
SPECIAL SECTION ON FEATURE REPRESENTATION AND LEARNING METHODS
WITH APPLICATIONS IN LARGE-SCALE BIOLOGICAL SEQUENCE ANALYSIS

Received June 3, 2020, accepted June 16, 2020, date of publication June 29, 2020, date of current version July 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3005444

Efficient ResNet Model to Predict Protein-Protein
Interactions With GPU Computing
SHENGYU LU , QINGQI HONG , BEIZHAN WANG , AND HONGJI WANG
School of Informatics, Xiamen University, Xiamen 361005, China

Corresponding author: Qingqi Hong (hongqq@xmu.edu.cn)

This work was supported in part by the Natural Science Foundation of China under Grant 61502402, and in part by the Fundamental
Research Funds for the Central Universities under Grant 207220180073.

ABSTRACT Protein-protein interactions (PPI) play an important role in the cell activities of organisms.
The deep research about PPI can help humans understand the mechanism of life activities and apply protein
functions better. Nowadays, PPI prediction algorithms based on amino acid sequences using the recurrent
neural network (RNN) can overcome the disadvantages of traditional biological experimental methods and
achieve high accuracy. However, these algorithms are usually time-consuming and cannot take full advantage
of graphics processing units (GPU) with efficient computation performance to accelerate PPI prediction,
because the RNN model considers the time series of sequences. In this paper, we propose an efficient
algorithm based on the residual network (ResNet) model to predict PPI (ResPPI). Our algorithm uses
the embedding method to represent amino acid sequences, combining the advantages of powerful feature
extraction capabilities of the ResNet with deep layers and GPU performance. The experimental results show
that the ResPPI algorithm can ensure high accuracy and reduce training time greatly. Based on the ordinary
GPU device, compared with the state-of-the-art LSTM model, the speed of the ResPPI algorithm is five
times faster than that of the LSTM, whereas the ResPPI algorithm can achieve similar accuracy to the LSTM.
Besides, in the case of unbalanced datasets, the ResPPI algorithm can perform better.

INDEX TERMS Protein-protein interactions (PPI), residual network (ResNet), graphics processing
units (GPU) computing, training speed.

I. INTRODUCTION
Protein-protein interactions (PPI) are the basis of many cel-
lular biological processes [1] such as signal transduction,
immune response, DNA replication and cell metabolism. Due
to the significance of PPI, the research about PPI is becoming
increasingly important. Traditional biological experimental
methods [2] such as two-hybrid and mass spectrometry pro-
vide important clues and evidence to identify PPI, but those
methods are expensive and labor-intensive [3].

Over the decades, with the development of computer
technology, researchers have proposed using computational
methods to predict PPI based on collected protein data to
achieve PPI prediction accurately and rapidly. Since the gen-
eration of high-throughput technology [4], researchers have
been able to obtain huge amounts of protein data, which bene-
fits the development of computational methods to predict PPI.
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Nowadays, scholars have proposed many methods to predict
PPI based on various types of information about proteins,
such as protein domains, amino acids and physical proper-
ties [5]. This information and PPI labels can be collected from
some open databases such as the Protein Data Bank (PDB),
the Molecular Interaction Database and the Human Protein
Reference Database (HPRD) [6].

Many studies have suggested approaches to predict PPI
based on protein sequences and the experimental results
have shown that sequence-based approaches are avail-
able [7]. Compared with other types of information about
proteins, protein sequences are more convenient to col-
lect and process, so sequence-based approaches are popu-
lar among researchers. Li et al. proposed a domain-based
method to predict PPI using probabilities of putative inter-
acting domain pairs derived from interacting protein pairs
and non-interacting protein pairs [8]. Airola et al. pro-
posed a graph kernel-based approach to extract the features
of proteins automatically and achieve PPI prediction [9].
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They considered all dependency paths between two pairs
because those paths were important indicators.

Although much progress has been made [5], those algo-
rithms to predict PPI based on protein sequences usually use
sequence models such as the LSTM [7] and gated recur-
rent units (GRU) [8] to extract the semantic features and
implement classification [9]. Since sequencemodels consider
the time series, they cannot take full advantage of graphics
processing units (GPU) for efficient computing [10]. Even
in the case of high-quality GPU devices, sequence models
are still time-consuming. Due to the fact that the CNN and
machine learning models can make full use of GPU for
parallel computing, some researchers suggested using those
models with GPU to predict PPI. For example, Chen et al.
proposed a method of hyperparameter estimation in the sup-
port vector machine (SVM) with GPU acceleration for PPI
prediction. However, this method cannot extract the deep
features of proteins and achieve satisfying results [11]. For
these defects of sequence models, in this paper, we propose
an efficient algorithm based on the residual network (ResNet)
to predict PPI (ResPPI). The main novelty lies in that the
ResNet consists of residual units, which does not consider
the time series of words and has the capacity to use GPU
for acceleration [10]. Besides, with the increasing number of
convolution layers, the ResNet will not overfit and degenerate
because of residuals [12], so it has the capacity to extract the
deep features of proteins and achieve high accuracy, even in
the case of unbalanced datasets. Therefore, the ResPPI algo-
rithm can ensure high accuracy and reduce the training time
greatly, which improves the performance of PPI prediction.
Furthermore, it can provide a reference for the processing of
other biological data such as drug-drug interactions [13] and
protein-RNA interactions [14].

The organization of this paper is as follows. Section I
introduces the PPI and our proposed ResPPI algorithm.
Section II reviews the related research about GPU comput-
ing and the CNN for text. Section III describes the ResPPI
algorithm in detail. Section IV shows the performance results
of our method and the baseline methods in the experiments.
Section V presents conclusions and future work.

II. BACKGROUND AND RELATED WORK
Compared with the co-occurrence methods based on protein
sequences to predict PPI, machine learning methods have
shown better effects [15]. Common approaches to predict
PPI include the SVM, logistic regression, random forests
and artificial neural networks [16]. Shen et al. proposed
a method for PPI prediction using the information of pro-
tein sequences [17]. They combined the kernel function and
conjoint triad features to describe amino acids and used
the SVM method to achieve prediction. Bock et al. pro-
posed an efficient algorithm to predict PPI based on protein
sequences [18]. They extracted the semantic features from
protein sequences, combining the physical features of amino
acids in proteins such as charge properties, water solubility,

and then adopted the SVM to implement classification.
You et al. used multi-scale continuous and discontinuous
local feature descriptors to encode amino acid sequences [19].
They assumed that consecutive amino acid fragments with
different fragment lengths and used them to predict PPI.
To select the best features, they used the minimum redun-
dancy and maximum correlation criterion, which can reduce
the dimensions and computational complexity. Finally, they
used the SVM classifier to predict PPI.

Deep learning methods with powerful feature extraction
capabilities have been applied in many fields such as com-
puter vision [20], nature language process (NLP) [21] and
bioinformatics [22]. Some scholars have proposed using deep
learning methods to improve the performance of PPI predic-
tion [23]. Du et al. proposed a method called DeepPPI to
predict PPI [24]. They used the amphiphilic pseudo amino
acid composition (APAAC) to extract features from the pro-
tein sequences, and then inputted the features of two proteins
into two independent deep neural networks (DNN) to predict
PPI. Zhang et al. proposed the ensemble neural networks to
predict PPI based on different representations of amino acid
sequences [25]. They used the auto-covariance descriptor and
several kinds of local descriptors to represent and explore
the pattern of interactions between amino acid residues, and
trained the DNN based on each descriptor and integrated
them into an ensemble predictor. In particular, some state-of-
the-art methods to predict PPI is based on the recurrent neural
network (RNN). Yadav et al. proposed a novel algorithm
based on the deep bidirectional long short-term memory
(Bi-LSTM) that exploited word sequences and dependency
path related information to predict PPI [26]. They also
proposed an algorithm based on the attentive deep RNN,
which combined multiple levels of representations using
word sequences and dependency path related information
to predict PPI [27]. Ahmed proposed a novel tree RNN
with the attention mechanism to predict PPI [28]. They used
the long short-term memory (LSTM) to model the depen-
dency tree structure of sentences and achieved a significant
improvement than other methods without explicit feature
extraction. Other researchers suggested using the models
based on the convolutional neural network (CNN) to predict
PPI [29]. Hua et al. proposed the shortest dependency path
based on the CNN (sdpCNN) model to predict PPI [30].
They took the shortest dependency path and word embedding
as input, and made full use of structure information and
avoidedmanual feature selection by the CNN. Peng et al. pro-
posed a method named McDepCNN for PPI prediction [31].
They used a multichannel dependency-based CNN to extract
the features of protein sequences and implement classifica-
tion. Hashemifar et al. proposed a novel framework named
DPPI to model and achieve PPI prediction from protein
sequences [1]. They applied a Siamese-like CNN to capture
information about the composition of amino acids and used
a novel random project to investigate the combination of
protein motifs.

VOLUME 8, 2020 127835



S. Lu et al.: Efficient ResNet Model to Predict PPI With GPU Computing

A. GPU COMPUTING
GPU consists of thousands of small and efficient cores [32],
which are designed for dealing with multiple tasks simul-
taneously. Compared with CPU, GPU has more processing
units and performed better effects on accelerated computing,
because CPU only has the limited number of cores, designed
for handling serial tasks. Although the deep learning meth-
ods have powerful feature extraction capabilities and greatly
improve the performance effects through multiple layers and
massive parameters, we also have the challenge of high
computational time. Many researchers suggest using GPU
to accelerate the calculation and reduce the time costs [33]
when dealing with massive biological data. Sun et al. pre-
sented a scarified backpropagation technique for neural net-
work learning based on GPU to achieve acceleration [34].
Loc et al. proposed a mobile deep learning framework named
DeepMon with GPU computing to execute the DNN for
continuous video [35]. Song et al. presented a distributed
and dynamically tuned framework with GPU computing
for CNN based big data processing and achieve accelera-
tion [36]. Wu et al. presented a CPU-GPU implementation
of a graph clustering heuristic named Shingling [37]. They
used CPU and GPU for different stages of computation,
using GPUs for the time-consuming steps to accelerate the
calculation. Pang et al. presented a novel GPU version of
Mrbayes for processing large protein data [38]. They used
the Kahan summation to improve accuracy and reduce run-
time. Dubey et al. presented a parallel approach with GPU
computing for protein structure prediction [32] using the 2D
triangular hydrophobic-polar lattice model. The experimen-
tal results showed that the approach significantly improved
the performance of prediction and reduced the computation
greatly.

B. THE CNN FOR TEXT
The dominant approach for NLP tasks is the RNN, in particu-
lar the LSTM [39] and sequence to sequence (Seq2Seq) [40].
The RNN processes sentences in token order, which can learn
local features and long-distance dependencies [41]. Com-
pared with the CNN and DNN, the RNN performs better in
many NLP tasks such as text recognition [42], machine trans-
lation [43] and reading comprehension [44]. However, since
the RNN considers the sequence dependency, parallel com-
puting performance of the RNN is poor. Therefore, sequence
models usually face the problem of time costs. Some scholars
proposed using the CNN to handle NLP tasks such as text
classification, because the CNN can execute parallel com-
puting efficiently and reduce the time costs. Santos et al. pre-
sented a novel CNN architecture named CharSCNN that used
from character level to sentence level information to imple-
ment sentiment analysis of short texts [45]. They adopted
two convolutional layers to extract relevant features from
words and sentences. Nal et al. presented a convolutional
architecture dubbed the DCNN for the semantic modeling
of sentences [46]. They handled input sentences of varying

lengths and used a feature graph over sentences to capture
long-distance dependencies. Alexis et al. presented a new
architecture (VD-CNN) for text classification [42]. They
operated at the lowest atomic representation of text and used
only small convolutions and pooling operations to learn the
high-level representations of sentences.

III. METHOD
We adopt the embedding method to represent two amino
acid sequences as vectors respectively and integrate them
together, and then input them into the ResNet to extract the
deep features of two proteins. Based on the connected vector,
we use the softmax function for classification. Figure 1 shows
the framework of the ResPPI algorithm.

FIGURE 1. The framework of the ResPPI algorithm.

A. AMINO ACID SEQUENCES REPRESENTATION
We define an amino acid sequence as P = {a1, a2 . . . an},
where n represents the length of the amino acid sequence,
and ai ∈ P represents the amino acid i of the protein.
We define that there are m kinds of amino acids in the pro-
tein, so ai has m kinds of different representations. Sequence
representation is the basis for protein data analysis and PPI
prediction [47]. In current PPI prediction methods, some
researchers suggested representing the amino acid sequence
as amatrix. For example, Hashemifar et al. proposed adopting
the position specificity scoring matrix (PSSM) to represent
the sequence [1]. For each amino acid of the sequence, they
calculated the mutation probability of other amino acids.
Therefore, each amino acid could be represented as a1∗(m−1)
vector, and the amino acid sequence was represented as a
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matrix n∗(m − 1). However, this method is complicated to
calculate, and cannot represent the relation between amino
acids. We refer to the embedding representation of words in
NLP [48]. We segment the protein sequence into individual
words based on amino acids and encode each word as a
vector, so the protein sequence can be represented as a matrix.
The input and output of the architecture of the embedding
layer is the initial matrix of protein sequence and the feature
matrix with 500∗128. The initial matrix of protein sequence
consists of several vectors of amino acids which are random
because the training processing of the neural network is
updating the parameters and obtaining the feature vector rep-
resentation of protein sequence. This method can overcome
the sparsity problem and perform better in word represen-
tation in NLP tasks than the one-hot encoding method. The
parameters of the embedding layer and the ResNet are trained
simultaneously. We train the model and optimize the loss
function, and obtain the vector representation of each amino
acid.

For an amino acid sequence P, we assume that there are m
different representations of amino acids. We let E represent
the matrix of word embedding and H represents the matrix
of the encoded sequence which is the input of the embedding
and uses the one-hot encoding. So the feature matrix F can
define as follows:

F = H ∗ E (1)

where, H is a matrix of n∗m, and E is a matrix of m∗d. We let
d represent the dimension of the vector, so F is a matrix
of n∗d. We can see the schematic figure of the sequence
representation in Figure 2.

FIGURE 2. The schematic figure of amino acid sequence representation.

B. ResNet
The ResPPI algorithm is based on the ResNet, which intro-
duces shortcut connections that bypass the signal from one
layer to the next layer [12]. The connections pass through the
gradient flows of the DNN and have the capability to ease
the training of very deep layers and prevent gradients from
disappearing [49]. Inspired by the successes of the ResNet in
many challenging tasks such as image recognition and text
classification, we propose applying the ReNet to predict PPI.

1) RESIDUAL UNITS
The ResNet consists of many residual units, and each unit
includes identity mapping and residuals [50]. Figure 3 shows

FIGURE 3. The framework of the residual unit.

the framework of the residual unit. It defines as follows:

xt+1 = h (xt)+ F (xt) (2)

where, xt+1 and xt represent the input and output of the t-th
residual unit respectively. h (xt) is the identity mapping and
F (xt) is the non-linear function.
xt+1 and xt usually have different dimensions in the

ResNet, so we will add a convolution layer of 1∗1 in the
shortcut to reduce the dimensions. So the h (xt) defines as:

h (xt) = Wt ∗ xt (3)

where, Wt represents the weight matrix.

2) 2D CONVOLUTIONS
Given an encoded amino acid sequencePwith the size of n∗d.
n and d represent the length of P and the dimensions of the
vectors respectively. We utilize the 2D convolutions [45] in
the ResNet to extract the features of proteins. From Figure 3,
we design three convolution layers in each residual unit, each
convolution layer followed by the batch normalization and
activation function ReLU [12]. We use pooling to fill in 0
and restore the dimension of x to 64 after the convolution
operations in each convolution layer.We denote the size of 2D
convolutional filters and the number of convolution kernels of
each layer in the residual unit in Table 1.

TABLE 1. The parameters of each residual unit.

3) ResNet DESIGN
Our proposed ResPPI algorithm can handle protein pairs with
different lengths through preprocessing. If the length of a pro-
tein sequence is longer than 500, we only select the fragment
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with a length of 500 in the sequence. Otherwise, we fill in 0
to make the length of a protein sequence to 500. Based on
the distribution of long amino acid sequences, we segment
the sequences into several sentences whose length is 500,
encoding them as vectors respectively and integrating them
together, and then input the vectors to the ResNet. We design
five residual units in the ResNet and several residual units
introduce shortcut connections. Figure 4 shows the frame-
work of the ResNet.

FIGURE 4. The framework of the ResNet.

C. PPI PREDICTION
We obtain the vector h at the full connected layer of the
ResNet and h contains the information about two proteins.
Then we input h into softmax function to implement binary
classification and predict PPI. The equations are as follows:

p̂ (y | s) = softmax
(
W sh+ bs

)
(4)

ŷ = argmaxp̂ (y | s) (5)

where, ŷ and y ∈ Y are predicted labels and original
labels respectively, and s represents the inputted amino
acid sequence. W s and bs denote weight matrix and bias
respectively.

The training process is to minimize the cross-entropy loss
function[21] as follows:

J (θ) = −
1
m

m∑
i=1

ti log (yi)+ λ ‖θ‖2F (6)

where, t ∈ Rm is a one-hot vector representing true or
false. yi ∈ Rm is the probability of predicted category, m is

the number of categories. λ is the regularization parame-
ter, used to avoid the overfitting and accelerate the training
progress. We use the 5-fold cross-validation method to tune
the hyper-parameter λ util the optimal model is obtained.
This is the pseudocode of our algorithm ResPPI as follows:

Algorithm ResPPI
Input: Amino acid sequence a, b and their length n

The dimensions of embedding: d
Procedure:
For each sequence (a, b) do:
Segment the sequence into several words based on
amino acids
Use the embedding method to represent the sequence as
P,PεRn∗d

Integrate the vectors from two sequences into a vector
For each residual unit do:
Perform operations in the convolutional layer Conv1
Perform operations in the convolutional layer Conv2
Perform operations in the convolutional layer Conv3
If (shortcut==true):
Perform operations in the convolutional layer Conv4
Compute the identity mapping with Equation(3)
Add the identity mapping and residuals

Implement classification with Equation(4) and Equa-
tion(5)
Output: Predicted result

IV. EXPERIMENT
To quantitatively evaluate the performance of our proposed
algorithm ResPPI under different situations, we execute
experiments and use six evaluation metrics, compared with
several baseline methods.

A. DATASETS
Ourmodel is evaluated on two public datasets for PPI, namely
Benchmark and PDB. They both contain positive samples and
negative samples.

1) BENCHMARK DATASET
We obtained the popular Pan’s PPI dataset in order to use it
in this study [51]. The positive samples of this dataset are
from the HPRD database.1 The duplicated interactions are
removed from the original samples and there are 36630 pairs
as positive samples. For negative samples, they are generated
by pairing proteins at different subcellular locations based
on the Swiss-Prot database version 57.3. In addition, non-
human proteins, proteins from ambiguous or uncertain sub-
cellular locations, and proteins with fragments are removed.
Finally, there are 36480 negative samples in Pan’s PPI dataset.
We remove protein pairs with unusual amino acids to obtain
the Benchmark dataset, which has 36545 positive samples
and 36323 negative samples.

1http://www.hprd.org/.
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2) PDB DATASET
The PDB dataset is generated by processing the protein
data downloaded from the PDB database.2 We download
11,680 compound proteins and 2042 monomer proteins
respectively. Compound proteins consist of multiple peptide
chains, and we select the compound proteins that contain
two peptide chains. Then we use Python3 tool to parse the
compound protein files and obtain the interactions of pro-
tein sequences as positive samples. For negative samples,
we generate them by pairing monomer proteins randomly.
In addition, we remove the duplicated interactions and those
interactions whose similarities are more than 30%. Finally,
we obtain the PDB dataset with 11680 positive samples and
9059 negative samples.

B. EVALUATION METRICS
We use four evaluation metrics which are generally imple-
mented in previous research to evaluate the accuracy of PPI
prediction [18]. Besides, we add two evaluation metrics to
measure the training time of all methods. These metrics
include precision, recall, F1, accuracy, Te and Ts. They define
as follows:

precision =
TP

TP+ FP
(7)

recall =
TP

TP+ FN
(8)

F1 =
2 ∗ precision ∗ recall
precision+ recall

(9)

accuracy =
TP+ TN

TP+ TN + FP+ FN
(10)

Ts =
Te
N

(11)

where, TP, TN, FP, FN represent the true positive, true nega-
tive, false positive and false negative respectively. Te and Ts
respectively denote the training time of all samples and each
sample in each epoch. N is the number of samples.

C. BASELINE METHODS
PPI prediction methods based on deep learning methods and
the SVMmodel performed superior compared to the feature-
based models [25]. In order to make an effective comparison
of our proposed ResPPI algorithm, we design six baseline
methods based on sequence models and other advanced
models.

1) RNN
The RNNmodel first introduces the time series in sequences,
considering the positional information between words [52].
We also segment the amino acid sequences into several words
based on amino acids and use the embedding method to
represent the sequences as vectors. We input the vectors into
the neural network to extract the semantic features of proteins
and implement binary classification.

2http://www.rcsb.org/.
3https://www.python.org/.

2) LSTM
The LSTM is the state-of-the-art model to predict PPI based
on amino acid sequences and it can be applied to deal with
protein data under many situations [53]. The LSTM model
uses several components to control the information flow
and can overcome the problems of gradient explosion and
gradient disappearance, which often appear in deep learning
methods. Similar to the RNN, we remove the decoder of the
neural network and input the vectors of amino acid sequences
into the LSTM model to extract the features of proteins. For
the outputted vector from the final hidden layer, we use the
softmax function to implement classification.

3) GRU
The GRU is also a sequence model, which is derived from
the RNN model as well as the LSTM. Compared with the
LSTM model, in the memory unit, it combines the original
forget gate and input gate into an update gate to control the
information flow [8]. Similar to the RNN and the LSTM,
we input the vectors of protein sequences into the GRUmodel
to predict PPI.

4) DCNN
The DCNN can extract the deep features of sequences
through convolution operations and non-linear function oper-
ations [42]. The DCNN model is often used to predict PPI,
and several variants have been derived based on different rep-
resentations methods of protein sequences such as covariance
matrix, PSSM matrix and embedding methods [24]. We use
the embeddingmethod to represent the amino acid sequences,
and then input them into the DCNN model to extract features
and implement classification. There are three convolutional
layers in the DCNN model and the size of convolutional
filters is 3∗3.

5) SVM
The SVM is a popular machine learning method to pre-
dict PPI [54], and it is widely used to solve the problem
of limited and unbalanced datasets[ 55]. We use the term
frequency-inverse document frequency (TF-IDF) statistical
method of word frequency to calculate the probability dis-
tribution of each amino acid and obtain the feature matrix of
proteins. The TF-IDF method consists of two parts: compute
the normalized term-frequency (TF) that the number of times
an amino acid appears in a sequence; compute the logarithm
of the number of the sequence in the corpus. Then we input
the feature matrix to the SVM model to find the optimal
hyperplane and implement binary classification.

D. SETTING
We perform experiments using Python tool and Tensorflow4

2.0 platform. Themain equipment in the experiment includes:
Intel (R) Core (TM) i7-8700, 8GB RAM, GPU (GeForce
GTX 1060, 5GB RAM). The number of epochs of the ResPPI

4https://www.tensorflow.org/.
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algorithm is 15 and other parameters such as the size of
convolutional filters are shown in Table 1. The learning rate
and the size of the batch are set to 0.001 and 32 respectively.
For the embedding of amino acids, we set the dimension to
128. For the SVM classifier, the dimension of the feature
vector is set to 1000. The penalty coefficient of the objective
function is 1.0 and the learning rate is 0.001.

E. RESULT ANALYSIS
To evaluate the performance of our model, we randomly
select 18000 and 20000 samples from the Benchmark and
PDB datasets respectively, dividing them into five equal sub-
sets. Three subsets are used as a training set; One subset
is used as a validation set; The other subset is used as a
testing set. In the training phase, we input the vectors from the
embedding layer to train the ResNet and optimize the param-
eters. In the testing phase, we use the trained ResNet model
to implement classification and predict the interactions based
on testing data, and evaluate the performance of the ResPPI
algorithm. The number of epochs of all baseline models is
also 15. We can see the average results of precision, recall,
F1 and accuracy with the standard deviation of all methods
in Table 2 and Table 3. Each task is performed several times
and we calculate the mean and standard deviation of all
results. Besides, we compare the training time of the ResPPI
algorithm and sequence models, the results of Te and Ts of
those methods shown in Figure 5 and Figure 6.

TABLE 2. The results of four metrics in the Benchmark dataset.

In order to enable fair comparisons of all algorithms,
the results of precision, recall, F1 and accuracy of all algo-
rithms in the Benchmark and PDB dataset are combined.
Therefore, the number of variances is equal to 5, and a
free degree equals 2. The Friedman test values of precision,
recall, F1 and accuracy are 29.390, 39.486, 40.215 and 37.371
respectively. Compared with the overall Friedman test val-
ues, it is observed that they are noticeably higher than the
critical value, for the significance level α = 0.05 (19.296).
Hence, the original hypothesis can be safely rejected and

TABLE 3. The results of four metrics in the PDB dataset.

FIGURE 5. The results of Te in the Benchmark and PDB datasets.

FIGURE 6. The results of Ts in the Benchmark and PDB datasets.

there are significant differences among the results of different
algorithms

Table 2 and Table 3 show that the results of precision,
recall, F1 and accuracy of our proposed ResPPI algorithm
are all higher than those of other baseline methods, so the
ResPPI performs best to predict PPI, compared with other
five methods. In baseline methods, sequence models such as
the RNN, LSTM and GRU perform better than the DCNN
and the SVM models, because sequence models consider the
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positional information of amino acids and can discover more
latent features of proteins than the DCNN and machine learn-
ing methods. However, sequence models are time-consuming
because they cannot take full advantage of GPU. As shown
in Figure 5 and Figure 6, we can see that the training time
of the RNN, LSTM, GRU models are several times than
the ResPPI, so the ResPPI algorithm can achieve rapid PPI
prediction. Although the training time of theDCNNand SVM
are less than the ResPPI because the DCNN only contains
fewer parameters, the accuracy of the DCNN and SVM are
less than the ResPPI. We increase the number of convolution
layers of the DCNN model to test its performance. However,
the results of accuracy cannot improve and the training time
becomes longer, so the DCNN model with three layers is the
optimized structure to predict PPI. Therefore, our proposed
ResPPI algorithm can achieve high accuracy and predict PPI
rapidly.

FIGURE 7. The performance of the ResPPI algorithm based on GPU and
CPU.

From Figure 7, we can see the results of Te of the ResPPI
algorithm based on GPU and CPU. Compared with CPU,
GPU has the capability to make use of parallel computing
to accelerate the ResPPI algorithm greatly.

TABLE 4. The results of accuracy of different methods in Benchmark
dataset.

Wealso compare the ResPPI algorithm against themethods
proposed by Zhang et al. and You et al. based on the Bench-
mark dataset and reveal the results of accuracy in Table 4.
Zhang et al. proposed a novel method based on compressed
sensing theory to predict PPI from amino acid sequences [56].
They reduce the dimensions of original protein features based
on the sparsity of spatial distribution, and then used the SVM
classifier to implement classification. You et al. proposed a
method to predict PPI based on fusion features[51]. They
used different methods to represent amino acid sequences and

integrate them together, and then trained the DNN to achieve
prediction.

Based on the distribution of protein data and the train-
ing speed of the ResPPI algorithm, we need to design the
appropriate number of residual units and convolution layers
to optimize the performance of the ResPPI. In the Benchmark
dataset, we adjust the number of residual units and other
parameters, and the best results of the ResPPI algorithm with
different structures are shown in Table 5. We also segment
the dataset into five equal subsets, and select three subsets as a
training set, one subset as a validation set and the other subset
as a testing set. As the number of residual units increases, the
training time of the ResPPI algorithm would become longer.
When we design five residual units and 15 convolution layers
in the ResNet, the performance of the ResPPI is the best.

TABLE 5. The results of the ResPPI algorithm in Benchmark dataset.

FIGURE 8. The F1 results under different positive samples ratio.

When dealing with biological data, we often have to
address the problem of unbalanced datasets. We adjust
the positive samples ratio in the Benchmark dataset to
test the performance of the ResPPI algorithm, compared with
the LSTM, DCNN and SVM methods. Among the sequence
models, we choose the LSTM model as the representative
because it has the best generalization. Figure 8 shows the
F1 results of the ResPPI and three other methods under
different positive samples ratio. We can see that our pro-
posed ResPPI algorithm always performs best in different
situations. Even when the distribution of positive samples
and negative samples is seriously unbalanced, for exam-
ple, the positive samples ratio is 0.1, the ResNet model
still has powerful feature capacities to achieve great effects.
Therefore, the ResPPI algorithm has strong generalization
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and can provide a reference for the processing of other
biological data.

FIGURE 9. The variance of accuracy in the PDB dataset.

In the PDB dataset, we repeat pairing proteins randomly
and generating negative samples ten times. And then we
use the obtained PDB datasets to evaluate the sensitivity of
results. The variance of accuracy is shown in Figure 9, we can
see that the results of accuracy based on variance negative
samples remain stable between 0.86 and 0.88.

V. CONCLUSION
In this paper, we propose an efficient algorithm to predict
PPI based on amino acid sequences. Our algorithm adopts the
embedding method to automatically encoder the sequences,
using the ResNet with powerful extraction capacities to
extract the deep features of proteins and implement classifi-
cation. Under the ordinary GPU device, our proposed ResPPI
algorithm can achieve high accuracy and rapid prediction.
The main contribution is that our model need not consider
the time series of amino acid sequences like sequence models
and can make use of GPU performance to accelerate the PPI
prediction. The experimental results show that the ResPPI
algorithm is quite successful in PPI prediction, including the
accuracy and training speed, compared with other methods
in the literature. Our algorithm can provide motivation for
new researchers to be done in the field. For future work,
we will consider adding the physical properties of amino
acids in the ResNet model to improve the accuracy of PPI
and optimize the structure of ResNet to accelerate the PPI
prediction further.
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