17] M. Wooldridge, N. R. Jennings, and D. Kinny, ‘‘The Gaia methodology
for agent-oriented analysis and design,’’ Auton. Agents Multi-Agent Syst.,
vol. 3, no. 3, pp. 285–312, 2000.

[18] G. Kardas, ‘‘Model-driven development of multiagent systems: A survey
and evaluation,’’ Knowl. Eng. Rev., vol. 28, no. 4, pp. 479–503, Dec. 2013.

[19] S. Rodriguez, N. Gaud, and S. Galland, ‘‘SARL: A general-purpose agent-
oriented programming language,’’ in Proc. IEEE/WIC/ACM Int. Joint
Conf. Web Intell. (WI), Intell. Agent Technol. (IAT), Warsaw, Poland,
Aug. 2014, pp. 103–110.

[20] C. Bădică, Z. Budimac, H.-D. Burkhard, and M. Ivanovic, ‘‘Software
agents: Languages, tools, platforms,’’ Comput. Sci. Inf. Syst., vol. 8, no. 2,
pp. 255–298, 2011.

VOLUME 8, 2020 120293

C. E. Sansores-Pérez, J. A. Trejo-Sánchez: BioMASS, a Spatial Model for Situated Multiagent Systems

[21] J. J. Gómez-Sanz, C. R. Fernández, and J. Arroyo, ‘‘Model driven devel-
opment and simulations with the INGENIAS agent framework,’’ Simul.
Model. Pract. Theory, vol. 18, no. 10, pp. 1468–1482, Nov. 2010.

[22] A. S. Rao and M. P. Georgeff, ‘‘BDI agents: From theory to practice,’’
in Proc. 1st Int. Conf. Multi-Agent Syst., San Francisco, CA, USA, 1995,
pp. 312–319.

[23] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan, ‘‘MASON:
A multiagent simulation environment,’’ Simulation, vol. 81, no. 7,
pp. 517–527, Jul. 2005.

[24] A. Grignard, P. Taillandier, B. Gaudou, D. A. Vo, N. Q. Huynh, and
A. Drogoul, ‘‘GAMA 1.6: Advancing the art of complex agent-based mod-
eling and simulation,’’ in PRIMA 2013: Principles and Practice of Multi-
Agent Systems, G. Boella, E. Elkind, B. T. R. Savarimuthu, F. Dignum, and
M. K. Purvis, Eds. Berlin, Germany: Springer, 2013, pp. 117–131.

[25] M. J. North, N. T. Collier, J. Ozik, E. R. Tatara, C. M. Macal, M. Bragen,
and P. Sydelko, ‘‘Complex adaptive systems modeling with repast sim-
phony,’’ Complex Adapt. Syst. Model., vol. 1, no. 1, pp. 1–26, Dec. 2013.

[26] F. Klügl, ‘‘SeSam: Visual programming and participatory simulation for
agent-based models,’’ in Multi-Agent Systems: Simulation and Applica-
tions, A. M. Uhrmache and D. Weyns, Eds. Boca Raton, FL, USA: CRC
Press, 2009, pp. 477–508.

[27] J. H. Anderson, J. A. Downs, R. Loraamm, and S. Reader, ‘‘Agent-based
simulation of muscovy duck movements using observed habitat transi-
tion and distance frequencies,’’ Comput., Environ. Urban Syst., vol. 61,
pp. 49–55, Jan. 2017.

[28] A. L. Cronin, ‘‘An agent-based model of nest-site selection in a mass-
recruiting ant,’’ J. Theor. Biol., vol. 455, pp. 54–63, Oct. 2018.

[29] L. Pérez and S. Dragićević, ‘‘ForestSimMPB: A swarming intelligence and
agent-basedmodeling approach for mountain pine beetle outbreaks,’’Ecol.
Informat., vol. 6, no. 1, pp. 62–72, Jan. 2011.

[30] D. McDermot and K. A. Rose, ‘‘An individual-based model of lake fish
communities: Application to piscivore stocking in lake Mendota,’’ Ecol.
Model., vol. 125, no. 1, pp. 67–102, Jan. 2000.

[31] L. Parrott and R. Kok, ‘‘A generic, individual-based approach to modelling
higher trophic levels in simulation of terrestrial ecosystems,’’ Ecol. Model.,
vol. 154, nos. 1–2, pp. 151–178, Aug. 2002.

[32] E. H. van Nes, E. H. R. R. Lammens, and M. Scheffer, ‘‘PISCATOR, an
individual-basedmodel to analyze the dynamics of lake fish communities,’’
Ecol. Model., vol. 152, no. 2, pp. 261–278, 2002.

[33] M. Wooldridge, An Introduction to MultiAgent Systems. Hoboken, NJ,
USA: Wiley, 2009.

[34] A. Drogoul, F. Michel, and J. Ferber, ‘‘Multi-agent systems and simula-
tion: A survey from the agent community’s perspective,’’ in Multi-Agent
Systems, vol. 5, A. M. Uhrmacher and D. Weyns, Eds., 1st ed. Boca Raton,
FL, USA: CRC Press, 2009, pp. 3–59.

[35] M. R. Genesereth and N. J. Nilsson, Logical Foundations of Artificial
Intelligence. San Francisco, CA, USA: Morgan Kaufmann, 1987.

[36] T. Tyrrell, ‘‘The use of hierarchies for action selection,’’ Adapt. Behav.,
vol. 1, no. 4, pp. 387–420, Mar. 1993.

[37] A. S. Rao and M. P. Georgeff, ‘‘An abstract architecture for rational
agents,’’ in Proc. 3rd Int. Conf. Princ. Knowl. Represent. Reasoning,
Cambridge, MA, USA, 1992, pp. 439–449.

[38] J. P. Müller and M. Pischel, ‘‘The agent architecture InteRRaP: Con-
cept and application,’’ German Res. Center Artif. Intell., Kaiserslautern,
Germany, Tech. Rep. RR 93-26, 1993.

[39] C. W. Reynolds, ‘‘Flocks, herds and schools: A distributed behavioral
model,’’ in Proc. 14th Annu. Conf. Comput. Graph. Interact. Techn.
(SIGGRAPH), New York, NY, USA, 1987, pp. 25–34.

CANDELARIA ELIZABETH SANSORES-PÉREZ
(Member, IEEE) received the B.S. degree in com-
puter systems engineering from the Instituto Tec-
nológico de Mérida, Mérida, Mexico, in 1994, and
the M.S. and Ph.D. degrees in computer science
from the Universidad Complutense de Madrid,
Madrid, Spain, in 2008.

Since 2008, she has been a Full Professor with
the Department of Basic Sciences and Engineer-
ing, Universidad del Caribe. Her current research

interests include simulation of complex systems, multiagent systems, and
algorithms.

JOEL ANTONIO TREJO-SÁNCHEZ was born in
Mérida, Yucatán, Mexico, in 1981. He received
the B.S. degree in computer science from the
Autonomous University of Yucatán, the M.S.
degree in electrical engineering from CINVES-
TAV, and the Ph.D. degree in computer sciences
from CICESE, in 2014.

He is currently a Research Fellow with
the CONACyT—Centro de Investigación en
Matemáticas. His research interests include dis-

tributed and parallel computing and the design of algorithms.

120294 VOLUME 8, 2020

