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ABSTRACT A state-of-the-art Machine Learning (ML) based approach, by modeling the behavior of
Gallium Nitride (GaN) power electronic devices, is presented in this paper. Switching voltage and current
waveforms of these novel devices are accurately predicted using the developed supervised ML algorithm.
This was utilised to build a more generic black-box model for these devices. Moreover, long short-term
memory unit (LSTM) and gated recurrent unit (GRU) device models have been proposed to make the
approachmore user friendly. The performance of the developed approach is verified using a set of simulations
and experimental tests under 450 V, 10 A test conditions. Model results demonstrate an error rate of 0.03 and
convergence speed of 3s with excellent stability. Compared to the existing models, the developed ML-based
model produces more accurate results, converges faster and has a better stability. Additionally, the developed
ML-based GaN model offers the ability to select the best fit available GaN model (Panasonic, GaN Systems,
Transphorm etc.). It automatically configures them into a system that would optimally yield the desired
power conversion. This enables a shorter learning curve for the power electronics community, which would
lead to acceptance and faster adoption of these devices by the power electronics industry.

INDEX TERMS Gallium Nitride, power electronics, modelling, machine learning, neural networks.

I. INTRODUCTION
GaN-based devices have superior performance and mate-
rial properties compared to those made of Si. However,
before wider adoption by the power electronics industry,
the behaviour of GaN devices must be fully understood. The
steep learning curve involved is acting as a roadblock to
the adoption of these devices by the industry [1]. To solve
this problem, an in-depth understanding of the switching
performance of different types of GaN devices (which
are based on different structures) is required. Conventional
modelling methods are derived from semiconductor physics,
the property of materials and structure of the device, which
usually are not available for the device users, resulting in
difficulties in modelling the device [2], [3]. The authors
have explored RF-based parasitic extraction to develop a
behavioural model, but, it was observed that this method is
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not highly accurate [4]. This is because it is dependent on the
accuracy of the measurement circuitry.

Additionally, the RF model is developed, neglecting the
effect of certain parasitic elements [5], [6]. Due to the
complexity of the device structure, time involved in parasitic
extraction and the analytical procedures involved, this model
is not suitable for validating all applications [7], [8]. Thus,
it cannot serve as a universal model for GaN. To solve
this problem, GaN simulation models which are an accurate
replica of the actual device is designed, built and demon-
strated using ML techniques.

GaN-based RF devices have been widely used for
microwave applications, and CAD-based modelling tech-
niques are generally used for modelling these devices [9].
To perform statistical CAD with current approaches is
not feasible as a single analysis of a component may
require several hours or days and hundreds of analyses
are required. It is because these techniques make use
of computer-intensive electromagnetic full-wave simulators.
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ML modelling algorithms, on the other hand, uses multi-
dimensional non-linear approximator, which maps the input
parameters to the output ones. Hence, Neural networks (NN)
appear to be the perfect candidate to perform this process.

The rapidly evolving field of NN based modelling,
especially in microwave CAD and optimization has led to
several findings. With the increased proliferation of AI,
researchers started investigating NN based modelling for
microwave transistors. NN based RF transistor models can be
developed through a computerized training process, and the
models can be developed even if sophisticated device theory
equations are unavailable. There are few papers in this regard
to model microwave-based HEMT devices [10], [11]. But,
there is not much progress for developing NNmodels that can
reproduce their dynamic characteristics. While NN models
have made inroads into wireless and communication areas,
NN models for static and dynamic performance of power
devices are still in its early stages of research [12]–[14].

Machine Learning techniques, particularly the Neural
Networks, are recently starting to make an impact on power
systems andmotor drives. The underlying AI techniques such
as fuzzy logic and genetic algorithms have been applied for
elemental power electronic applications as shown in [15].
From all the different branches of AI, NN’s barely penetrated
the motor drives area that is evident by the publications in the
literature, which are more than ten years old as listed in the
above paper. Though there has been a lot of revolutionary
strides inML research and its application in many areas, there
are only less than twenty-five literature /papers in the area
of application of NN techniques for power electronics (PE).
But some note-worthy papers are exploring neural network
modelling for microwave devices as noted before. Similarly,
few recent papers are currently exploring using NN for
reliability assessment for improving the life of GaN power
converters [16], [17]. Though reliability monitoring is out of
the scope of this paper, the authors will be exploring this when
the models are scaled up for commercialisation.

Main contributions of this research work can be sum-
marised as follows:
1. ML models are used to predict the switching voltage and

current waveforms; thus, making it possible to construct a
black-box model of the GaN power device.

2. The predicted waveforms are verified using experimental
results and found to be in good agreement. Moreover, this
was achieved at a faster convergence rate of 3s and error
rate of 0.03 compared to existing simulationmodels which
converged at 68s and more.

3. This research demonstrates different types of GaN ML
models. The developed voltage and current prediction
models are based on long short-termmemory unit (LSTM)
and gated recurrent unit (GRU). Several parameters are
quantified and compared for validating the models. They
are the network architectures, parameters, training time,
validation loss and error loss.
This paper is organised as follows: Section II describes

the practical need for ML-based modelling for GaN

power devices. Section III details the data collection set up
and section IV introduces the GaN power device behaviour
modelling usingML. In section V, RNNmodels are designed,
developed and demonstrated. The models are then validated
with existing manufacturer simulation parametric models.
Section VI discusses the contribution of this research work.
Section VII includes conclusions and future work.

II. PROBLEM DEFINITION: GaN HEMT BEHAVIOURAL
MODELLING USING ML
This work uses both single and multi-recurrent neural
networks (RNNs) to quicken the design process of GaN
circuits and devices. It is done using supervised training
to predict the switching voltage waveforms. Thus, a NN
based GaN model is developed using ML techniques. This
model has been compared to other conventional LT-Spice
behavioural models to compare accuracy and convergence.
The voltage between drain and source and device current
at both conducting and switching states can be modelled
by using the ML process. This is done using measurement
data of these variables along with their corresponding gate
voltage. The data required is acquired through recording a
large number of switching events which are then used as the
training and testing data.

Let x represent an Mx vector containing dynamic charac-
teristics of the GaN device obtained from the double pulse
test (DPT) circuit, like, input voltage, gate voltage, digital
control signal and gate current. Let y represent a vector
containing the output of the device switching behaviour
under consideration such as device switching voltage and
device switching current. The physical-mathematical rela-
tionship between y and x can be represented as y = f(x).
This relationship for GaN device is highly non-linear and
multi-dimensional. GaN being a nearly ideal device, this
relationship is influenced by the parasitic of the circuit, unlike
its Si counterparts where such effects can be neglected. The
effect of these on the device behaviour is challenging to
measure. Additionally, the analytical physics-based model is
computationally intensive for online implementation.

So, this research aims to develop a fast and accurate generic
neural network model for GaN. This is done by training
a neural network to learn the GaN-based switching circuit
problem through a set of the measured and simulated sample
set of data called training data were: [(Xs, Ds)s ∈ Tr], where
Ds represents the measured/simulated output y for the input
Xs and Tr represents the overall set of training data. Now,
the neural network model can be defined as y = y(x, w),
where w represents the parameters inside the neural network
generally termed the weight vector.

In this modelling, to make sure that the neural network
makes predictions that are close to the actual value of the
output voltages, a loss function Mean Absolute Error (MAE)
that will be able to reduce the distance between the predicted
and real values and in effect increase the accuracy is used.
The Mean Absolute Error (MAE) is the sum of the absolute
differences between predictions and actual values. It gives an
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idea of by how much wrong the predictions are. It gives an
idea of the magnitude of the error, but no idea of the direction
(e.g. over or under predicting). It is defined as the average
error over the test sample of the absolute differences between
prediction and actual values, where all discrete differences
have equal weight.

E(ω) = MAE =
n∑

j=1

∣∣y′ (xj,wj)− dsj∣∣,
where yj is the prediction, and dsj is the measured value from
the experimental results/simulation.

The objective of the neural network training is to find ‘w’
such that E(w) is minimized. The structure/architecture of the
NN is defined by the definition of w, the methodology by
which yj is computed through x and w. Since the switching
waveforms are a continuous function, it can be predicted with
reasonable accuracy using ML. The 6-step ML-based GaN
modelling process used is as follows:
1. ProblemDefinition: Building an accurate 600V black-box

model of GaN device using ML.
2. Analyse Data: Gate voltage and input voltage are used

as inputs; device current and switching voltage used as
outputs for training; test data is collected from the double
pulse test measurements and simulations.

3. Prepare Data: Normalization is done to convert data for
training the neural networks.

4. Choose Model: Regression-based feed-forward and recur-
rent models are used, and the process is as shown
in Figure 1.

5. Training: Training data is used to incrementally improve
the model’s ability to predict the switching waveforms of
GaN.

6. Present Results: The output of the device switching
voltage and the switching current is predicted.

FIGURE 1. Block diagram of GaN device behavioural modelling using ML.

III. DATA COLLECTION AND PREPROCESSING
The first step in NN model development is the identification
of inputs and outputs. Once the inputs and outputs are
identified, the device/ circuit/ experimental data needs to be
gathered or generated depending on the problem definition.
For PE-based applications, there can be two or three

types of data generation: measurement, analytical calculation
and software simulation. In the case of PE applications,
experimental data is collected via appropriate measurement
techniques; simulation results are generated and exported to
compatible formats that can be processed by the NN model.

For this modelling, data is collected via experiments and
simulation using double pulse test (DPT). Both switching
experiments and simulation were done using the available
GaN power devices to collect asmuch data as possible. Due to
the ease of recording simulation data, more set of such data
could be collected. In this work, approximately 70 per cent
of training data is from simulation, and the remaining 30 per
cent is experimental data.

FIGURE 2. Double Pulse Test Circuit Prototype (Sanken Inc).

Double pulse test - To be able to validate the model,
it is necessary to compare the performance of the simulation
using the proposed model with the performance of the actual
device in the experimental rig, i.e. the double pulse test in
this case. The prototype, as shown in Figure 2 is used for
the double pulse testing and has been supplied by Sanken
Inc as part of the team’s collaborative work with them. The
circuit can be customized to use TO, and other SMDpackages
and is thus used for accurate measurement, convenience and
flexibility. The double-pulse switch test is set at 500 V DC
with a switched load current of 15 A (half the device rated
current). The driving current is set at around 800 mA. The
supply voltages for gate drive are adjusted according to the
specification of the device being tested.

The test set up and simulation system used is as per the
following specifications:

a. 500Vdc-bus, 15A from the inductive load.
b. In-built and customised measurement set-up.
c. Agilent oscilloscope with double pulse signal from

Agilent waveform generator.
d. Electrical power from benchtop power supplies.

The current device measurement was done using a current
probe. Whereas, the voltage measurements are checked using
a precision probe. The circuit was tested using GaN Systems,
Transphorm, Panasonic and Sanken devices. Since the author
did not have further access to the datasheet of the discrete
Sanken devices, it is not investigated further in this work and
is not used for the model design.
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Generally, NN modelling requires the following sets of
data:

1. Training data (TR),
2. Validation data (V),
3. Test data (TE)

TR is used to govern the training process, i.e. to update the
NN weights during training. During training, validation data
is used to track the error of the model and test data is used
to evaluate the final accuracy/error of the developed model.
There are no requirements for the sizes of the partitions,
based on the practical methodology for data partitioning; the
percentage depends on the available data size. In general,
50 per cent or more of the data is allocated to the training set,
25 per cent to the test set, and the remainder is set apart for
the validation set. When the sample size is small like in this
case, machine learning experts and literature point out that a
good practice would be to leave out the validation data and
use a 60 - 40 or 70 - 30 ratio. As can be seen, a 70 - 30 ratio is
the most commonly used split. The authors have hence used
the 70-30 ratio split between training and testing data for this
work.

IV. GaN HEMT BASED MODELLING USING RNNs
One of the most popular ML algorithms is NNs [18], [19].
Neural Networks gained much popularity recently owing
to their effectiveness in many difficult tasks like image
classification and natural language processing [20], [21].
NNs are a connected system of computational units that
can be trained from examples rather than being explicitly
programmed. They are modelled loosely after biological
neurons and can be used to solve a variety of tasks that
are hard to solve using rule-based programming [22]–[24].
An NN consists of an input layer, hidden layers and output
layers. Hence, each layer performs calculations based on its
weights, inputs, biases and activations and gives an output.
A combination of a different number of neurons and hidden
layers forms an architecture. A simple feed-forward neural
network works by multiplying the inputs to the neurons
with the respective weights of the connections, adding bias
and then applying a non-linearity like tanh. Simple neural
networks like these have proved to be very useful in solving
complicated problems like image classification and language
generation.

NN is a consequence of inter-linkage of artificial neurons
to mimic the operation of a human brain to solve scientific,
engineering, industrial and many other real-life problems.
The architecture of the biological neural network is not yet
well-understood, and therefore, many NN models have been
proposed till date and research is still ongoing [25]–[29].

Neural networks where the output from one layer is used
as input to the next layer are called feed-forward neural
networks. These networks define a mapping function y =
f(x,w), the function y learns the value of the parameters w
that result in the best function approximation. Conventional
feed-forward neural networks are regarded for their learning

and generalization capabilities. However, they can only map
static input and output co-relation network; information is
always fed forward, never fed back. To model a non-linear
circuit, responses such as behavioural responses of devices
in the time domain, a NN that can incorporate temporal
information is necessary and is possible via feedback
loops. Such models are called Recurrent Neural Networks
(RNNs) [25], [26].

One of the significant drawbacks with traditional NN
is that it cannot connect information from one instant to
another past or present event. It only learns from a particular
event. It is a massive problem while dealing with PE
problems, especially with the dynamic behaviour of devices.
Hence a relatively new NN model called Long short-term
memory units (LSTM) and Gated Recurrent Unit (GRU) is
first explored in this work which can learn from previous
experience and can remember information for more extended
periods, unlike RNNs. These are preferred in behavioural
modelling due to their inherent capability to connect the
output dependencies at previous instants to other instants
by comparing the information stored over a more extended
period of time.

LSTM unit: Due to the unstable gradient problem, early
RNNs models were challenging to train [27]. Hochreiter and
Schmidhuber introduced the LSTM units in 1997 with the
explicit purpose of helping address the unstable gradient
problem. The LSTM, as shown in Figure 2, can erase or
augment information using ‘forget gate’ and ‘input gate’ to
the cell state, coordinated by structures called gates. Using
LSTMs when training RNNs makes it easier to get good
results and is used in this work for building one of the GaN
ML models.

GRU unit: Gated Recurrent Unit introduced by
Jain et al. [28] is a more powerful variation on the LSTM.
It merges the ‘forget’ and ‘input’ gates into a single ‘update
gate’. It also fuses the cell state and hidden state and
makes some other changes making the resulting model more
understandable than standard LSTMmodels. Its performance
is commensurate with LSTM but computationally more
efficient (less complicated structure) and hence is beginning
to be more widely used. Since its more comfortable to
generate one output for aNNmodel, inputs have been initially
used to predict the output voltage.

Then a second model was trained using output voltage
as another input to predict the output switching current.
It is done to allow the model to learn the dependencies and
co-relation of switching voltage and current on each other and
with other inputs.

To understand the working of the NN modelling process
and to start off with a much simpler and more manageable
data processing, shallowNN (one hidden layer) basedmodels
are used at the start. The complete set of simulation results
obtained from the double pulse test circuit is used for training.
TheDPT simulation is done using themanufacturer model for
the following devices: GaN Systems (650V, 30 A), Panasonic
(600 V, 15 A) and Transphorm (600 V, 15 A).
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1) Developing the NN Model using TensorFlow: One of
the popular numerical platforms in Python that provide the
basis for the deep learning research and development is the
TensorFlow. This system has compelling libraries but can be
difficult to use directly for creating deep learning models. For
this research, Keras Python library is used. It provides a clean
and convenient way to create a range of learning models on
top of TensorFlow.

TensorFlow is the most famous library used in production
for deep learning models. It has an extensive and active
community. However, TensorFlow is not that easy to use.
On the other hand, Keras is a high-level API built on
TensorFlow (and can be used on top of Theano too, which
has been recently shut-down).

Reasons for choosing Keras for this research work are the
following:

(i) Rapid prototyping: In this work, there is a need to
quickly build and test a neural network with minimal
lines of code, and so Keras was the first choice. With
Keras, one can build simple or very complex neural
networks within a few minutes.

(ii) Modularity: Keras is very user-friendly and hence more
pythonic. Everything in Keras can be represented as
modules which can further be combined as per the
user’s requirements.

(iii) Simple coding: There is not much code required, and
the steps involved are: 1) Data Loading 2) Data Pre-
Processing 3) Data Preparation 4) Defining a Model

Models in Keras are defined as a sequence of layers.
A Sequential model is created first, and layers are added one
at a time until the right network topology. The number of
layers and structure is difficult to decide from the beginning.
There are some guidelines and rubric that can be used, but
often the best network structure is found through a process of
trial and error experimentation. Generally, we need a network
large enough to capture the structure of the problem. In this
work, a fully connected network structure with single and
multiple layers are designed and demonstrated.

Once the model is defined, it can be compiled. Compiling
the model uses the existing numerical libraries under the
covers (called backend). In this work, TensorFlow is used
as the backend. It automatically chooses the best way to
represent the network for training and making predictions
to run on the hardware. When compiling, there is a need to
specify some additional properties required when training the
network.

Training a network is to find the best set of weights to make
predictions for the problem. So, there is a need to specify
the loss function to evaluate a set of weights, the optimizer
to search through different weights for the network and any
optional metrics to collect and report during training. In this
work, we have used mean absolute percentage error as the
loss function, Adam as the optimizer and accuracy as the
metrics of performance. These are best fit for this problem
which has time-series data. Adam is used as it is best for

handling sparse and noisy data. Additionally, it is easy to use
and fast.
GRU model: For training the dynamic behaviour, the fol-

lowing inputs and outputs are selected.
1) Inputs: Gate voltage, Input voltage, Digital voltage

(ON/OFF), Device switching current.
2) Output: Device switching voltage.
3) No. of data sets used: 30 (training: 25; testing: 5)

[experimental data: simulation data split = 30:70].
4) Epochs:500.
5) Type of NN used: GRU.
6) 4 inputs, 1 output, 1 hidden layer and 65 nodes are used.
7) Gate voltage and device switching current is scaled by a

factor of 10 while plotting.
Table. 1 shows the architecture that lists the trainable

parameters and related info of the GRU NN used for
developing the GRU based behavioural model for GaN power
devices.

TABLE 1. GaN GRU model architecture.

For begin with, in this model, the switching current is also
used as an input. It is to generalize the model to be able to
process both voltages and currents so that this can be used for
current-controlled devices as well.

The ability of the model to use voltages and currents to
be able to predict the output voltage is a clear indication
that this model can carefully map the inter-relationship
between switching voltage, gate voltage and current. It is an
essential improvement over the NN models for microwave
devices which can only be voltage controlled. Firstly,
the GRU model was trained using data from the DPT
results and from the simulations done using manufacturer
models. The data contained values for switch OFF and
ON instants. After the initial data-processing was done,
the data was normalized. After normalization, the values were
squashed in the range of (0,1). After data pre-processing and
normalization, the dataset is split into input-output pairs.

For example, plotting the prediction for a random set
of training, the following waveforms are obtained as
in Figure 3 and Figure 4. It can be noted that the GRU model
closely follows the training data in terms of the waveform
shape, but not during turn off. It is interesting to note that
in Figure 3, in the ML model, the predicted voltage turns-off
immediately after the gate voltage goes negative as should be
the case. So, it is clear that in this case, our model is trying
to predict the ideal case switching behaviour. It is possibly
because the model has been fed with a lot of manufacturer
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FIGURE 3. LSTM NN.

FIGURE 4. GaN GRU model training (Panasonic: left) (Transphorm: right).

model simulation waveforms while training which was more
or less ideal waveforms.
LSTM Model: This testing was repeated using LSTM NN

for the same set of data. The results obtained are very similar
to the GRU model, with only minor differences in accuracy.
The difference in accuracy is not much noticeable in the
graphs due to the fact that we only have limited data for
training and testing. For training this model, the following
inputs and outputs are selected:
1) Inputs: Gate voltage, Input voltage, Digital voltage

(ON/OFF), Device switching current
2) Output: Device switching voltage
3) No. of data sets used: 30 (training: 25, testing: 5) [con-

sisting of both experimental and simulation data with a
ratio of 30:70]

4) Epochs: 500
5) Type of NN used: LSTM
6) 4 inputs, 1 output, 1 hidden layer and 32 nodes are used
7) Gate voltage and device switching current is scaled by a

factor of 10 while plotting
Plotting the predictions gives the following results, as shown
in Figure 5,6. It can be seen that the ML model has
very accurately predicted the oscillations, turn-on and turn-
off time. There is only a small deviation concerning the
magnitude.

It is seen from Table. 2, this model has total trainable
parameters of 12,833, which is less than the GRU model, all

FIGURE 5. GaN GRU model prediction (Panasonic: left) (Transphorm:
right).

FIGURE 6. GaN LSTM model (Panasonic: left) (Transphorm: right).

TABLE 2. GaN LSTM model architecture.

of which trains to learn how best to predict the GaN device
switching. It can be noted that the ML model closely follows
the training data in terms of the waveform shape, on and off
timings, as seen in Figure 5 and Figure 6. For both model 1
and model 2, there are not many noticeable differences in the
prediction voltages.

A. VALIDATION
There is a need to validate the demonstrated ML models. The
logic used here is as follows:
1. The objective is to frame a model which is closer to

actual test results than the ideal behaviour and with better
accuracy than the proposed model behaviour.

2. In this work, the MSE is calculated against the DPT
data for all the three devices. A comparison between the
prediction error, the manufacturer model error and the
proposed model error is made as seen in Table. 3.

3. The lower the error, the better.
Table. 3 shows the comparison between the prediction error

of GRU models with the proposed model. As is evident from
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TABLE 3. Comparison of the prediction error of RNN-GRU model.

Table 3, the proposed model error is the lowest and is much
closer to the actual experimental data, which is as expected.
The ML model is not very close to the experimental data
results as it is trained with data from multiple GaN devices
and DPT tests. Its outputs values are discounting the effect of
measurement and human error. ML model tries to predict the
actual output of the GaN device for the given circuit without
accounting for the measurement errors. Table. 4 below shows
the comparison between the prediction error of LSTM with
other simulation models. Due to the lower error rate and
lesser number of trainable parameters which leads to speedy
simulation, the next sections will use RNN-LSTM based
models for training. Figure 7 and Figure 8 graphically depicts
the validation and training loss which is used for calculating
prediction error.

FIGURE 7. GaN LSTM model prediction (Panasonic: left) (Transphorm:
right).

FIGURE 8. Comparison of loss for RNN-GRU model.

Advantages of the shallow (one layer) model:
1) Simple
2) More comfortable to implement/run the simulation
3) Good performance

Disadvantages:
1) Memorization
2) Not good at generalizing
3) Non-scalable

Deep/Multi NNs have more than one hidden layer. The
advantage of numerous layers is that they can learn
attributes at distinctive stages of abstraction. Based on
the other layer’s output, each layer of nodes trains on
a distinct set of features/attributes. As we move deep
into the neural net, they accumulate and re-join attributes
from the previous layer and can recognize more complex
attributes/features. This property termed as feature hierar-
chy makes deep-learning networks proficient of handling
astronomical, high-dimensional data sets with zillions of
parameters that pass through non-linear operations. Thus,
these nets are adept at unearthing interconnections within
unlabelled/unstructured data. Therefore, one of the issues
deep learning resolves well is the processing and clustering
of the world’s raw data with insights into the similarities and
variation in data in a relational database. For example, in this
work, with each hidden layer, the model will learn specific
features of the switching behaviour, in the next layer, it will
learn about the DPT circuit, the next one about the parasitic
etc. though not necessarily in this order.

FIGURE 9. Comparison of loss for RNN-LSTM model.

B. GaN HEMT BASED MODELLING USING MULTI
NEURAL NETWORKS
Shallow networks are neural networks with one hidden
layer, as shown in Figure 9 (left). A sufficiently broad
shallow NN can approximate any function if provided with
enough training data. Since we are dealing with PE-based
applications, the data available is not very large, unlike
classification and pattern recognition problems. But there
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TABLE 4. Comparison of the prediction error of RNN-LSTM model.

are some complexities while using an extremely wide-
shallow network such as the one used in this work. The
first complication is that wide-shallow networks are high
at memorization, but not that good at generalization. So,
to ensure generalization and to reduce the number of
parameters used, we explore multi NN models, as shown
in Figure 9 (right).

In this part, training is done using RNN-LSTM network
architecture to determinewhether it can be used for predicting
both the device voltages and currents. The input layer of
all the models has 3 neurons, one for each feature. Since
this is a regression problem, the output layer has one neuron
with linear activation. All other layers have Rectified Linear
Unit activations [30]. Adam optimizer was used during
training [31], and the data were divided into batches of 500.
Predicting device switching voltage: For training this

model, the following inputs and outputs are selected:

1) Inputs: Gate voltage, Input voltage, Device switching
current

2) Output: Device switching voltage
3) No. of data sets used: 35 (training: 25; testing: 5)

[consisting of both experimental and simulation data
with a ratio of 30:70]

4) Epochs: 500
5) Type of NN used: LSTM
6) 3 inputs, 1 output, 2 hidden layers with 32 nodes each

Thus, here, the neural network model can be defined as:

Switching voltage = f(gate voltage, switching current)

So, the RNN-LSTM is trained to predict the switching
voltage as a function of the gate voltage and the switching
current. The ability of the model to use voltages and
currents to be able to predict the output which could either
be voltage/current is crucial. Unlike the NN models for
microwave devices which can only act as voltage-controlled
having only voltage as input and output, the ML models in
this work can predict both voltages and currents and deals
with both voltage and current inputs and outputs.

TheRNN-LSTMmodel, with parameters shown in Table 5,
was trained using simulation and manufacturer test data. The
data contained values for switch OFF and ON instants. The
current measurements had noise issues, so, an extra set of 5
batches with improved current measurement was supplied for
training. Besides, five batches of experimental data were set
to part for validation.

TABLE 5. GaN MULTI LSTM model architecture.

Plotting the voltage prediction for a set of training, the fol-
lowing waveforms, as shown in Figure 10, Figure 11 and
Figure 12 are obtained for Transphorm, Panasonic and GaN
Systems power devices.

FIGURE 11. GaN ML model prediction for Transphorm Cascode HEMT.

FIGURE 12. GaN ML model prediction for GaNSystems HEMT.

The predicted waveforms lack the oscillatory behaviour
since it is fed with many manufacturer model waveforms
while training which is more or less ideal waveforms. But
unlike the previous models, this model very closely follows
the experimental waveforms in terms of the on and off the
rise, fall time and magnitude.
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FIGURE 10. Shallow network (left) and multi feed-forward neural network (right).

Predicting device switching current: For training this
model, the following inputs and outputs are selected:
1. Inputs: Gate voltage, Input voltage, Device switching

voltage
2. Output: Device switching current
3. No. of data sets used: 35 (training: 25, testing: 5)

[consisting of both experimental and simulation data with
a ratio of 30:70]

4. Epochs: 1500
5. Type of NN used: LSTM
6. 3 inputs, 1 output, 2 hidden layers with 32 nodes each

Thus, here, the neural network model can be defined as
switching current = f (gate voltage, switching voltage)

Here the RNN-LSTM model is trained to predict the
switching current as a function of the gate voltage and
the switching voltage. In the case of current, the noise in the
DPT and with the waveform going negative, it was difficult
to use the same logic of MSE used for validating the voltage
prediction.

FIGURE 13. GaN ML model prediction for Panasonic GIT.

Plotting the current prediction for a set of training data,
the following waveforms as seen in Figure. 13, Figure. 14
and Figure. 15 are obtained. It can be noted that the ML
model closely follows the training data in terms of the
waveform shape, but there is a deviation in the magnitude

FIGURE 14. GaN ML model current prediction for Transphorm HEMT.

FIGURE 15. GaN ML model current prediction for GaNSystems HEMT.

of the predicted current. The predicted waveforms lack the
oscillatory behaviour for the same reason as in the case
of voltage prediction. Also, unlike the previous voltage
prediction model, the current model does not carefully follow
the experimental waveforms in terms of both the amplitude
and shape. So, it is likely that the model was not able to learn
the behaviour of current switching properly due to lack of
noise-free training data.
Prediction of both Switching Voltage and Switching

Current: For gaining familiarity with developing of NN based
models for GaN, ease of programming and decreasing the
training time involved, initially multiple-input, single-output
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RNN-LSTM and RNN-GRU based GaN models were
developed. Now, to develop a complete black box/generic
GaN-based behavioural model, it is necessary to output
both switching voltages and currents at the same time.
So, this section demonstrates the development of a generic
behavioural model of a GaN HEMT that outputs switching
voltage and switching current.

Since the current measurements obtained from DPT are
slightly noisy and inaccurate, more accurate measurements of
currents were taken and fed to this complete model for better
training.

For training this model, the following inputs and outputs
are selected:
1) Inputs: Gate voltage and Input voltage
2) Output: Device switching current and switching voltage
3) No. of data sets used: 35 (training: 25, testing: 5)

[consisting of both experimental and simulation data
with a ratio of 30:70]

4) Epochs: 1500
5) Type of NN used: Long short-term network (LSTM)
6) 2 inputs, 2 output, 2 hidden layers with 32 nodes each

Thus, here, the neural network model can be defined as:

(switching voltage, switching current)

= f (gate voltage, input voltage)

TABLE 6. GaN RNN-LSTM model architecture.

RNN-LSTM model is trained to predict the switching
voltage and current as a function of the gate voltage and input
voltage. The architecture of the model employed is as shown
in Table. 6. The number of trainable parameters is 13,122 and
is slightly higher due to the extra node present for the
output layer. From the predicted waveforms from Figure. 16,
Figure. 17 and Figure. 18, it is evident that there is a tendency
to predict idealized waveforms which, as explained before,
is due to the large number of simulationwaveforms fed during
training.

As seen in Figure. 17, the prediction for current in case of
GaN Systems HEMT is way below the measured magnitude.
This is because of the volume of noisy current measurement
fed to the model as training data. Both of these limitations can
be overcome if better DPT/experimental waveforms are fed
during training. There is a limitation to gathering such a high
volume of DPT results from a lab setting. Hence, the results
are limited to the available data set for training and testing.

FIGURE 16. GaN ML model current prediction for Panasonic GIT.

FIGURE 17. GaN ML model current and voltage prediction for Transphorm
HEMT.

FIGURE 18. GaN ML model current and voltage prediction for
GaNSystems HEMT.

C. VALIDATION
Table. 7 below shows the comparison between the prediction
error of GaNMLmodels with the manufacturer models. As is
evident fromTable 7 and Figure. 19, the proposedmodel error
is the lowest. It is much closer to the actual experimental data,
which is as expected. The ML model will not be very close
to the experimental data results as it is trained with data from
multiple GaN devices and DPT tests. So, it learned to negate
the effect of measurement and human error. ML model has
tried to predict the actual output of the GaN device for the
given circuit without accounting for the measurement errors.

As is evident from Figure. 20 and Table. 8, the training
loss is high for current prediction. The prediction values were
also not close enough to the expected values as detailed in the
earlier section. It can be avoided by training the model with
accurate and less variant current waveforms.
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TABLE 7. GaN RNN-LSTM model architecture.

TABLE 8. Comparison of the current prediction error of LSTM model.

FIGURE 19. GaN ML model current and voltage prediction for Panasonic
GIT.

FIGURE 20. GaN Comparison of loss for LSTM voltage prediction model.

The black box GaN ML model has a small loss. Training
and validation loss are very close, and the model is fast and
accurate. Thus, it is apparent that with a large volume of
data, this model can be scaled up efficiently and made highly
accurate and fast for speedy simulation and convergence time.

V. DISCUSSIONS – CONTRIBUTION
1) The proposed modelling using machine learning tech-

niques are accurate, fast and more practical for power
design engineers.

2) The total training computation time for LSTM took
around 120 minutes with 4s for each epoch. For GRU it
took 75 minutes with 3s for each epoch. The simulation
running time for validation data took around (238- 240)
ms/step for each sample input. This computation time
is for an Intel(R), Core (TM), i5-6600 CPU at 3.30GHz
with 48GB RAM.

3) ML modelling does not require detailed knowledge
of the physics nor geometry of the device and is
independent of any intrinsic device measurement errors.

4) It is noted that the predicted voltages are tending
towards ideal behaviour prediction. It is due to the
presence of a large number of simulated waveforms
from manufacturer models which don’t capture the
parasitic of the circuit.

5) The variation in current is due to the inaccuracy
associated with the measurement circuitry.

6) The demonstrated model has been explored using
recurrent neural network models such as LSTM and
GRU. It is found that LSTM models are accurate, but
GRU models are faster.

7) Verification of the proposed models is performed by
checking the ability of the NN model to generalize, i.e.
to output targeted responses to values not used during
training.

8) Shallow and multi-layer NNs are both used to model
GaN to find the best fit.

9) Single output and multi-output models are demonstrated
and validated.

10) The ability of themodel to use both voltages and currents
to be able to predict the outputs map the interrelationship
between switching voltage, gate voltage and current. Its
significant achievement compared to the existing NN
models for microwave devices which are exclusively
voltage prediction models.

11) This paper designs develops and demonstrates a generic
universal black box behavioural model for different
GaN devices using ML. The benefits include simplicity,
accuracy and speedy simulation with fast convergence
time.
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12) The observed variation of the proposed model from the
actual device is due to the lack of a considerable volume
of data that is generally required for ML training.
Nevertheless, this model is the best approximation for an
accurate generic GaN behavioural model. These models
can be scaled up and accuracy improved with training
compared to currently available models.

VI. CONCLUSIONS
This research demonstrates ML-based modelling for GaN
power electronics. Different types of GaN ML models are
derived, and their performance is demonstrated using state of
the art neural network architectures. The developed voltage
and current prediction models are based on long short-term
memory unit (LSTM) and gated recurrent unit (GRU)
models. Several parameters are quantified and compared for
validating the models. They are the network architectures,
parameters, training time, validation loss and error loss.
The ML models are also compared with existing LT-Spice
manufacturer models. Results show that a faster GaN ML
model with an error rate of 0.03, and convergence at 3s with
excellent stability can be developed.

The proposed ML models can be trained and scaled up for
better accuracy using a larger volume of switching data. This
research work is limited by the use of output voltage at 400 V,
200V and 100V and loads current at10-15A forGaNSystems,
Transphorm and Panasonic GaN devices. However, this can
be expanded by using a range of input voltages, load voltages
and output voltages which can be recorded in steps and fed in
for training. It helps the model better understand the device
switching behaviour and increase prediction accuracy.

Having ML-based manufacturer models help speed up
the learning curve, device simulation time and enable faster
adoption of these novel devices by the power electronics
engineers. Additionally, the ML-based GaN circuit models
can also be scaled up by feeding data from different
types of GaN power circuits used for different applications.
Having accurate GaN device and circuit models help identify
the suitability of a GaN device structure for a particular
application. This would be highly beneficial for power
designers in reducing the circuit simulation and prototyping
time frames.
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